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Multi-Task Learning

Learn a set of different but related predictive problems.

Instead of separated training, solve them jointly!

Exploring the statistical dependency between tasks.



•First •Prev •Page 3 •Next •Last •Go Back •Full Screen •Close •Quit

Multi-Task Learning

Learn a set of different but related predictive problems.

Instead of separated training, solve them jointly!

Exploring the statistical dependency between tasks.

How trivial it is applying GPs to solve the problem!
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Examples to Motivate ...

Multi-label text categorization : One document can belong to more
than one categories — categories are semantically related.

Collaborative filtering : Predicting many users preference jointly, in-
stead of treating them separately — people’s opinions are influenced
by each other.

Computer vision : Tracking the movement of different parts of a robot
— mutually constrained freedoms.
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Learn the Predictive Function

Single-Task Learning : From a function space H, to pick the function
f ∈ H that has low complexity ‖f‖2

H and meanwhile explains empir-
ical data very well

min
f∈H

∑
(xi,yi)∈D

`
(
f (xi), yi

)
+ λ‖f‖2

H

where `(·, ·) is an empirical loss.
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Learn the Common Structure

Multi-Task Learning : learn many functions together, and also optimize
the function space Hθ to make it suitable for all the functions

min
θ

{∑
l

min
fl∈Hθ

∑
(xi,yi)∈Dl

`
(
fl(xi), yi

)
+ λ‖f‖2

Hθ

}
+ γη(θ)

where θ captures common structure shared by all the functions.
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Bayesian Approaches

Hierarchical Bayes : all the functions are generated from a common
prior distribution

p({yl}|{Xl}, θ) =
∏

l

∫
p(yl|fl,Xl)p(fl|θ)dfl

where p(f |θ) captures common structure shared by all the functions.
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Related Work

Bayesian multi-task learning [Bakker and Heskes, 2003]: parametric,
easily overfitting since no control for θ.

Learning to learn with IVM [Lawrence and Platt 2004]: Explore the
sparsity of the common predictive structure, to reduce the computa-
tional complexity.

Regularized multi-task Learning [Evgeniou and Pontil 2004]:

– Learning multiple linear functions: fl(x) = wT
l x, l = 1, . . . ,m;

– Let wl = w0 +vl, where w0 models the mean effects of functions,
while vl are independent of each other;

Learning predictive structure from multiple tasks [Ando and Zhang,
2005]: an iterative algorithm, at each step, first estimate w1, . . . ,wm,
and then perform PCA on W = [w1, . . . ,wm], use the leading k
eigenvectors to capture the common covariance structure;
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Our Approaches

In contrast to the two recent frequentist approaches that applied lin-
ear models, Bayesian treatments appear to be a more natural and
more general framework;

Derive a nonparametric framework by exploring the duality of linear
models and GPs;

Propose a general kernel learning framework, based on the infinite-
dimensional Wishart distribution.
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Outline

Introduction

Multi-task learning with linear models

Multi-task learning with Gaussian processes

Empirical study
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Settings for Multi-Task Learning

Consider m predictive learning tasks indexed as l = 1, . . . ,m.

For each task l we have observed nl labeled examples Dl = (Xl,yl),
where Xl ∈ Rnl×d and yl ∈ Rnl;

The goal is to learn m functions fl(x) = wT
l x that explain the data.
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The Basic Idea

Instead of fixing p(w) = N (0, I) a priori, we try to learn p(w) =
N(µw,Cw);

To obtain robust estimation for parameters θ = {µw,Cw}, we adopt
a normal-inverse Wishart (NIW) distribution to constrain the freedom
of them

p(µw,Cw) = N (µw|µw0
,
1

π
Cw)IW(Cw|τ,Cw0

). (1)
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Linear Models for Multi-Task Learning

Model 1 Given p(µw,Cw) with the hyper parameters π, τ,Cw0
= I and

µw0
= 0, define the generative model:

1. µw,Cw are sampled once from p(µw,Cw) given by (1);

2. For each function fl, wl ∼ N (µw,Cw);

3. Given xi ∈ Xl, yl
i = wᵀ

l x + ε where ε ∼ N (0, σ2).

Comments :

when π → ∞ and τ → ∞, the model becomes identical to m inde-
pendent regression models since Cw = I and µw = 0;

With intermediate τ and π, we can control how much θ is adapted to
the empirical data;

Cw reflects an implicit mapping of original features x.
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What’s the Difference?

Common predictive structure : Let wl = µw + vl, then:

– µw: the same for all the tasks
– vl: different over tasks, but constrained by the same covariance.

Two-stage learning procedure:

– Estimating θ: learn the common structure over tasks.
– Estimating wl: learn the functions for each tasks given the learned

θ.
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Joint Distribution

p(y1, . . . ,ym,w1, . . . ,wm|θ) =
∏

l
1
Zl

exp
(
− 1

2J(wl)
)
, where

J(wl) =
1

σ2
‖yl −Xlwl‖2 + (wl − µw)TC−1

w (wl − µw)
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Maximum Penalized Likelihood Estimates

Log-likelihood :

L(θ) = ln p(y1, . . . ,ym|θ) =
∑

l

ln

∫
wl

1

Zl

exp
(
− 1

2
J(wl)

)
dwl

Estimates :

θ̂ = arg max
θ={µw,Cw,σ}

L(θ) + ln p(µw,Cw)
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Expectation-Maximization (EM)

E-step: For each fl, compute the sufficient statistics of p(wl|Dl, θ)
based on current θ.

ŵl = Cwl

( 1

σ2
Xᵀ

l yl + C−1
w µw

)
Cwl

=
( 1

σ2
Xᵀ

l Xl + C−1
w

)−1



•First •Prev •Page 19 •Next •Last •Go Back •Full Screen •Close •Quit

Expectation-Maximization (EM)

M-step: update the estimates of parameters

µw =
1

π + m

∑
l

ŵl

Cw =
1

τ + m

{
πµwµᵀ

w + τI +
∑

l

Cwl

+
∑

l

[
ŵl − µw

][
ŵl − µw

]ᵀ
}

σ2 =
1∑
l nl

∑
l

‖yl −Xlŵl‖2 + tr[XlCwl
Xᵀ

l ]
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From Linear Models to GPs

If w ∼ N (µw,Cw), then a GP is defined with

– mean function µ = E[f (x)] = µT
wx

– covariance function K(x,x′) = xTCwx′

Implicit feature mapping : let Cw = UΛUT , it is easy to see K(x,x′) =
〈Φ(x), Φ(x′)〉, where

(
Φ(x)

)
k

=
√

λk〈x,uk〉;
The connection suggests that we can solve the problem in a nonpara-
metric way, namely directly estimate the mean and kernel of a func-
tion space.
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The Hyperprior for p(f )

Theorem 1 Let S ⊂ Rd be a set of data points, ∀x,x′ ∈ S , κ(x,x′) =
〈x,x′〉 defines a positive definite kernel. Then for any given subset of
points X = [x1, . . . ,xn] in S , Model.1 equivalently specifies a prior dis-
tribution for the mean µf and the covariance K of function values f =
[f (x1), . . . , f (xn)]

ᵀ, which is a normal-inverse-Wishart distribution,

p(µf ,K) = N (µf |0,
1

π
K)IW(K|τ,κ), (2)

where κ � 0 with κi,j = κ(xi,xj)

Comments: In particular, if S is an infinite-dimensional space, for f
realized on any finite set of inputs , its mean and covariance follow an
NIW with the corresponding base matrix κ.

An infinite-dim NIW, or called NIW processes?
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Transductive Multi-Task Learning

Model 2 (Transductive Model) Let f l be the values of fl on a set X, satisfying
∪Xl ⊆ X. Given the hyper prior distribution described in (2), define as the
generative model:

1. µf ,K are sampled once from the hyper prior;

2. For each function fl, f
l ∼ N (µf ,K);

3. Given xi ∈ Xl, yl
i = f l

i + ε where ε ∼ N (0, σ2).

It can be again solved by EM algorithm.
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Connections to Model 1

The model is equivalent to Model 1, but focuses on finite number of
data points. For functions {fl} defined on a finite set X, we can learn
the corresponding mean of functions and the kernel matrix X;

X can be expanded by including arbitrary test points, as long as the
base kernel κ(·, ·) on them can be evaluated;

With nonlinear base kernel κ(·, ·), we can now handel nonlinear func-
tions;

How to do inductive multi-task learning?
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Duality of NIW Distribution

Theorem 2 Given µf and K sampled from the hyper prior specified in (2),
there exist unique µα ∈ Rn and Cα ∈ Rn×n such that

1. µf = κµα, K = κCακ

2. ∀f = [f (x1), . . . , f (xn)]
ᵀ, there exists a unique α ∈ Rn such that, f =

κα and α ∼ N (µα,Cα)

3. µα,Cα follow a NIW distribution with scale matrix κ−1:

p(µα,Cα) = N (µα|0,
1

π
Cα)IW(Cα|τ,κ−1) (3)

Comments: we can equivalently work on a generative model of
weights αl for f l = καl.
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Inductive Multi-Task Learning

Model 3 (Inductive Model) Let f l be the values of fl on a set X, satisfying
∪Xl ⊆ X. Given the hyper prior distribution of µα,Cα described in theorem
2, define as the generative model:

1. µα,Cα are generated once (3);

2. For each function fl, αl ∼ N (µα,Cα);

3. Given x ∈ Xl, y =
∑n

i=1 αl
iκ(xi,x) + ε where ε ∼ N (0, σ2), xi ∈ X.
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In Which Sense Inductive?

Theorem 3 Suppose a finite set X is given, satisfying ∪Xl ⊆ X. Let S ⊂
Rd be the subspace spanned by the columns of X and P be the orthogonal
projection onto S. If there is a constraint w = Pw′ and w′ ∼ N (µw,Cw) in
Model 1, then the following conclusions hold:

1. The modified Model 1 is equivalent to Model 3;

2. The estimates ŵl, l = 1, . . . ,m, in Model 1 are invariant to the modifica-
tion.

Comments

Model 3 and Model 1 produce exactly the same estimates of {fl};

Model 3 and Model 1 produce different predictive variances on new
test points x /∈ X.

Somewhat like representor theorem.
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A Toy Problem
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Predict User Preferences

190 users’ preferences (like or dislike) on 640 paintings. For each user
we pick up 20 examples for training and predict the rests.
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Multi-Label Text Categorization (I)

Training set: fixed 50 categories, 10 random repeats to choose 1000
documents, 300 random labeled examples for each category

Test set: 10000 documents
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Multi-Label Text Categorization (II)

(a) (b) (c)
Generalization of learned kernels on other 31 categories (each measure

averaged over 50 repeats)
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Summarization

A linear model for multi-task learning was naturally derived from
conventional regularized linear models. Compared to related work,
our approach is more general in the sense both mean and covariance
of function weights are explored.

A nonparametric framework for multi-task learning was built upon
the linear models in high or infinite dimensional space. The connec-
tions underly a direct definition of hyper prior p(µ,K) for the hy-
pothesis space p(f |µ,K).

A Bayesian treatment for learning a kernel based on base kernel func-
tions, κ(·, ·), which defines the feature space, while the learned kernel
K(·, ·) reflects implicit linear mapping of features . . . .

This morning Tony O’Hagan’s talk, latent variable model for non-
stationary spatial modeling.
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Thanks! Questions? Suggestions?


