Requirements for GPC in the Real World

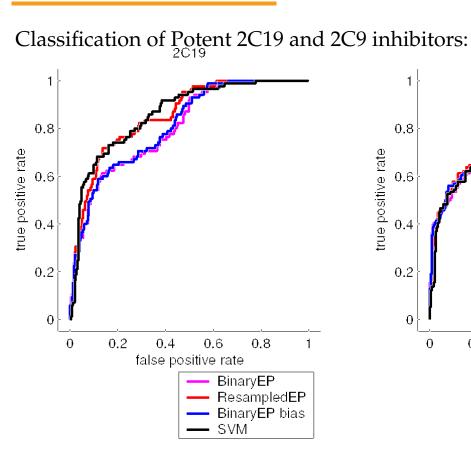
Anton Schwaighofer, June 2005

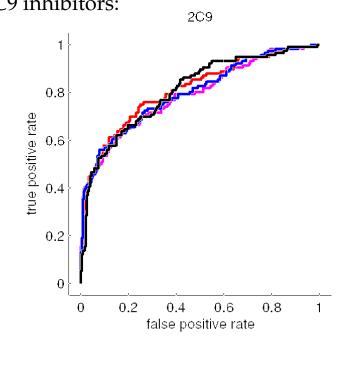
Fraunhofer FIRST Intelligent Data Analysis Group

... Real World?

- Prediction of physiological properties of chemical compounds: Classify whether a compound interacts with 5 different proteins ("potent inhibitors")
- Highly unbalanced classes: worst case 29 positives out of 600 compounds, high cost of misclassifying the smaller class
- Probabilistic prediction required (probability that compound is a "potent inhibitor")

Bias shift, $b = \Phi^{-1}(N_2/(N_1 + N_2))$ (Lawrence et al, IVM) does not seem to work reliably

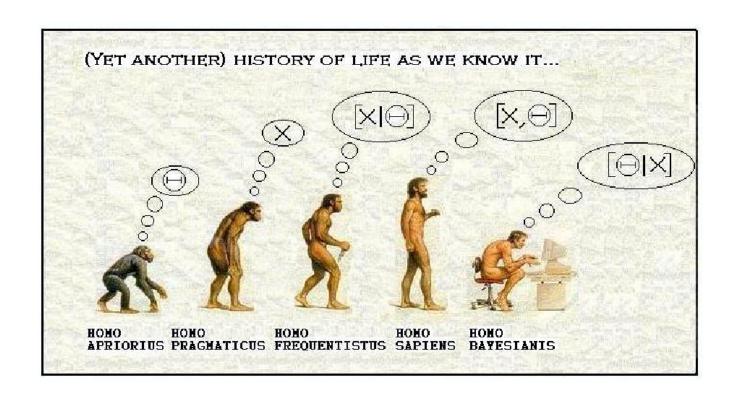

Re-balancing GP Classification by Sampling


For a data set \mathcal{D} with classes C_1 , C_2 , class size $N_1 > N_2$: Build a committee of d classifiers as follows

- For i = 1 ... d: Build $\mathcal{D}^i = \{\text{all examples from } \mathcal{C}_2\} \cup \{N_2 \text{ examples chosen randomly from } \mathcal{C}_1\}$
- Train GP classifier i on \mathcal{D}^i

At prediction stage: Average predictions of all *d* GP classifiers

Real World (again)



Why I Like it

- It's simple (good for computer scientists)
- It solves the problem of unbalanced classes
- It (could) help dealing with large data sets

Open issues

Unbalanced data sets are extremely common real-world applications, with high cost for misclassification of the smaller class What are the possible GPC solutions for this problem?

(c) Mike West