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Approximate Methods for GP Regression:
A Survey and an Empirical Comparison
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Overview
• Reduced-rank approximation of the Gram matrix

• Subset of Regressors

• Subset of Datapoints

• Projected Process Approximation

• Bayesian Committee Machine

• Iterative Solution of Linear Systems

• Empirical Comparison



Reduced-rank approximations of the Gram matrix
K̃ = KnmK−1

mmKmn

• Subset I (of size m) can be chosen randomly (Williams and Seeger), or greedily
(Schölkopf and Smola)

• Drineas and Mahoney (YALEU/DCS/TR-1319, April 2005) suggest sampling the
columns of K with replacement according to the distribution

pi = K2
ii/

∑

j

K2
jj

to obtain the result

‖K − KnmW+
k Kmn‖ ≤ ‖K − Kk‖ + ε

∑

j

K2
jj

for 2-norm or Frobenius norm, by choosing m = O(k/ε4) columns, both in expectation
and with high probability. Wk is the best rank-k approximation to Kmm.



Gaussian Process Regression

Dataset D = (xi, yi)
n
i=1, Gaussian likelihood p(yi|fi) ∼ N(0, σ2)

f̄(x) =
n∑

i=1

αik(x, xi)

where

α = (K + σ2I)−1y

var(x) = k(x, x) − kT (x)(K + σ2I)−1k(x)

in time O(n3), with k(x) = (k(x, x1), . . . ,k(x, xn))T



Subset of Regressors

• Silverman (1985) showed that the mean GP predictor can be obtained
from the finite-dimensional model

f(x∗) =
n∑

i=1

αik(x∗,xi)

with a prior α ∼ N (0, K−1)

• A simple approximation to this model is to consider only a subset of
regressors

fSR(x∗) =
m∑

i=1

αik(x∗,xi), with αm ∼ N (0, K−1
mm)



fSR(x∗) = kT
m(x∗)(KmnKnm + σ2

nKmm)−1Kmny,

varSR(f(x∗)) = σ2
nkT

m(x∗)(KmnKnm + σ2
nKmm)−1km(x∗).

Thus the posterior mean for αm is given by

ᾱm = (KmnKnm + σ2
nKmm)−1Kmny.

Under this approximation

logPSR(y|X) = −
1

2
log |K̃+σ2

nIn|−
1

2
y>(K̃+σ2

nIn)
−1y−

n

2
log(2π).



• Covariance function defined by the SR model has the form
k̃(x, x′) = k>(x)K−1

mmk(x′)

• Problems with predictive variance far from datapoints if kernels decay to
zero

• Greedy selection: Luo and Wahba (1997) minimize RSS |y − Knmαm|2,
Smola and Bartlett (2001) minimize

1

σ2
n
|y − Knmᾱm|2 + ᾱ

>
mKmmᾱm = y>(K̃ + σ2

nIn)
−1y,

Quiñonero-Candela (2004) suggests using the approximate log marginal
likelihood logPSR(y|X)



Nyström method

• Replaces K by K̃, but not k(x∗)

• Better to replace systematically, as in SR



Subset of Datapoints

• Simply keep m datapoints, discard the rest

• Greedy selection using differential entropy score (IVM; Lawrence,
Seeger, Herbrich, 2003) or information gain score



Projected Process Approximation

• The SR method is unattractive as it is based on a degenerate GP

• The PP approximation is a non-degenerate process model but
represents only m < n latent function values explicitly

E[fn−m|fm] = K(n−m)mK−1
mmfm

so that

Q(y|fm) ∼ N (y;KnmK−1
mmfm, σ2

nI),



• Combine Q(y|fm) and P (fm) to obtain Q(fm|y)

• Predictive mean is the same as SR, but variance is never smaller than
SR predictive variance

EQ[f(x∗)] = k>m(x∗)(σ
2
nKmm + KmnKnm)−1Kmny,

varQ(f(x∗)) = k(x∗, x∗) − k>m(x∗)K
−1
mmkm(x∗)

+ σ2
nk>m(x∗)(σ

2
nKmm + KmnKnm)−1km(x∗).



• Csato and Opper (2002) use an online algorithm for determining the
active set

• Seeger, Williams, Lawrence (2003) suggest a greedy algorithm using an
approximation of the information gain



Bayesian Committee Machine

• Split the dataset into p parts and assume that
p(D1, . . . ,Dp|f∗) '

∏p
i=1 p(Di|f∗) (Tresp, 2000)

Eq[f∗|D] = [covq(f∗|D)]
p∑

i=1

[cov(f∗|Di)]
−1

E[f∗|Di],

[covq(f∗|D)]−1 = −(p − 1)K−1
∗∗ +

p∑

i=1

[cov(f∗|Di)]
−1,



• Datapoints can be assigned to clusters randomly, or by using clustering

• Use p = n/m and divide the test set into blocks of size m to ensure that
all matrices are m × m

• Note that BCM is transductive. Also, if n∗ is small it may be useful to
hallucinate some test points



Iterative Solution of Linear Systems

• Can solve (K + σ2
nI)v = y by iterative methods, e.g. conjugate

gradients (CG).

• However, this has O(kn2) scaling for k iterations

• Can be speeded up using approximate matrix-vector multiplication, e.g.
Improved Fast Gauss Transform (Yang et al, 2005)



Complexity

Method Storage Initialization Mean Variance
SD O(m2) O(m3) O(m) O(m2)

SR O(mn) O(m2n) O(m) O(m2)

PP O(mn) O(m2n) O(m) O(m2)
BCM O(mn) O(mn) O(mn)



Empirical Comparison

• Robot arm problem, 44,484 training cases in 21-d, 4,449 test cases

• For SD method subset of size m was chosen at random,
hyperparameters set by optimizing marginal likelihood (ARD). Repeated
10 times

• For SR, PP and BCM methods same subsets/hyperparameters were
used (BCM: hyperparameters only)
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Method m SMSE MSLL mean runtime (s)
SD 256 0.0813 ± 0.0198 -1.4291 ± 0.0558 0.8

512 0.0532 ± 0.0046 -1.5834 ± 0.0319 2.1
1024 0.0398 ± 0.0036 -1.7149 ± 0.0293 6.5
2048 0.0290 ± 0.0013 -1.8611 ± 0.0204 25.0
4096 0.0200 ± 0.0008 -2.0241 ± 0.0151 100.7

SR 256 0.0351 ± 0.0036 -1.6088 ± 0.0984 11.0
512 0.0259 ± 0.0014 -1.8185 ± 0.0357 27.0
1024 0.0193 ± 0.0008 -1.9728 ± 0.0207 79.5
2048 0.0150 ± 0.0005 -2.1126 ± 0.0185 284.8
4096 0.0110 ± 0.0004 -2.2474 ± 0.0204 927.6

PP 256 0.0351 ± 0.0036 -1.6580 ± 0.0632 17.3
512 0.0259 ± 0.0014 -1.7508 ± 0.0410 41.4
1024 0.0193 ± 0.0008 -1.8625 ± 0.0417 95.1
2048 0.0150 ± 0.0005 -1.9713 ± 0.0306 354.2
4096 0.0110 ± 0.0004 -2.0940 ± 0.0226 964.5

BCM 256 0.0314 ± 0.0046 -1.7066 ± 0.0550 506.4
512 0.0281 ± 0.0055 -1.7807 ± 0.0820 660.5
1024 0.0180 ± 0.0010 -2.0081 ± 0.0321 1043.2
2048 0.0136 ± 0.0007 -2.1364 ± 0.0266 1920.7



• For random subset selection, results suggest that BCM and SR perform
best, and that SR is faster

• Some experiments using active selection for the SD method (IVM) and for
the SR method did not lead to significant improvements in performance

• BCM using p-means clustering also did not lead to significant
improvements in performance

• Cf Schwaighofer and Tresp (2003) who found advantage with BCM on
KIN datasets



• For these experiments the hyperparameters were set using SD method.
How would results compare if we, say, optimized the approximate
marginal likelihood for each method?


