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Problems with many sparse GP regression methods

1. Restricted to choosing active set points from amongst training data

2. Lack a reliable way to find kernel hyperparameters
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1. Restriction of active set to training data

• Most sparse GP methods use some kind of information criterion for
selecting data points to include into an active set

• Many methods do not explicitly restrict the active set to be selected
from data

• However in practice there are not obvious ways in which to choose active
set points from outside the data set

• SPGP chooses points by gradient descent on a suitable cost function
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2. Learning kernel hyperparameters

• Active set selection interferes with hyperparameter learning

• Reselecting active set causes non-smooth fluctuations in the marginal
likelihood and its gradients

• Cannot get smooth convergence

• SPGP learns hyperparameters together with active set points in
one joint gradient optimization
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GP Notation

N input vectors X = {xn}N
n=1 — dimension D

latents u = {un}N
n=1, targets y = {yn}N

n=1, noise σ2

covariance [KN ]nn′ = K(xn,xn′), hyperparameters θ

marginal likelihood: p(y|X,θ) = N (y|0,KN + σ2I)

predictive distribution:

p(y|x,D,θ) = N
(
y
∣∣k>x (KN + σ2I)−1y, Kxx − k>x (KN + σ2I)−1kx + σ2

)
where [kx]n = K(xn,x) and Kxx = K(x,x)
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Parametric Gaussian processes

• GP predictive distribution effectively parameterised by training data
point locations

• Consider a parametric model with likelihood given by GP predictive
distribution

• Parameterised by pseudo data set of M fake observations: pseudo
inputs X̄ = {x̄m}M

m=1, pseudo targets ū = {ūm}M
m=1

Single data point likelihood:

p(y|x, X̄, ū) = N
(
y
∣∣k>x K−1

M ū, Kxx − k>x K−1
M kx + σ2

)
where [KM ]mm′ = K(x̄m, x̄m′) and [kx]m = K(x̄m,x), for m = 1, . . . ,M
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Likelihood and prior

Target data — i.i.d. given inputs:

p(y|X, X̄, ū) =
N∏

n=1

p(yn|xn, X̄, ū) = N (y|K>
MNK−1

M ū, ΛN)

where ΛN = diag(λ), λn = Knn − k>n K−1
M kn + σ2, and [KMN ]mn =

K(x̄m,xn).

Learning involves finding a suitable pseudo data set. However we can
integrate out the pseudo targets ū.

Gaussian prior:
p(ū|X̄) = N (ū|0,KM)
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Posterior and predictive distributions

Consider pseudo inputs known for now. Bayes rule gives the posterior:

p(ū|D, X̄) = N
(
ū|KMQ−1

M KMNΛ−1
N y, KMQ−1

M KM

)
where QM = KM + KMNΛ−1

N K>
MN .

New input x∗ — predictive distribution:

p(y∗|x∗,D, X̄) =
∫

dū p(y∗|x∗, X̄, ū) p(ū|D, X̄) = N (y∗|µ∗, σ2
∗)

where µ∗ = k>∗ Q−1
M KMNΛ−1

N y

σ2
∗ = K∗∗ − k>∗ (K−1

M −Q−1
M )k∗ + σ2

After precomputations, O(M) for mean, O(M2) for variance per test case
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Marginal likelihood

How to find pseudo input locations X̄ and hyperparameters Θ = {θ, σ2}?

Maximize marginal likelihood by gradient ascent:

p(y|X, X̄,Θ) =
∫

dū p(y|X, X̄, ū) p(ū|X̄)

= N (y|0, K>
MNK−1

M KMN + ΛN)

Gradient calculations long and tedious! Closely follow Seeger et al. (2003)
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Overfitting?

• MD + |Θ| parameters instead of |Θ|

• Sensible nature of noise model prevents overfitting

• Consider M = N . A marginal likelihood maximum occurs when X̄ = X.

– Here KMN = KM = KN , ΛN = σ2I, and SPGP and full GP marginal
likelihoods and predictive distributions coincide

– Gives confidence in solution for M < N
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Relations to other methods

• Closely related to Csató and Opper (2002), also Seeger et al. (2003):
projected latent variables (PLV) method

• Replace ΛN with σ2I and we get exactly their expressions for predictive
distribution and marginal likelihood

• PLV marginal likelihood:
p(y|X, X̄,Θ) = N (y|0, K>

MNK−1
M KMN + σ2I)

• Major difference – we select pseudo inputs by gradient ascent

• What happens if we try to use PLV likelihood instead for learning pseudo
input locations by gradients?
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1D (adversarial!) demo
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Predictive distributions for: (a) full GP, (b) gradient ascent on SPGP
likelihood, (c) gradient ascent on PLV likelihood.

Initial pseudo point positions — red crosses
Final pseudo point positions — blue crosses
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Samples from marginal likelihoods
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Sample data drawn from the marginal likelihood of: (a) a full GP, (b)
SPGP, (c) PLV.

10 pseudo input points — blue crosses

Away from pseudo data points, PLV noise = σ2, SPGP noise → Knn + σ2
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Which likelihood?

• The global optimum of the PLV likelihood may well be a good solution,
but it is going to be difficult to find with gradients

• The SPGP likelihood also suffers from local optima, but not so seriously

• The two likelihoods are very similar if the pseudo points are in ‘good’
locations

• They differ significantly when the pseudo points are in ‘poor’ locations

• Which is better for hyperparameter selection?
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Successful determination of hyperparameters in 1D
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Experiments

Two data sets, as tested in Seeger et al. (2003):

kin-40k: 10000 training, 30000 test, 9 attributes

pumadyn-32nm: 7168 training, 1024 test, 33 attributes

Plot test mean squared error as function of active/pseudo set size M

Compare to 3 sparse methods: random active set selection, Seeger’s greedy
selection, and Smola and Bartlett’s greedy selection

Also full GP trained on large subset of data
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kin40k — SPGP and random
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blue circles – SPGP, black – random
horizontal line – full GP on subset
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kin40k — SPGP and info-gain
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blue circles – SPGP, black – info-gain
horizontal line – full GP on subset
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kin40k — SPGP and Smo-Bart
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blue circles – SPGP, black – Smo-Bart
horizontal line – full GP on subset
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pumadyn-32nm — SPGP and random
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blue circles – SPGP random hyperparameter initialisation
red squares – SPGP hyperparameters initialised from full GP
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pumadyn-32nm — SPGP and info-gain
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blue circles – SPGP random hyperparameter initialisation
red squares – SPGP hyperparameters initialised from full GP
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pumadyn-32nm — SPGP and Smo-Bart
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blue circles – SPGP random hyperparameter initialisation
red squares – SPGP hyperparameters initialised from full GP
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Problems and possible improvements

• Large pseudo set size and/or high dimensional input space means
optimization becomes impractically big

• So far we have simply plugged into CG minimizer

• Optimize subsets of variables iteratively (chunking)?

• Stochastic gradient descent?

• hybrid — pick some points randomly, optimize others?

• feature selection by projecting input space into lower dimensional space?
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Non-stationary processes
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Although not designed for this purpose, the extra flexibility of the SPGP
allows some non-stationary effects to be modelled
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Conclusions

• New method for sparse GP-like regression

• Significant decrease in test error, especially for very sparse solutions

• Added flexibility of moving pseudo input points which are not
constrained to lie on the true data points leads to better solutions

• Hyperparameters can be jointly learned with pseudo input point locations
in a smooth optimization

• Much more testing needs to be done to find the best combination of
methods!
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