Gaussian Processes

Neil D. Lawrence

GPRS 9th August 2013

Multivariate Gaussian Properties

Distributions over Functions

Covariance from Basis Functions

Basis Function Representations

Multivariate Gaussian Properties

Distributions over Functions

Covariance from Basis Functions

Basis Function Representations

1. Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$$

1. Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$$

$$\sum_{i=1}^{n} y_i \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$

1. Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$$

$$\sum_{i=1}^{n} y_i \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$

2. Scaling a Gaussian leads to a Gaussian.

1. Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$$

$$\sum_{i=1}^{n} y_i \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$

2. Scaling a Gaussian leads to a Gaussian.

$$y \sim \mathcal{N}(\mu, \sigma^2)$$

1. Sum of Gaussian variables is also Gaussian.

$$y_i \sim \mathcal{N}\left(\mu_i, \sigma_i^2\right)$$

$$\sum_{i=1}^{n} y_i \sim \mathcal{N}\left(\sum_{i=1}^{n} \mu_i, \sum_{i=1}^{n} \sigma_i^2\right)$$

2. Scaling a Gaussian leads to a Gaussian.

$$y \sim \mathcal{N}\left(\mu,\sigma^2\right)$$

$$wy \sim \mathcal{N}\left(w\mu, w^2\sigma^2\right)$$

Multivariate Consequence

► If

Multivariate Consequence

• If $\mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ • And

 $\mathbf{y} = \mathbf{W}\mathbf{x}$

Multivariate Consequence

Multivariate Regression Likelihood

Noise corrupted data point

$$y_i = \mathbf{w}^\top \mathbf{x}_{i,:} + \epsilon_i$$

Multivariate Regression Likelihood

Noise corrupted data point

$$y_i = \mathbf{w}^\top \mathbf{x}_{i,:} + \epsilon_i$$

Multivariate regression likelihood:

$$p(\mathbf{y}|\mathbf{X}, \mathbf{w}) = \frac{1}{\left(2\pi\sigma^2\right)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n \left(y_i - \mathbf{w}^\top \mathbf{x}_{i,i}\right)^2\right)$$

Multivariate Regression Likelihood

Noise corrupted data point

$$y_i = \mathbf{w}^\top \mathbf{x}_{i,:} + \epsilon_i$$

Multivariate regression likelihood:

$$p(\mathbf{y}|\mathbf{X}, \mathbf{w}) = \frac{1}{\left(2\pi\sigma^2\right)^{n/2}} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n \left(y_i - \mathbf{w}^\top \mathbf{x}_{i,:}\right)^2\right)$$

• Now use a multivariate Gaussian prior:

$$p(\mathbf{w}) = \frac{1}{\left(2\pi\alpha\right)^{\frac{p}{2}}} \exp\left(-\frac{1}{2\alpha}\mathbf{w}^{\mathsf{T}}\mathbf{w}\right)$$

Posterior Density

• Once again we want to know the posterior:

```
p(\mathbf{w}|\mathbf{y}, \mathbf{X}) \propto p(\mathbf{y}|\mathbf{X}, \mathbf{w}) p(\mathbf{w})
```

• And we can compute by completing the square.

Posterior Density

• Once again we want to know the posterior:

 $p(\mathbf{w}|\mathbf{y},\mathbf{X}) \propto p(\mathbf{y}|\mathbf{X},\mathbf{w})p(\mathbf{w})$

• And we can compute by completing the square.

$$\log p(\mathbf{w}|\mathbf{y}, \mathbf{X}) = -\frac{1}{2\sigma^2} \sum_{i=1}^n y_i^2 + \frac{1}{\sigma^2} \sum_{i=1}^n y_i \mathbf{x}_{i,:}^\top \mathbf{w}$$
$$-\frac{1}{2\sigma^2} \sum_{i=1}^n \mathbf{w}^\top \mathbf{x}_{i,:} \mathbf{x}_{i,:}^\top \mathbf{w} - \frac{1}{2\alpha} \mathbf{w}^\top \mathbf{w} + \text{const.}$$

$$p(\mathbf{w}|\mathbf{y}, \mathbf{X}) = \mathcal{N}\left(\mathbf{w}|\boldsymbol{\mu}_{w}, \mathbf{C}_{w}\right)$$
$$\mathbf{C}_{w} = (\sigma^{-2}\mathbf{X}^{\mathsf{T}}\mathbf{X} + \alpha^{-1})^{-1} \text{ and } \boldsymbol{\mu}_{w} = \mathbf{C}_{w}\sigma^{-2}\mathbf{X}^{\mathsf{T}}\mathbf{y}$$

Note the similarity between posterior mean

$$\boldsymbol{\mu}_{w} = (\sigma^{-2} \mathbf{X}^{\mathsf{T}} \mathbf{X} + \alpha^{-1})^{-1} \sigma^{-2} \mathbf{X}^{\mathsf{T}} \mathbf{y}$$

and Maximum likelihood solution

$$\hat{\mathbf{w}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

Marginal Likelihood is Computed as Normalizer

 $p(\mathbf{w}|\mathbf{y}, \mathbf{X})p(\mathbf{y}|\mathbf{X}) = p(\mathbf{y}|\mathbf{w}, \mathbf{X})p(\mathbf{w})$

• Can compute the marginal likelihood as:

$$p(\mathbf{y}|\mathbf{X}, \alpha, \sigma) = \mathcal{N}\left(\mathbf{y}|\mathbf{0}, \alpha \mathbf{X}\mathbf{X}^{\top} + \sigma^{2}\mathbf{I}\right)$$

Left: fit to data, *Right*: marginal log likelihood. Polynomial order 0, model error 29.757, $\sigma^2 = 0.286$, $\sigma = 0.535$.

Left: fit to data, *Right*: marginal log likelihood. Polynomial order 1, model error 14.942, $\sigma^2 = 0.0749$, $\sigma = 0.274$.

Left: fit to data, *Right*: marginal log likelihood. Polynomial order 2, model error 9.7206, $\sigma^2 = 0.0427$, $\sigma = 0.207$.

Left: fit to data, *Right*: marginal log likelihood. Polynomial order 3, model error 10.416, $\sigma^2 = 0.0402$, $\sigma = 0.200$.

Left: fit to data, *Right*: marginal log likelihood. Polynomial order 4, model error 11.34, $\sigma^2 = 0.0401$, $\sigma = 0.200$.

Left: fit to data, *Right*: marginal log likelihood. Polynomial order 5, model error 11.986, $\sigma^2 = 0.0399$, $\sigma = 0.200$.

Left: fit to data, *Right*: marginal log likelihood. Polynomial order 6, model error 12.369, $\sigma^2 = 0.0384$, $\sigma = 0.196$.

Left: fit to data, *Right*: model error. Polynomial order 0, training error 29.757, validation error -0.29243, $\sigma^2 = 0.302$, $\sigma = 0.550$.

Left: fit to data, *Right*: model error. Polynomial order 1, training error 14.942, validation error 4.4027, $\sigma^2 = 0.0762$, $\sigma = 0.276$.

Left: fit to data, *Right*: model error. Polynomial order 2, training error 9.7206, validation error -8.6623, $\sigma^2 = 0.0580$, $\sigma = 0.241$.

Left: fit to data, *Right*: model error. Polynomial order 3, training error 10.416, validation error -6.4726, $\sigma^2 = 0.0555$, $\sigma = 0.236$.

Left: fit to data, *Right*: model error. Polynomial order 4, training error 11.34, validation error -8.431, $\sigma^2 = 0.0555$, $\sigma = 0.236$.

Left: fit to data, *Right*: model error. Polynomial order 5, training error 11.986, validation error -10.483, $\sigma^2 = 0.0551$, $\sigma = 0.235$.

Left: fit to data, *Right*: model error. Polynomial order 6, training error 12.369, validation error -3.3823, $\sigma^2 = 0.0537$, $\sigma = 0.232$.

- Section 2.3 of Bishop up to top of pg 85 (multivariate Gaussians).
- ► Section 3.3 of Bishop up to 159 (pg 152–159).

Rasmussen and Williams (2006)

Multivariate Gaussian Properties

Distributions over Functions

Covariance from Basis Functions

Basis Function Representations

Multi-variate Gaussians

- We will consider a Gaussian with a particular structure of covariance matrix.
- Generate a single sample from this 25 dimensional Gaussian distribution, $\mathbf{f} = [f_1, f_2 \dots f_{25}]$.
- We will plot these points against their index.

(a) A 25 dimensional correlated random variable (values ploted against index)

(b) colormap *i*showing correlations between dimensions.

(a) A 25 dimensional correlated random variable (values ploted against index)

(b) colormap *i*showing correlations between dimensions.

(a) A 25 dimensional correlated random variable (values ploted against index)

0.8

(b) colormap showing correlations between dimensions.

(a) A 25 dimensional correlated random variable (values ploted against index)

(b) colormap showing correlations between dimensions.

(a) A 25 dimensional correlated random variable (values ploted against index)

(b) colormap showing correlations between dimensions.

0.8 0.6 0.4 0.2

(a) A 25 dimensional correlated random variable (values ploted against index)

(b) colormap showing correlations between dimensions.

(a) A 25 dimensional correlated random variable (values ploted against index)

(b) colormap showing correlations between dimensions.

► The single contour of the Gaussian density represents the joint distribution, p(f₁, f₂).

- ► The single contour of the Gaussian density represents the joint distribution, p(f₁, f₂).
- We observe that $f_1 = -0.313$.

- ► The single contour of the Gaussian density represents the joint distribution, p(f₁, f₂).
- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_2|f_1 = -0.313)$.

- ► The single contour of the Gaussian density represents the joint distribution, p(f₁, f₂).
- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_2|f_1 = -0.313)$.

Prediction with Correlated Gaussians

- ▶ Prediction of *f*² from *f*¹ requires *conditional density*.
- Conditional density is *also* Gaussian.

$$p(f_2|f_1) = \mathcal{N}\left(f_2|\frac{k_{1,2}}{k_{1,1}}f_1, k_{2,2} - \frac{k_{1,2}^2}{k_{1,1}}\right)$$

where covariance of joint density is given by

$$\mathbf{K} = \begin{bmatrix} k_{1,1} & k_{1,2} \\ k_{2,1} & k_{2,2} \end{bmatrix}$$

The single contour of the Gaussian density represents the joint distribution, p(f₁, f₅).

- The single contour of the Gaussian density represents the joint distribution, p(f₁, f₅).
- We observe that $f_1 = -0.313$.

- The single contour of the Gaussian density represents the joint distribution, p(f₁, f₅).
- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_5|f_1 = -0.313)$.

- The single contour of the Gaussian density represents the joint distribution, p(f₁, f₅).
- We observe that $f_1 = -0.313$.
- Conditional density: $p(f_5|f_1 = -0.313)$.

Prediction with Correlated Gaussians

- Prediction of f_{*} from f requires multivariate *conditional density*.
- Multivariate conditional density is *also* Gaussian.

$$p(\mathbf{f}_*|\mathbf{f}) = \mathcal{N}\left(\mathbf{f}_*|\mathbf{K}_{*,\mathbf{f}}\mathbf{K}_{\mathbf{f},\mathbf{f}}^{-1}\mathbf{f},\mathbf{K}_{*,*} - \mathbf{K}_{*,\mathbf{f}}\mathbf{K}_{\mathbf{f},\mathbf{f}}^{-1}\mathbf{K}_{\mathbf{f},*}\right)$$

Here covariance of joint density is given by

$$\mathbf{K} = \begin{bmatrix} \mathbf{K}_{f,f} & \mathbf{K}_{*,f} \\ \mathbf{K}_{f,*} & \mathbf{K}_{*,*} \end{bmatrix}$$

Prediction with Correlated Gaussians

- Prediction of f_{*} from f requires multivariate *conditional density*.
- Multivariate conditional density is *also* Gaussian.

$$p(\mathbf{f}_*|\mathbf{f}) = \mathcal{N}\left(\mathbf{f}_*|\boldsymbol{\mu}, \boldsymbol{\Sigma}\right)$$
$$\boldsymbol{\mu} = \mathbf{K}_{*,f} \mathbf{K}_{f,f}^{-1} \mathbf{f}$$
$$\boldsymbol{\Sigma} = \mathbf{K}_{*,*} - \mathbf{K}_{*,f} \mathbf{K}_{f,f}^{-1} \mathbf{K}_{f,*}$$
$$\blacktriangleright \text{ Here covariance of joint density is given by}$$

$$\mathbf{K} = \begin{bmatrix} \mathbf{K}_{\mathbf{f},\mathbf{f}} & \mathbf{K}_{*,\mathbf{f}} \\ \mathbf{K}_{\mathbf{f},*} & \mathbf{K}_{*,*} \end{bmatrix}$$

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared Exponential, Gaussian)

$$k(\mathbf{x}, \mathbf{x}') = \alpha \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|_2^2}{2\ell^2}\right)$$

- Covariance matrix is built using the *inputs* to the function x.
- For the example above it was based on Euclidean distance.
- The covariance function is also know as a kernel.

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared Exponential, Gaussian)

$$k(\mathbf{x}, \mathbf{x}') = \alpha \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|_2^2}{2\ell^2}\right)$$

- Covariance matrix is built using the *inputs* to the function x.
- For the example above it was based on Euclidean distance.
- The covariance function is also know as a kernel.

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_1 = -3.0, x_1 = -3.0$$

$$k_{1,1} = 1.00 \times \exp\left(-\frac{(-3.0 - -3.0)^2}{2 \times 2.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_1 = -3.0, x_1 = -3.0$$

$$k_{1,1} = 1.00 \times \exp\left(-\frac{(-3.0 - -3.0)^2}{2 \times 2.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_1 = -3.0$$

$$k_{2,1} = 1.00 \times \exp\left(-\frac{(1.20 - 3.0)^2}{2 \times 2.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{2} = 1.20, x_{1} = -3.0$$

$$k_{2,1} = 1.00 \times \exp\left(-\frac{(1.20 - 3.0)^{2}}{2 \times 2.00^{2}}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_1 = -3.0$$

$$k_{2,1} = 1.00 \times \exp\left(-\frac{(1.20 - 3.0)^2}{2 \times 2.00^2}\right)$$

$$1.00 \quad 0.110$$

$$0.110$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_2 = 1.20$$

$$k_{2,2} = 1.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 2.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_2 = 1.20$$

$$k_{2,2} = 1.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 2.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_1 = -3.0$$

$$k_{3,1} = 1.00 \times \exp\left(-\frac{(1.40 - -3.0)^2}{2 \times 2.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{3} = 1.40, x_{1} = -3.0$$

$$k_{3,1} = 1.00 \times \exp\left(-\frac{(1.40 - 3.0)^{2}}{2 \times 2.00^{2}}\right)$$

$$0.0889$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_1 = -3.0$$

$$k_{3,1} = 1.00 \times \exp\left(-\frac{(1.40 - 3.0)^2}{2 \times 2.00^2}\right)$$

$$0.0889$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$k_{3,2} = 1.00 \times \exp\left(-\frac{(1.40 - 1.20)^2}{2 \times 2.00^2}\right)$$

$$0.0889$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$k_{3,2} = 1.00 \times \exp\left(-\frac{(1.40 - 1.20)^2}{2 \times 2.00^2}\right)$$

$$0.0889$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$k_{3,2} = 1.00 \times \exp\left(-\frac{(1.40 - 1.20)^2}{2 \times 2.00^2}\right)$$

$$0.0889 \quad 0.995$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_3 = 1.40$$

$$k_{3,3} = 1.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 2.00^2}\right)$$

$$0.0889 \quad 0.995$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_3 = 1.40$$

$$k_{3,3} = 1.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 2.00^2}\right)$$

$$1.00$$

$$1.00 \quad 0.110 \quad 0.0889$$

$$0.995$$

$$1.00$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_1 = -3, x_1 = -3$$

$$k_{1,1} = 1.0 \times \exp\left(-\frac{(-3--3)^2}{2 \times 2.0^2}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{||x_{i} - x_{j}||^{2}}{2\ell^{2}}\right)$$

$$x_{1} = -3, x_{1} = -3$$

$$k_{1,1} = 1.0 \times \exp\left(-\frac{(-3 - 3)^{2}}{2 \times 2.0^{2}}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{||x_{i} - x_{j}||^{2}}{2\ell^{2}}\right)$$

$$x_{2} = 1.2, x_{1} = -3$$

$$k_{2,1} = 1.0 \times \exp\left(-\frac{(1.2 - 3)^{2}}{2 \times 2.0^{2}}\right)$$

Where did this covariance matrix come from?

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{||x_{i} - x_{j}||^{2}}{2\ell^{2}}\right)$$

$$x_{2} = 1.2, x_{1} = -3$$

$$k_{2,1} = 1.0 \times \exp\left(-\frac{(1.2 - 3)^{2}}{2 \times 2.0^{2}}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{||x_{i}-x_{j}||^{2}}{2\ell^{2}}\right)$$

$$x_{2} = 1.2, x_{2} = 1.2$$

$$k_{2,2} = 1.0 \times \exp\left(-\frac{(1.2-1.2)^{2}}{2\times 2.0^{2}}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{||x_{i} - x_{j}||^{2}}{2\ell^{2}}\right)$$

$$x_{2} = 1.2, x_{2} = 1.2$$

$$k_{2,2} = 1.0 \times \exp\left(-\frac{(1.2 - 1.2)^{2}}{2 \times 2.0^{2}}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{||x_{i} - x_{j}||^{2}}{2\ell^{2}}\right)$$

$$x_{3} = 1.4, x_{1} = -3$$

$$k_{3,1} = 1.0 \times \exp\left(-\frac{(1.4 - -3)^{2}}{2 \times 2.0^{2}}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.4, x_1 = -3$$

$$k_{3,1} = 1.0 \times \exp\left(-\frac{(1.4 - 3)^2}{2 \times 2.0^2}\right)$$

$$1.0 \quad 0.11$$

$$0.11 \quad 1.0$$

$$0.089$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{3} = 1.4, x_{1} = -3$$

$$k_{3,1} = 1.0 \times \exp\left(-\frac{(1.4 - 3)^{2}}{2 \times 2.0^{2}}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 \\ 0.11 & 1.0 \\ 0.089 \end{bmatrix}$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{3} = 1.4, x_{2} = 1.2$$

$$k_{3,2} = 1.0 \times \exp\left(-\frac{(1.4 - 1.2)^{2}}{2 \times 2.0^{2}}\right)$$

$$\left[\begin{array}{c}
1.0 & 0.11 & 0.089\\
0.11 & 1.0\\
0.089\\
\end{array}\right]$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_3 = 1.4, x_2 = 1.2$$

$$k_{3,2} = 1.0 \times \exp\left(-\frac{(1.4 - 1.2)^2}{2 \times 2.0^2}\right)$$

$$1.0$$

$$1.0$$

$$1.0$$

$$1.0$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.4, x_2 = 1.2$$

$$k_{3,2} = 1.0 \times \exp\left(-\frac{(1.4 - 1.2)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 \\ 0.11 & 1.0 & 1.0 \\ 0.089 & 1.0 \end{bmatrix}$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.4, x_3 = 1.4$$

$$k_{3,3} = 1.0 \times \exp\left(-\frac{(1.4 - 1.4)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 \\ 0.11 & 1.0 & 1.0 \\ 0.089 & 1.0 \end{bmatrix}$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{3} = 1.4, x_{3} = 1.4$$

$$k_{3,3} = 1.0 \times \exp\left(-\frac{(1.4 - 1.4)^{2}}{2 \times 2.0^{2}}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 \\ 0.11 & 1.0 & 1.0 \\ 0.089 & 1.0 & 1.0 \end{bmatrix}$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_1 = -3$$

$$k_{4,1} = 1.0 \times \exp\left(-\frac{(2.0 - 3)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 \\ 0.11 & 1.0 & 1.0 \\ 0.089 & 1.0 & 1.0 \end{bmatrix}$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_1 = -3$$

$$k_{4,1} = 1.0 \times \exp\left(-\frac{(2.0 - 3)^2}{2 \times 2.0^2}\right)$$

$$1.0 \quad 0.11 \quad 0.089$$

$$1.0 \quad 1.0$$

$$0.044$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_1 = -3$$

$$k_{4,1} = 1.0 \times \exp\left(-\frac{(2.0 - 3)^2}{2 \times 2.0^2}\right)$$

$$1.0 \quad 0.11 \quad 0.089 \quad 0.044$$

$$0.11 \quad 1.0 \quad 1.0$$

$$0.044$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_2 = 1.2$$

$$k_{4,2} = 1.0 \times \exp\left(-\frac{(2.0 - 1.2)^2}{2 \times 2.0^2}\right)$$

$$1.0 \quad 0.11 \quad 0.089 \quad 0.044$$

$$0.11 \quad 1.0 \quad 1.0$$

$$0.044$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_2 = 1.2$$

$$k_{4,2} = 1.0 \times \exp\left(-\frac{(2.0 - 1.2)^2}{2 \times 2.0^2}\right)$$

$$1.0 \quad 0.044$$

$$0.11 \quad 1.0 \quad 1.0$$

$$0.044 \quad 0.92$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_2 = 1.2$$

$$k_{4,2} = 1.0 \times \exp\left(-\frac{(2.0 - 1.2)^2}{2 \times 2.0^2}\right)$$

$$1.0 \quad 0.11 \quad 0.089 \quad 0.044$$

$$0.11 \quad 1.0 \quad 0.92$$

$$0.089 \quad 1.0 \quad 1.0$$

$$0.044 \quad 0.92$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_3 = 1.4$$

$$k_{4,3} = 1.0 \times \exp\left(-\frac{(2.0 - 1.4)^2}{2 \times 2.0^2}\right)$$

$$\begin{bmatrix} 1.0 & 0.11 & 0.089 & 0.044 \\ 0.11 & 1.0 & 1.0 & 0.92 \\ 0.089 & 1.0 & 1.0 \\ 0.044 & 0.92 \end{bmatrix}$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_3 = 1.4$$

$$k_{4,3} = 1.0 \times \exp\left(-\frac{(2.0 - 1.4)^2}{2 \times 2.0^2}\right)$$

$$1.0 \quad 0.11 \quad 0.089 \quad 0.044$$

$$0.11 \quad 1.0 \quad 1.0 \quad 0.92$$

$$0.089 \quad 1.0 \quad 1.0$$

$$0.044 \quad 0.92 \quad 0.96$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{||x_i - x_j||^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_3 = 1.4$$

$$k_{4,3} = 1.0 \times \exp\left(-\frac{(2.0 - 1.4)^2}{2 \times 2.0^2}\right)$$

$$1.0 \quad 0.11 \quad 0.089 \quad 0.044$$

$$0.11 \quad 1.0 \quad 0.92$$

$$0.089 \quad 1.0 \quad 1.0 \quad 0.96$$

$$0.044 \quad 0.92 \quad 0.96$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_4 = 2.0$$

$$k_{4,4} = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

$$1.0 \quad 0.11 \quad 0.089 \quad 0.044$$

$$0.11 \quad 1.0 \quad 0.92$$

$$0.089 \quad 1.0 \quad 1.0 \quad 0.96$$

$$0.044 \quad 0.92 \quad 0.96$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_4 = 2.0, x_4 = 2.0$$

$$k_{4,4} = 1.0 \times \exp\left(-\frac{(2.0 - 2.0)^2}{2 \times 2.0^2}\right)$$

$$1.0 \quad 0.11 \quad 0.089 \quad 0.044$$

$$0.11 \quad 1.0 \quad 0.92$$

$$0.089 \quad 1.0 \quad 1.0 \quad 0.96$$

$$0.044 \quad 0.92 \quad 0.96 \quad 1.0$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_1 = -3.0, x_1 = -3.0$$

$$k_{1,1} = 4.00 \times \exp\left(-\frac{(-3.0 - -3.0)^2}{2 \times 5.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{1} = -3.0, x_{1} = -3.0$$

$$k_{1,1} = 4.00 \times \exp\left(-\frac{(-3.0 - 3.0)^{2}}{2\times 5.00^{2}}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_1 = -3.0$$

$$k_{2,1} = 4.00 \times \exp\left(-\frac{(1.20 - 3.0)^2}{2 \times 5.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{2} = 1.20, x_{1} = -3.0$$

$$k_{2,1} = 4.00 \times \exp\left(-\frac{(1.20 - 3.0)^{2}}{2\times 5.00^{2}}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{2} = 1.20, x_{1} = -3.0$$

$$k_{2,1} = 4.00 \times \exp\left(-\frac{(1.20 - 3.0)^{2}}{2 \times 5.00^{2}}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_2 = 1.20$$

$$k_{2,2} = 4.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 5.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_2 = 1.20, x_2 = 1.20$$

$$k_{2,2} = 4.00 \times \exp\left(-\frac{(1.20 - 1.20)^2}{2 \times 5.00^2}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{3} = 1.40, x_{1} = -3.0$$

$$k_{3,1} = 4.00 \times \exp\left(-\frac{(1.40 - -3.0)^{2}}{2\times 5.00^{2}}\right)$$

Where did this covariance matrix come from?

$$k(x_{i}, x_{j}) = \alpha \exp\left(-\frac{\|x_{i} - x_{j}\|^{2}}{2\ell^{2}}\right)$$

$$x_{3} = 1.40, x_{1} = -3.0$$

$$k_{3,1} = 4.00 \times \exp\left(-\frac{(1.40 - 3.0)^{2}}{2\times 5.00^{2}}\right)$$

$$2.72$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_1 = -3.0$$

$$k_{3,1} = 4.00 \times \exp\left(-\frac{(1.40 - 3.0)^2}{2 \times 5.00^2}\right)$$

$$2.72$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$k_{3,2} = 4.00 \times \exp\left(-\frac{(1.40 - 1.20)^2}{2 \times 5.00^2}\right)$$

$$2.72$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$k_{3,2} = 4.00 \times \exp\left(-\frac{(1.40 - 1.20)^2}{2 \times 5.00^2}\right)$$

$$2.72$$

$$4.00$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_2 = 1.20$$

$$k_{3,2} = 4.00 \times \exp\left(-\frac{(1.40 - 1.20)^2}{2 \times 5.00^2}\right)$$

$$2.72 \quad 4.00$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_3 = 1.40$$

$$k_{3,3} = 4.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 5.00^2}\right)$$

$$2.72 \quad 4.00$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

$$x_3 = 1.40, x_3 = 1.40$$

$$k_{3,3} = 4.00 \times \exp\left(-\frac{(1.40 - 1.40)^2}{2 \times 5.00^2}\right)$$

$$2.72 \quad 4.00 \quad 4.00$$

Where did this covariance matrix come from?

$$k(x_i, x_j) = \alpha \exp\left(-\frac{\|x_i - x_j\|^2}{2\ell^2}\right)$$

Multivariate Gaussian Properties

Distributions over Functions

Covariance from Basis Functions

Basis Function Representations

Basis Function Form

Radial basis functions commonly have the form

$$\phi_k(\mathbf{x}_i) = \exp\left(-\frac{\left|\mathbf{x}_i - \boldsymbol{\mu}_k\right|^2}{2\ell^2}\right)$$

Figure: A set of radial basis functions with width $\ell = 2$ and location parameters $\mu = [-4 \ 0 \ 4]^{\top}$.

Represent a function by a linear sum over a basis,

$$f(\mathbf{x}_{i,:};\mathbf{w}) = \sum_{k=1}^{m} w_k \phi_k(\mathbf{x}_{i,:}), \qquad (1)$$

• Here: *m* basis functions and $\phi_k(\cdot)$ is *k*th basis function and

$$\mathbf{w} = [w_1, \ldots, w_m]^\top$$

• For standard linear model: $\phi_k(\mathbf{x}_{i,:}) = x_{i,k}$.

Random Functions

Functions derived using:

$$f(x) = \sum_{k=1}^m w_k \phi_k(x),$$

where **W** is sampled from a Gaussian density,

$$w_k \sim \mathcal{N}(0, \alpha)$$
.

RBF Basis Functions

$$k(\mathbf{x}, \mathbf{x}') = \alpha \boldsymbol{\phi}(\mathbf{x})^\top \boldsymbol{\phi}(\mathbf{x}')$$

$$\phi_i(x) = \exp\left(-\frac{\left\|x - \mu_i\right\|_2^2}{\ell^2}\right)$$
$$\mu = \begin{bmatrix}-1\\0\\1\end{bmatrix}$$

RBF Basis Functions

$$k(\mathbf{x}, \mathbf{x}') = \alpha \boldsymbol{\phi}(\mathbf{x})^\top \boldsymbol{\phi}(\mathbf{x}')$$

Use matrix notation to write function,

$$f(\mathbf{x}_i; \mathbf{w}) = \sum_{k=1}^m w_k \phi_k(\mathbf{x}_i)$$

Use matrix notation to write function,

$$f(\mathbf{x}_i; \mathbf{w}) = \sum_{k=1}^m w_k \phi_k(\mathbf{x}_i)$$

computed at training data gives a vector

 $f = \Phi w$.

Use matrix notation to write function,

$$f(\mathbf{x}_i; \mathbf{w}) = \sum_{k=1}^m w_k \phi_k(\mathbf{x}_i)$$

computed at training data gives a vector

 $\mathbf{f} = \mathbf{\Phi} \mathbf{w}$.

w and f are only related by an *inner product*.

Use matrix notation to write function,

$$f(\mathbf{x}_i; \mathbf{w}) = \sum_{k=1}^m w_k \phi_k(\mathbf{x}_i)$$

computed at training data gives a vector

 $f = \Phi w$.

w and **f** are only related by an *inner product*.

$$\mathbf{\Phi} \in \mathfrak{R}^{n \times p}$$
 is a design matrix

Use matrix notation to write function,

$$f(\mathbf{x}_i; \mathbf{w}) = \sum_{k=1}^m w_k \phi_k(\mathbf{x}_i)$$

computed at training data gives a vector

 $f = \Phi w$.

w and f are only related by an *inner product*.

 $\mathbf{\Phi} \in \mathfrak{R}^{n \times p}$ is a design matrix

 Φ is fixed and non-stochastic for a given training set.

Use matrix notation to write function,

$$f(\mathbf{x}_i; \mathbf{w}) = \sum_{k=1}^m w_k \phi_k(\mathbf{x}_i)$$

computed at training data gives a vector $\mathbf{f} = \mathbf{\Phi} \mathbf{w}$.

w and f are only related by an *inner product*.

 $\mathbf{\Phi} \in \mathfrak{R}^{n \times p}$ is a design matrix

 Φ is fixed and non-stochastic for a given training set.

f is Gaussian distributed.

We have

$$\langle \mathbf{f} \rangle = \mathbf{\Phi} \langle \mathbf{w} \rangle.$$

We have

$$\langle \mathbf{f} \rangle = \mathbf{\Phi} \langle \mathbf{w} \rangle.$$

Prior mean of w was zero giving

$$\langle \mathbf{f} \rangle = \mathbf{0}.$$

We have

$$\langle \mathbf{f} \rangle = \mathbf{\Phi} \langle \mathbf{w} \rangle.$$

Prior mean of w was zero giving

$$\langle \mathbf{f} \rangle = \mathbf{0}.$$

Prior covariance of **f** is

$$\mathbf{K} = \left\langle \mathbf{f} \mathbf{f}^{\top} \right\rangle - \left\langle \mathbf{f} \right\rangle \left\langle \mathbf{f} \right\rangle^{\top}$$

Expectations

We have

$$\langle \mathbf{f} \rangle = \mathbf{\Phi} \langle \mathbf{w} \rangle.$$

Prior mean of w was zero giving

$$\left\langle f\right\rangle =0.$$

Prior covariance of f is

$$\mathbf{K} = \left\langle \mathbf{f}\mathbf{f}^{\top} \right\rangle - \left\langle \mathbf{f} \right\rangle \left\langle \mathbf{f} \right\rangle^{\top}$$
$$\left\langle \mathbf{f}\mathbf{f}^{\top} \right\rangle = \mathbf{\Phi} \left\langle \mathbf{w}\mathbf{w}^{\top} \right\rangle \mathbf{\Phi}^{\top},$$

giving

$$\mathbf{K} = \boldsymbol{\gamma}' \boldsymbol{\Phi} \boldsymbol{\Phi}^{\mathsf{T}}.$$

► The prior covariance between two points **x**_{*i*} and **x**_{*j*} is

$$k\left(\mathbf{x}_{i},\mathbf{x}_{j}\right)=\phi_{:}\left(\mathbf{x}_{i}\right)^{\top}\phi_{:}\left(\mathbf{x}_{j}\right),$$

► The prior covariance between two points **x**_{*i*} and **x**_{*j*} is

$$k(\mathbf{x}_i, \mathbf{x}_j) = \phi_{:} (\mathbf{x}_i)^{\top} \phi_{:} (\mathbf{x}_j),$$

or in sum notation

$$k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) = \gamma' \sum_{\ell}^{m} \phi_{\ell}\left(\mathbf{x}_{i}\right) \phi_{\ell}\left(\mathbf{x}_{j}\right)$$

• The prior covariance between two points **x**_{*i*} and **x**_{*j*} is

$$k(\mathbf{x}_i, \mathbf{x}_j) = \phi_{:} (\mathbf{x}_i)^\top \phi_{:} (\mathbf{x}_j),$$

or in sum notation

$$k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) = \gamma' \sum_{\ell}^{m} \phi_{\ell}\left(\mathbf{x}_{i}\right) \phi_{\ell}\left(\mathbf{x}_{j}\right)$$

For the radial basis used this gives

• The prior covariance between two points **x**_{*i*} and **x**_{*j*} is

$$k(\mathbf{x}_i, \mathbf{x}_j) = \phi_{:} (\mathbf{x}_i)^{\top} \phi_{:} (\mathbf{x}_j),$$

or in sum notation

$$k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) = \gamma' \sum_{\ell}^{m} \phi_{\ell}\left(\mathbf{x}_{i}\right) \phi_{\ell}\left(\mathbf{x}_{j}\right)$$

For the radial basis used this gives

$$k\left(\mathbf{x}_{i},\mathbf{x}_{j}\right) = \gamma' \sum_{k=1}^{m} \exp\left(-\frac{\left|\mathbf{x}_{i}-\boldsymbol{\mu}_{k}\right|^{2}+\left|\mathbf{x}_{j}-\boldsymbol{\mu}_{k}\right|^{2}}{2\ell^{2}}\right).$$

Gaussian Process Interpolation

Figure: Real example: BACCO (see *e.g.* (Oakley and O'Hagan, 2002)). Interpolation through outputs from slow computer simulations (*e.g.* atmospheric carbon levels).

Can we determine covariance parameters from the data?

$$\mathcal{N}(\mathbf{y}|\mathbf{0},\mathbf{K}) = \frac{1}{(2\pi)^{\frac{n}{2}}|\mathbf{K}|} \exp\left(-\frac{\mathbf{y}^{\mathsf{T}}\mathbf{K}^{-1}\mathbf{y}}{2}\right)$$

The parameters are *inside* the covariance function (matrix).

Can we determine covariance parameters from the data?

$$\mathcal{N}(\mathbf{y}|\mathbf{0},\mathbf{K}) = \frac{1}{(2\pi)^{\frac{n}{2}}|\mathbf{K}|} \exp\left(-\frac{\mathbf{y}^{\mathsf{T}}\mathbf{K}^{-1}\mathbf{y}}{2}\right)$$

The parameters are *inside* the covariance function (matrix).

Can we determine covariance parameters from the data?

$$\log \mathcal{N}(\mathbf{y}|\mathbf{0}, \mathbf{K}) = -\frac{1}{2} \log |\mathbf{K}| - \frac{\mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y}}{2} - \frac{n}{2} \log 2\pi$$

The parameters are *inside* the covariance function (matrix).

Can we determine covariance parameters from the data?

$$E(\boldsymbol{\theta}) = \frac{1}{2} \log |\mathbf{K}| + \frac{\mathbf{y}^{\top} \mathbf{K}^{-1} \mathbf{y}}{2}$$

The parameters are *inside* the covariance function (matrix).

Eigendecomposition of Covariance

A useful decomposition for understanding the objective function.

 $\mathbf{K} = \mathbf{R} \mathbf{\Lambda}^2 \mathbf{R}^\top$

Diagonal of Λ represents distance along axes. **R** gives a rotation of these axes.

where Λ is a *diagonal* matrix and $\mathbf{R}^{\top}\mathbf{R} = \mathbf{I}$.

$$|\mathbf{\Lambda}| = \lambda_1 \lambda_2 \lambda_3$$

 $|\mathbf{R}\mathbf{\Lambda}| = \lambda_1 \lambda_2$

Data Fit: $\frac{\mathbf{y}^{-1}\mathbf{K}^{-1}\mathbf{y}}{2}$

 y_1

Data Fit: $\frac{\mathbf{y}^{-1}\mathbf{K}^{-1}\mathbf{y}}{2}$

 y_1

Data Fit: $\frac{\mathbf{y}^{-1}\mathbf{K}^{-1}\mathbf{y}}{2}$

 y_1

$$E(\boldsymbol{\theta}) = \frac{1}{2} \log |\mathbf{K}| + \frac{\mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y}}{2}$$

$$E(\boldsymbol{\theta}) = \frac{1}{2} \log |\mathbf{K}| + \frac{\mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y}}{2}$$

$$E(\boldsymbol{\theta}) = \frac{1}{2} \log |\mathbf{K}| + \frac{\mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y}}{2}$$

$$E(\boldsymbol{\theta}) = \frac{1}{2} \log |\mathbf{K}| + \frac{\mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y}}{2}$$

$$E(\boldsymbol{\theta}) = \frac{1}{2} \log |\mathbf{K}| + \frac{\mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y}}{2}$$

$$E(\boldsymbol{\theta}) = \frac{1}{2} \log |\mathbf{K}| + \frac{\mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y}}{2}$$

$$E(\boldsymbol{\theta}) = \frac{1}{2} \log |\mathbf{K}| + \frac{\mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y}}{2}$$

$$E(\boldsymbol{\theta}) = \frac{1}{2} \log |\mathbf{K}| + \frac{\mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y}}{2}$$

Learning Covariance Parameters

Can we determine length scales and noise levels from the data?

$$E(\boldsymbol{\theta}) = \frac{1}{2} \log |\mathbf{K}| + \frac{\mathbf{y}^{\mathsf{T}} \mathbf{K}^{-1} \mathbf{y}}{2}$$

Gene Expression Example

Data from Della Gatta et al. (2008). Application from Kalaitzis and Lawrence (2011).

Contour plot of Gaussian

Optima: length scale of 1.2221 and \log_{10} SNR of 1.9654 log likelihood is -0.22317.

Optima: length scale of 1.5162 and \log_{10} SNR of 0.21306 log likelihood is -0.23604.

Optima: length scale of 2.9886 and \log_{10} SNR of -4.506 log likelihood is -2.1056.

Gaussian Process Fit to Olympic Marathon Data

Selecting Number and Location of Basis

- Need to choose
 - 1. location of centers

Selecting Number and Location of Basis

- Need to choose
 - 1. location of centers
 - 2. number of basis functions

Selecting Number and Location of Basis

- Need to choose
 - 1. location of centers
 - 2. number of basis functions
- Consider uniform spacing over a region:

$$k(x_i, x_j) = \gamma \Delta \sum_{k=1}^m \exp\left(-\frac{x_i^2 + x_j^2 - 2\mu_k(x_i + x_j) + 2\mu_k^2}{2\ell^2}\right),$$

Restrict analysis to 1-D input, *x*.

Uniform Basis Functions

Set each center location to

$$\mu_k = a + \Delta \mu \cdot (k-1).$$

Uniform Basis Functions

Set each center location to

$$\mu_k = a + \Delta \mu \cdot (k-1).$$

Specify the basis functions in terms of their indices,

$$k(x_i, x_j) = \gamma \Delta \mu \sum_{k=0}^{m-1} \exp\left(-\frac{x_i^2 + x_j^2}{2\ell^2} - \frac{2(a + \Delta \mu \cdot k)(x_i + x_j) + 2(a + \Delta \mu \cdot k)^2}{2\ell^2}\right)$$

Infinite Basis Functions

• Take
$$\mu_0 = a$$
 and $\mu_m = b$ so $b = a + \Delta \mu \cdot (m - 1)$.

Infinite Basis Functions

• Take
$$\mu_0 = a$$
 and $\mu_m = b$ so $b = a + \Delta \mu \cdot (m - 1)$.

• Take limit as
$$\Delta \mu \rightarrow 0$$
 so $m \rightarrow \infty$

Infinite Basis Functions

- Take $\mu_0 = a$ and $\mu_m = b$ so $b = a + \Delta \mu \cdot (m 1)$.
- Take limit as $\Delta \mu \rightarrow 0$ so $m \rightarrow \infty$

$$\begin{split} k(x_i, x_j) = &\gamma \int_a^b \exp\left(-\frac{x_i^2 + x_j^2}{2\ell^2} + \frac{2\left(\mu - \frac{1}{2}\left(x_i + x_j\right)\right)^2 - \frac{1}{2}\left(x_i + x_j\right)^2}{2\ell^2}\right) d\mu, \end{split}$$

where we have used $k \cdot \Delta \mu \rightarrow \mu$.

Result

Performing the integration leads to

$$k(x_i, x_j) = \gamma \frac{\sqrt{\pi \ell^2}}{2} \exp\left(-\frac{\left(x_i - x_j\right)^2}{4\ell^2}\right) \\ \times \left[\exp\left(\frac{\left(b - \frac{1}{2}\left(x_i + x_j\right)\right)}{\ell}\right) - \exp\left(\frac{\left(a - \frac{1}{2}\left(x_i + x_j\right)\right)}{\ell}\right) \right],$$

Result

Performing the integration leads to

$$k(x_i, x_j) = \gamma \frac{\sqrt{\pi \ell^2}}{2} \exp\left(-\frac{(x_i - x_j)^2}{4\ell^2}\right) \\ \times \left[\operatorname{erf}\left(\frac{\left(b - \frac{1}{2}\left(x_i + x_j\right)\right)}{\ell}\right) - \operatorname{erf}\left(\frac{\left(a - \frac{1}{2}\left(x_i + x_j\right)\right)}{\ell}\right) \right],$$

• Now take limit as $a \to -\infty$ and $b \to \infty$

Result

Performing the integration leads to

$$k(x_i, x_j) = \gamma \frac{\sqrt{\pi \ell^2}}{2} \exp\left(-\frac{\left(x_i - x_j\right)^2}{4\ell^2}\right) \\ \times \left[\operatorname{erf}\left(\frac{\left(b - \frac{1}{2}\left(x_i + x_j\right)\right)}{\ell}\right) - \operatorname{erf}\left(\frac{\left(a - \frac{1}{2}\left(x_i + x_j\right)\right)}{\ell}\right) \right],$$

• Now take limit as $a \to -\infty$ and $b \to \infty$

$$k(x_i, x_j) = \alpha \exp\left(-\frac{(x_i - x_j)^2}{4\ell^2}\right).$$

where $\alpha = \gamma \sqrt{\pi \ell^2}$.

 An RBF model with infinite basis functions is a Gaussian process.

- An RBF model with infinite basis functions is a Gaussian process.
- The covariance function is given by the exponentiated quadratic covariance function.

$$k(x_i, x_j) = \alpha \exp\left(-\frac{(x_i - x_j)^2}{4\ell^2}\right).$$

where $\alpha = \gamma \sqrt{\pi \ell^2}$.

Infinite Feature Space

- An RBF model with infinite basis functions is a Gaussian process.
- The covariance function is the exponentiated quadratic.
- ► Note: The functional form for the covariance function and basis functions are similar.
 - this is a special case,
 - in general they are very different

Similar results can obtained for multi-dimensional input models Williams (1998); Neal (1996).

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared Exponential, Gaussian)

$$k(\mathbf{x}, \mathbf{x}') = \alpha \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|_2^2}{2\ell^2}\right)$$

- Covariance matrix is built using the *inputs* to the function x.
- For the example above it was based on Euclidean distance.
- The covariance function is also know as a kernel.

Where did this covariance matrix come from?

Exponentiated Quadratic Kernel Function (RBF, Squared Exponential, Gaussian)

$$k(\mathbf{x}, \mathbf{x}') = \alpha \exp\left(-\frac{\|\mathbf{x} - \mathbf{x}'\|_2^2}{2\ell^2}\right)$$

- Covariance matrix is built using the *inputs* to the function x.
- For the example above it was based on Euclidean distance.
- The covariance function is also know as a kernel.

Linear Covariance Function

$$k(\mathbf{x}, \mathbf{x}') = \alpha \mathbf{x}^\top \mathbf{x}'$$

$$\alpha = 1$$

Linear Covariance Function

$$k(\mathbf{x}, \mathbf{x}') = \alpha \mathbf{x}^\top \mathbf{x}'$$

Bayesian linear regression.

$$\alpha = 1$$

MLP Covariance Function

$$k(\mathbf{x}, \mathbf{x}') = \alpha \operatorname{asin}\left(\frac{w\mathbf{x}^{\top}\mathbf{x}' + b}{\sqrt{w\mathbf{x}^{\top}\mathbf{x} + b + 1}\sqrt{w\mathbf{x}'^{\top}\mathbf{x}' + b + 1}}\right)$$

 Based on infinite neural network model.

$$w = 40$$
$$b = 4$$

MLP Covariance Function

$$k(\mathbf{x}, \mathbf{x}') = \alpha \operatorname{asin}\left(\frac{w\mathbf{x}^{\top}\mathbf{x}' + b}{\sqrt{w\mathbf{x}^{\top}\mathbf{x} + b + 1}\sqrt{w\mathbf{x}'^{\top}\mathbf{x}' + b + 1}}\right)$$

 Based on infinite neural network model.

$$w = 40$$
$$b = 4$$

Where did this covariance matrix come from?

Ornstein-Uhlenbeck (stationary Gauss-Markov) covariance function

$$k(\mathbf{x}, \mathbf{x}') = \alpha \exp\left(-\frac{|\mathbf{x} - \mathbf{x}'|}{2\ell^2}\right)$$

 Covariance matrix is built using the *inputs* to the function x.

Where did this covariance matrix come from?

Ornstein-Uhlenbeck (stationary Gauss-Markov) covariance function

$$k(\mathbf{x}, \mathbf{x}') = \alpha \exp\left(-\frac{|\mathbf{x} - \mathbf{x}'|}{2\ell^2}\right)$$

 Covariance matrix is built using the *inputs* to the function x.

- C. M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag, 2006. [Google Books] .
- G. Della Gatta, M. Bansal, A. Ambesi-Impiombato, D. Antonini, C. Missero, and D. di Bernardo. Direct targets of the trp63 transcription factor revealed by a combination of gene expression profiling and reverse engineering. *Genome Research*, 18(6):939–948, Jun 2008. [URL]. [DOI].
- A. A. Kalaitzis and N. D. Lawrence. A simple approach to ranking differentially expressed gene expression time courses through Gaussian process regression. *BMC Bioinformatics*, 12(180), 2011. [DOI].
- R. M. Neal. Bayesian Learning for Neural Networks. Springer, 1996. Lecture Notes in Statistics 118.
- J. Oakley and A. O'Hagan. Bayesian inference for the uncertainty distribution of computer model outputs. Biometrika, 89(4):769–784, 2002.
- C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, Cambridge, MA, 2006. [Google Books].
- C. K. I. Williams. Computation with infinite neural networks. Neural Computation, 10(5):1203–1216, 1998.