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Overview

z Variational Inference in Gaussian Processes
z Modified Variational Inference

å Probabilistic Point Assimilation (PPA) ‘more tractable’
z KL Correction of the Variational Bound
z Results
z Speculation
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Notation

z Labels y � � y1� � � yN ��� .
z Input vector X � � x1� � � xN � �

z Gaussian distribution over y is N � y �� 	�
 � with mean � and covariance
 .

z Process variable (the function) f � � f1� � � fN �� and f̄ � �
�

f1� � �
�

fN �
�

.
z The notation f � n represents the vector without the nth element.
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Gaussian Process Graph

�
� �

� � �

Figure 1: Graphical model of Gaussian process.

� � � p � y � � � � �

N

n� 1

p � yn � fn � p � f � X 	�� � df

p � yn � fn � is a noise model p � f � X 	� � � N � f � 0 	 K �

K is a covariance function parameterised by�
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Variational Inference (Vanilla)

� � � p � y ��

N

n� 1

� � � p � yn � fn � p � f � X 	�� �

q � f �
 ! � � � q � f �" q � f �

q � f �$#

N

n� 1

p � yn � fn � p � f � X 	� �

z Constrain q � f � to be Gaussian — Seeger [2000].
z Constrain covariance of q � f � to have a FA style structure.
z Method is slow and not easily adjusted to new noise models.
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Augmented Model — PPA
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Figure 2: Graph of Augmented Model

� � � p � y � � � � �

N

n� 1

p � yn � fn � p * fn �
�

fn 	+ , p *
�

f � X 	� , df

p * fn �
�

fn 	 + , � N - fn �
�

fn 	+
. 1

/
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Variational Inference (PPA)

� � � p � y � �

N

n� 1

0 � � � p � yn � fn � p * fn �
�

fn 	 + , p *
�

f � X 	�� ,1 2 N
n� 1 q �

3

fn � q �
3

f �

 
N

n� 1

! � � � q � fn �" q � fn � 0 � � � q *
�

f , 1 q �
3

f �

Maximised by

q *
�

f , # 45 6

N

n� 1

� � � p * fn �
�

fn 	+ ,
2 N

n� 1 q � fn �

p *
�

f � X 	� ,

and
q � fn � # 45 6 0 � � � p * fn �

�
fn 	 + , 1 q �

3
f � p � yn � fn �
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Expectations of 7 8 9 p : fn ;
<

fn => ?

z Since 45 6 0 � � � p * fn �
�

fn 	 + , 1 q � fn �# N - ! fn" �
�

fn 	+ . 1

/ we have

q *
�

f , #

N

n� 1

N - ! fn" �
�

fn 	+
. 1

/ p *
�

f � X 	�� ,

z Since 45 6 0 � � � p * fn �
�

fn 	 + , 1 q �
3

f � # N - fn �0
�

fn1 	 +
. 1

/ we have

q � fn �# N - fn �0
�

fn1 	 +
. 1

/ p � yn � fn �

z So
å q *

�

f , is a Gaussian process regardless of form of p � yn � fn � .
å Moments of q � fn � are straightforward to compute for any p � yn � fn � see e.g.

Csató [2002]
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Speed up Variational Method

z Variational Methods can be tediously slow. (yawn!)
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Figure 3: When variational methods are slow.

z Problem occurs when bound’s quality degrades rapidly with parameter changes.
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KL Corrected Variational Inference

z Updating Parameters: variational lower bound

L �+ 	�� � �

N

n� 1

0 � � � p * fn �
�

fn 	 + , 1 q �
3

fn � q � fn �QP 0 � � � p *
�

f � X 	�� , 1 q �
3

f �� (1)

z Solution: make the quality of the bound responsive to changes in the parameters.
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KL Corrected Variational Inference

z Ideally we would like to optimise the marginal likelihood,
� � � p � y � X 	�R 	 + � � L �R � � � � �

N

n� 1

p * yn �
�

fn 	+ , p *
�

f � X 	R , d

�

f 	 (2)

z Substitute for noise model

� � � p * yn �
�

fn 	+ , � ! � � � p � yn � fn � " q � fn �P 0 � � � p * fn �
�

fn 	 + , 1 q � fn �

 
N

n� 1

! � � � q � fn �" q � fn � 	
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KL Corrected Lower Bound

z A new lower bound is
� � � p � y � X 	� 	+ � � � � �

N

n� 1

4 5 6 0 � � � p * fn �
�

fn 	 + , 1 q � fn � p *
�

f � X 	� , d

�

fP ST U VW

z Which leads to

XZY �� � � � � �
N

n� 1

N - ! fn" �
�

fn 	+
. 1

/ p *
�

f � X , d

�

fP ST U VW 	

which does not depend on q *
�

f , .
z This is the KL corrected bound.
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Convergence Speed
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Figure 4: (a) Plot of log-likelihood vs iteration number (log-scale) for the KL-corrected objective
function (solid line) and the standard variational bound (dashed line). (b) The resulting classification
of the banana data set.

z KL-corrected requires 74 iterations for convergence, standard variational infer-
ence (via PPA) requires 3697 iterations.
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Alternative View Point

The marginal likelihood for the augmented model is

� � � p � y � � p � yn � fn � p * fn �
�

fn 	+ , dfnp *
�

f � X 	� , d

�

f

to make progress we insert a variational lower bound on the inner integral,

� � � p � yn � fn � p * fn �
�

fn 	+ , dfn � ! � � � p � yn � fn �" q � fn �

P 0 � � � p * fn �
�

fn 	+ , 1 q � fn �

P ! � � � q � fn �" q � fn �
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New Bound

Substituting in this lower bound we have,

� � � p � y � � � � �

N

n� 1

45 6 0 � � � p * fn �
�

fn 	 + , 1 p *
�

f � X 	�� , d

�

f

P

N

n� 1

! � � � p � yn � fn �" q � fn �

P
N

n� 1
! � � � q � fn �" q � fn �

� � XZY �� � (3)
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Minimise directly wrt q [ fn \

Bound’s dependence on q � fn � is summarised as
X]Y n �� � � 1

2 ^ +
 1

_ 2
n` -a f 2

n b
 ! fn" 2

/
 

a � � � N - fn �c n 	 _ 2
n / b

P ! � � � p � yn � fn �" P ! � � � q � fn �" q � fn �P ST U V W

where
c n � k� n - K � nP +
. 1I /
. 1

0 f � n1

and

_ 2
n � +

. 1P knn k� n - K � nP +
. 1I /
. 1

kn

where If 1
2 ^ +

 1

d 2
n` -a f 2

n b
 ! fn" 2

/ is small then this implies

q � fn �$# p � yn � fn � N - fn �c n 	 _ 2
n /

Which is very similar to the approximating distribution that arises in ... EP
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Conclusions

z Variational inference in GPs is practical.
å Various noise models can be accommodated.
å Slow convergence can be solved.

z Recent (Monday & Tuesday!) analysis suggests connections with EP.
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