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Problems with many sparse GP regression methods

1. Restricted to choosing active set points from amongst training data

2. Lack a reliable way to find kernel hyperparameters



1. Restriction of active set to training data

Most sparse GP methods use some kind of information criterion for
selecting data points to include into an active set

Many methods do not explicitly restrict the active set to be selected
from data

However in practice there are not obvious ways in which to choose active
set points from outside the data set

SPGP chooses points by gradient descent on a suitable cost function



2. Learning kernel hyperparameters

Active set selection interferes with hyperparameter learning

Reselecting active set causes non-smooth fluctuations in the marginal
likelihood and its gradients

Cannot get smooth convergence

SPGP learns hyperparameters together with active set points in
one joint gradient optimization



GP Notation

N input vectors X = {x, }"_, — dimension D
latents u = {u,, }2_,, targets y = {y,})_;, noise o
covariance [Ky],» = K(x,,X,/), hyperparameters 60
marginal likelihood: p(y|X, 0) = N (y|0, Ky + o*1)

predictive distribution:
p(y|}(7 D) 9) p— N(y|k;_(KN + 0-2]:)_1},, KXX — k;{l—(KN —+ 0‘21)_1kx + 0'2)

where [ky|, = K(xp,x) and Kyxx = K(x,X)



Parametric Gaussian processes

e GP predictive distribution effectively parameterised by training data
point locations

e Consider a parametric model with likelihood given by GP predictive
distribution

e Parameterised by pseudo data set of M fake observations: pseudo
inputs X = {X,,}M_,, pseudo targets i = {&,,}_,

Single data point likelihood:
p(ylx, X, ) = N(y’k;{rKﬁﬁ, Kyx — kIK&lkx + 02)

where [K/lmm = K(Xm, Xp) and kx| = K(Xp,x), form=1,..., M



Likelihood and prior

Target data — i.i.d. given inputs:
N
p(y|X, X, 1) = H P(Yn|xn, X, 1) = N(Y|KX4NK]T/[11_17 An)
n=1

where Ay = diag(A), A\, = Knn — kK 'k, + 02, and [Karn]mn =
K (X, Xn).

Learning involves finding a suitable pseudo data set. However we can
integrate out the pseudo targets u.

Gaussian prior: )
p(u|X) = N(ul0,Ky)



Posterior and predictive distributions
Consider pseudo inputs known for now. Bayes rule gives the posterior:
p(u|D,X) = N (a[KnQy KunAN'y, KnQy Ki)
where Qar = Kar + Kirn AV Ky

New input x, — predictive distribution:

where s = kIQ]T/[lKMNAJ_\fly
Uz = Ky — kI(K;j — Q&l)k* +0”

After precomputations, O(M) for mean, O(M?) for variance per test case
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Marginal likelihood

How to find pseudo input locations X and hyperparameters ® = {0, 02}7?

Maximize marginal likelihood by gradient ascent:

p(yX.X, ) = / da p(y|X, X, ) p(a|X)

= N(y|0, K, vK;/ Kan + An)

Gradient calculations long and tedious! Closely follow Seeger et al. (2003)



Overfitting?

M D + |®| parameters instead of |O|
Sensible nature of noise model prevents overfitting

Consider M = N. A marginal likelihood maximum occurs when X = X.

— Here Kjyny = Ky = Ky, Ay = 0?1, and SPGP and full GP marginal
likelihoods and predictive distributions coincide

— Gives confidence in solution for M < N



Relations to other methods

Closely related to Csaté and Opper (2002), also Seeger et al. (2003):
projected latent variables (PLV) method

Replace Ay with I and we get exactly their expressions for predictive
distribution and marginal likelihood

PLV marginal likelihood:
p(y|X,X,©) = N(yl0, K vKj Ky +01)

Major difference — we select pseudo inputs by gradient ascent

What happens if we try to use PLV likelihood instead for learning pseudo
input locations by gradients?
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1D (adversarial!) demo
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Predictive distributions for: (a) full GP, (b) gradient ascent on SPGP

likelihood, (c) gradient ascent on PLV likelihood.

Initial pseudo point positions — red crosses
Final pseudo point positions — blue crosses
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Samples from marginal likelihoods
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Sample data drawn from the marginal likelihood of: (a) a full GP, (b)
SPGP, (c) PLV.

10 pseudo input points — blue crosses

Away from pseudo data points, PLV noise = 02, SPGP noise — K,,,, + 02
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Which likelihood?

The global optimum of the PLV likelihood may well be a good solution,
but it is going to be difficult to find with gradients

The SPGP likelihood also suffers from local optima, but not so seriously

The two likelihoods are very similar if the pseudo points are in ‘good’
locations

They differ significantly when the pseudo points are in ‘poor’ locations

Which is better for hyperparameter selection?
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Successful determination of hyperparameters in 1D
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Experiments

Two data sets, as tested in Seeger et al. (2003):

kin-40k: 10000 training, 30000 test, 9 attributes

pumadyn-32nm: 7168 training, 1024 test, 33 attributes

Plot test mean squared error as function of active/pseudo set size M

Compare to 3 sparse methods: random active set selection, Seeger’s greedy
selection, and Smola and Bartlett's greedy selection

Also full GP trained on large subset of data
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kin40k — SPGP and random
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blue circles — SPGP, black — random
horizontal line — full GP on subset
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kin40k — SPGP and info-gain
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blue circles — SPGP, black — info-gain
horizontal line — full GP on subset
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kin40k — SPGP and Smo-Bart
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blue circles — SPGP, black — Smo-Bart
horizontal line — full GP on subset
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pumadyn-32nm — SPGP and random

random
10_1j :
‘g0 Q@ o ©
— = = X ——
sy % —¥—
= = 3 L]
10_2 | | | | | | |
0 20 40 60 80 100 120 140 160

blue circles — SPGP random hyperparameter initialisation
red squares — SPGP hyperparameters initialised from full GP
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pumadyn-32nm — SPGP and info-gain
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blue circles — SPGP random hyperparameter initialisation
red squares — SPGP hyperparameters initialised from full GP
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pumadyn-32nm — SPGP and Smo-Bart
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blue circles — SPGP random hyperparameter initialisation
red squares — SPGP hyperparameters initialised from full GP
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Problems and possible improvements

Large pseudo set size and/or high dimensional input space means
optimization becomes impractically big

So far we have simply plugged into CG minimizer
Optimize subsets of variables iteratively (chunking)?
Stochastic gradient descent?

hybrid — pick some points randomly, optimize others?

feature selection by projecting input space into lower dimensional space?

22



Non-stationary processes

standard GP SPGP

HA++ +

Although not designed for this purpose, the extra flexibility of the SPGP
allows some non-stationary effects to be modelled
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Conclusions

New method for sparse GP-like regression
Significant decrease in test error, especially for very sparse solutions

Added flexibility of moving pseudo input points which are not
constrained to lie on the true data points leads to better solutions

Hyperparameters can be jointly learned with pseudo input point locations
in a smooth optimization

Much more testing needs to be done to find the best combination of
methods!
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