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Motivation

• Contemporary machine learning uses complex flexible proba-

bilistic models.

• Bayesian inference is typically intractable.

• Approximate polynomial complexity methods needed.

• VB, Bethe, EP and EC: Use tractable factorization of original

model.

• EC: Expectation Consistency between 2 distributions, e.g. dis-

crete and Gaussian
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Exact Inference in Tree Graphs

Bethe – tree factorization, e.g.

p(x) =
1

Z
f12f13f1f2f3

Write p(x) in terms of marginals qi(xi) and qij(xi, xj)

p(x) = q(x) =
q12(x1, x2)q23(x2, x3)

q2(x2)

Z =
Z12Z23

Z1

Message-parsing: Effective inference for p(x) discrete or Gaussian.
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Bethe Approximation

Bethe approximation – treat p(x), e.g.

p(x) =
1

Z
f12f23f13f1f2f3

as if it was a tree-graph

q(x) =
q12(x1, x2)q23(x2, x3)q13(x1, x3)

q1(x1)q2(x2)q3(x3)
.

Works extremely well in “sparse systems” - e.g. low density decod-

ing.

Disadvantage over-counting – q(x) not a density.
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Variational Bayes (VB)

Minimize KL-divergence in restricted tractable family q(x) =
∏
i qi(xi):

qi(xi) = argmin
qi(xi)

KL [q(x)||p(x)] ∝ exp 〈ln p(x)〉q\qi(xi)

Example Gaussian:

p(x) = N (x;m,C) → q(x) = N (x;mq,Cq)

mq = m and C
q
ij = δij

1[
C−1

]
ii

In general (factorized) VB reliable on mean, but under-estimates

width of distribution (see e.g. MacKay, 2003, Opper & Winther

2004).

Important for parameter-estimation (see e.g. Minka & Lafferty).
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Motivating EC and Overview

We are looking for a tractable approximation that

• can handle “dense graphs” (better than Bethe+).

• estimate correlations (better than VB).

Free energy

Why it works – central limit theorem.

Algorithmics and connection to EP

Simulations, conclusions and outlook
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Expectation Consistent (EC) free energy

Calculate partition function

Z =
∫
dx f(x) =

∫
dx fq(x)fr(x)

Problem: Z intractable – integral not analytical and/or summation

exponential in number of variables N .

Introduce tractable distribution q(x)

q(x) =
1

Zq(λq)
fq(x) exp(λTq g(x))

Zq can be calculated in polynomial time.

Z = Zq
Z

Zq
= Zq

∫
dxfr(x)fq(x) exp

(
(λq − λq)Tg(x)

)
∫
dxfq(x) expλTq g(x)

= Zq
〈
fr(x) exp

(
−λTq g(x)

)〉
q
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Free energy

Free energy exact:

− lnZ = − lnZq − ln
〈
fr(x) exp

(
−λTq g(x)

)〉
q

Variational approximation use Jensen: ln 〈f(x)〉 ≥ 〈ln f(x)〉

− lnZ ≤ − lnZq − 〈ln fr(x)〉q + λTq 〈g(x)〉q
Find λq by minimizing the upper bound.

Better to average over fr(x) exp
(
−λTq g(x)

)
approximately.

Retain more averaging in that way.
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Expectation consistent approximation

Define g(x) such that both

q(x) =
1

Zq(λq)
fq(x) exp(λTq g(x))

r(x) =
1

Zr(λr)
fr(x) exp(λTr g(x))

are tractable.

Excludes some models tractable in the variational approach (with-

out further approximations).
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Example I – the Ising model

Binary variables – spins – xi = ±1 with pairwise interactions

fq(x) =
∏
i

Ψi(xi)

ψi(xi) = [δ(xi + 1) + δ(xi − 1)]eθixi

fr(x) = exp

∑
i>j

xiJijxj

 = exp
(
1

2
xTJx

)
E.g. set g(x) to first and second order

g(x) =

(
x1,−

x21
2
, x2,−

x22
2
, . . . , xN ,−

x2N
2

)
q(x) – a factorized binary distribution

r(x) – multivariate Gaussian.

Interpretation of g(x) will be clear shortly.

microsoft001



Bethe and EC factorization

ZBethe =
Z12Z23Z13

Z1Z2Z3
.

ZEC will be similar in spirit:

ZEC =
ZqZr

Zs(eparator)
.
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Example II – Gaussian processes

Supervised learning: Inputs x1, . . . ,xN and targets t1, . . . , tN .

Gaussian process prior over functions y = (y(x1), . . . , y(xN)):

p(y) =
1√

(2π)N detC
exp

(
−

1

2
yTC−1y

)

Likelihood, observation model: p(t|y(x)), e.g. noise-free classifica-

tion

p(t|y(x)) = Θ(ty(x))

Z =
∫
dy
∏
i

p(ti|y(xi))p(y)

Same structure as ex. I – factorized and multivariate Gaussian

(Opper&Winther,2000; Minka 2001).
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Expectation Consistent (Helmholtz) Free
Energy

Exchange average wrt q(x) with one over simpler distribution s(x).

s(x) =
1

Zs(λs)
exp

(
λTs g(x)

)
Approximation:〈

fr(x) exp
(
−λTq g(x)

)〉
q
≈
〈
fr(x) exp

(
−λTq g(x)

)〉
s

Parameters λq,λs to be optimized in suitable way:

− lnZ ≈ − lnZq − ln
〈
fr(x) exp

(
−λTq g(x)

)〉
s

= − ln
∫
dxfq(x) exp

(
λTq g(x)

)
− ln

∫
dxfr(x) exp

(
(λs − λq)

Tg(x)
)

+ln
∫
dx exp

(
λTs g(x)

)
microsoft001



Determining the Parameters

Expectation consistency:

∂ lnZEC

∂λq
= 0 : 〈g(x)〉q = 〈g(x)〉r

∂ lnZEC

∂λs
= 0 : 〈g(x)〉r = 〈g(x)〉s

where

q(x) =
1

Zq(λq)
fq(x) exp(λTq g(x))

r(x) =
1

Zr(λr)
fr(x) exp(λTr g(x)) with λr = λs − λq

s(x) =
1

Zr(λs)
exp(λTs g(x))

Z ≈
ZrZq

Zs

Approximation symmetric in q(x) and r(x). s(x) is the “separator”.
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Why it Works

Neither q or r are good approximations to p.

But marginal distributions and moments can be precise!

g(x) =
(
x1,−

x21
2 , . . . , xN ,−

x2N
2

)
and λ = (γ1,Λ1, . . . , γN ,ΛN):

q(x) =
∏
i

qi(xi) qi(xi) ∝ Ψi(xi) exp
(
γq,ixi − Λq,ix

2
i

)
.

The central limit theorem saves us: the details of the distribution
of the marginalized variables not important, only first and second
moments. Cavity method (Onsager 1936, Mezard, Parisi & Vira-
soro 1987).

Exact under some conditions: “dense models”, many variables, no
dominating interactions and not too strong interactions.

Other complications such as non-ergodicity (RSB).
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Non-trivial estimates in EC

• Marginal distributions q(xi) (factorized moments)

q(x) ∝
∏
i

Ψi(xi) exp(γTq x− xTΛqx/2)

q(xi) ∝ Ψi(xi) exp(γq,ixi − x2i Λq,i/2) .

• Correlations r(x) global Gaussian approximation

r(x) ∝ exp(γTr x− xT (Λr − J)x/2)

Covariance C(xi, xj) = 〈xixj〉r(x)−〈xi〉r(x)〈xj〉r(x) =
[
(Λr − J)−1

]
ij
.

• The free energy − lnZEC ≈ − lnZ.
Z is the marginal likelihood (or evidence) of the model.

• Supervised learning, Predictive distribution and leave-one-out
(Opper & Winther, 2000).
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Non-Convex Optimization

Partition function Z(λ) =
∫
dxf(x) exp

(
λTg(x)

)
is convex in λ:

H =
∂2 lnZ

∂λTλ
=
〈
g(x)g(x)T

〉
− 〈g(x)〉 〈g(x)〉T .

EC non-convex optimization – like Bethe and variational.

− lnZEC(λq,λs) = − lnZq(λq)− lnZr(λs − λq)+ lnZs(λs)

= − ln
∫
dxfq(x) exp

(
λTq g(x)

)
− ln

∫
dxfr(x) exp

(
(λs − λq)

Tg(x)
)

+ln
∫
dx exp

(
λTs g(x)

)
Optimize with single loop (no warranty) or double loop (slow).
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Single Loop – Objective

Expectation consistency

〈g(x)〉q = 〈g(x)〉r = 〈g(x)〉s
with

q(x) =
1

Zq(λq)
fq(x) exp(λTq g(x))

r(x) =
1

Zr(λr)
fr(x) exp(λTr g(x)) with λr = λs − λq

s(x) =
1

Zr(λs)
exp(λTs g(x))

Sending messages r → q → r → . . . and make s consistent.
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Single Loop – Propagation Algorithms

1. Send messages from r to q

• Calculate separator s(x).
Solve for λs: 〈g(x)〉s = µµµr(t) ≡ 〈g(x)〉r(x;t)

• Update q(x): λq(t+ 1) := λs − λr(t)

2. Send messages from q to r

• Calculate separator s(x).
Solve for λs: 〈g(x)〉s = µµµq(t+ 1) ≡ 〈g(x)〉q(x;t+1)

• Update r(x): λr(t+ 1) := λs − λq(t+ 1)

Expectation Propagation (EP): sequential factor-by-factor update.
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Single Loop Details

q(x) non-Gaussian, factorized or on a spanning tree and

r(x) multi-variate Gaussian. Complexity O(N3).

Factorized moments g(x) =
(
x1,−

x21
2 , x2,−

x22
2 , . . . , xN ,−

x2N
2

)
:

Gaussian s(x) =
∏
i si(xi) and si(xi) ∝ exp

(
γs,ixi − Λs,ix

2
i /2

)
.

Moment matching to mean and variance of q and r:

γs,i := mi/vi and Λs,i := 1/vi .

All second moments on a spanning tree:

q(x) moments can be inferred by (exact) message parsing.

s(x) multi-variate Gaussian on a spanning tree, solve using tree-

decomposition of Z.
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Double Loop – EC (Gibbs) free energy

Gibbs free energy definition (Lagrangian dual of lnZ(λ)):

G(µµµ) = max
λ

{
− lnZ(λ) + λTµµµ

}
convex in generalized moments µµµ = 〈g(x)〉 = ∂ lnZ(λ)

∂λ
.

EC Gibbs free energy (non-convex in µµµ)

GEC(µµµ) = Gq(µµµ) +Gr(µµµ)−Gs(µµµ)
= max

λq,λr

min
λs

{− lnZq(λq)− lnZr(λr)+ lnZs(λs)

+µµµT (λq + λr−λs)
}

− lnZEC = min
µµµ

GEC(µµµ)

Helmholtz from minµµµGEC(µµµ): λq + λr − λs = 0 to eliminate λr.
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Double loop details

Outer loop: bound the concave term −Gs(µµµ) by

−Gs(µµµ) ≥ −Gs(µµµ∗)−
∂Gs(µµµ∗)

∂µµµT
(µµµ−µµµ∗) = −(λ∗s)

T (µµµ−µµµ∗)

where µµµ∗ is current estimate and λ∗s = λs(µµµ∗).

Eliminate λr from minµµµGEC,ubound(µµµ): λq + λr − λ∗s = 0

Inner loop: Solve concave problem in λq:

max
λq

{− lnZq(λq)− lnZr(λ
∗
s − λq)} : 〈g(x)〉q = 〈g(x)〉r

After convergence update µµµ∗ = 〈g(x)〉q
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Simulations – Ising Models

N binary variables with pairwise interactions Jij:

p(x) =
1

Z

∏
i

Ψi(xi) exp
(
1

2
xTJx

)
Ψi(xi) = [δ(xi + 1) + δ(xi − 1)]eθixi

Look at the approximation for the

• One-variable marginals p(xi) = 1+ximi
2 , mean mi = 〈xi〉.

• Two-variable marginals p(xi, xj) =
xixjCij

4 + p(xi)p(xj), covari-

ance Cij = 〈xixj〉 − 〈xi〉〈xj〉.

• Free energy G = − lnZ.
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Methods Compared

• Exact.

• Factorized expectation consistent.

• Spanning tree structured expectation consistent.

• Bethe (and Kikuchi) approximation.

• Log-determinant relaxation (Wainwright & Jordan, 2002).
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Scenario I: Kappen and Albers

N = 10, Jij = βwij, wij ∼ N (0,1) and β ∈ [0.1; 10].

Error-measures:

MAD1 = max
i

|p(xi = 1)− p(xi = 1|Method)|

MAD2 = max
i,j

max
xi=±1,xj=±1

∣∣∣p(xi, xj)− p(xi, xj|Method)
∣∣∣

AD Free energy =
∣∣∣G−GMethod

∣∣∣
In EC, the non-trivial correlation estimates: Cij =

[
(Λr − J)−1

]
ij

is

used for the two-variables marginals.
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Maximal

absolute

deviation

(MAD) for

one-variable

marginals.

Blue upper

full line: EC

factorized,

blue lower

full line EC

tree, green

dashed line:

Bethe and

red

dash-dotted

line: Kikuchi.
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Scenario II: Wainwright and Jordan

N = 16

Fully connected or

4-by-4 nearest neighbor grid.

Coupling strength:

• repulsive (anti-ferromagnetic) Jij ∼ U[−2dcoup,0],

• mixed Jij ∼ U[−dcoup,+dcoup] and

• attractive (ferromagnetic) Jij ∼ U[0,+2dcoup] with dcoup > 0.

θi from uniform distribution: θi ∼ U[−dobs, dobs] with dobs = 0.25.
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Problem type Method
SP LD EC factorized EC tree

Graph Coupling dcoup Mean Mean Mean ± std Max Mean ± std Max
Repulsive 0.25 0.037 0.020 0.003 ± 0.002 0.00 0.0017 ± 0.0011 0.007
Repulsive 0.50 0.071 0.018 0.031 ± 0.045 0.20 0.0143 ± 0.0141 0.102

Full Mixed 0.25 0.004 0.020 0.002 ± 0.002 0.00 0.0013 ± 0.0008 0.005
Mixed 0.50 0.055 0.021 0.022 ± 0.030 0.17 0.0151 ± 0.0204 0.163

Attractive 0.06 0.024 0.027 0.004 ± 0.002 0.01 0.0025 ± 0.0014 0.007
Attractive 0.12 0.435 0.033 0.117 ± 0.090 0.30 0.0211 ± 0.0307 0.159
Repulsive 1.0 0.294 0.047 0.153 ± 0.123 0.58 0.0031 ± 0.0021 0.013
Repulsive 2.0 0.342 0.041 0.198 ± 0.135 0.49 0.0021 ± 0.0010 0.009

Grid Mixed 1.0 0.014 0.016 0.011 ± 0.010 0.08 0.0018 ± 0.0011 0.006
Mixed 2.0 0.095 0.038 0.082 ± 0.081 0.32 0.0068 ± 0.0053 0.028

Attractive 1.0 0.440 0.047 0.125 ± 0.104 0.36 0.0028 ± 0.0018 0.013
Attractive 2.0 0.520 0.042 0.177 ± 0.125 0.41 0.0024 ± 0.0022 0.016

Error measure (averaged over 100 trials)

MeanAD =
∑
i

|p(xi = 1)− p(xi = 1|Method)|/N .

SP = Sum Product = Bethe

LD = log determinant relaxation.
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Further Approximations – Iterate EC

Belief networks

f(x) =
∏
i

ψi(xi)
∏
k

φk

∑
j

wkjxj


Set fq(x) =

∏
iψi(xi) and fr(x) =

∏
k φk

(∑
j wkjxj

)
.

r(x) not tractable – change of variables uk =
∑
j wkjxj,

r(u) =
∏
k

φk (uk) exp
(
1

2
uTJu + hTu

)
Split into new factors: f̂q(u) and f̂r(u): tractable q̂(u) and r̂(u).
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Iterate EC – Mixture Models

Example Bayes mixture of Gaussians:

p(Y, {πk,µµµk,Σk}) =
∏
i

∑
k

πkp(yi|µµµk,Σk)

 p({πk})p({µµµk,Σk}) ,

x = {πk,µµµk,Σk}.

f(x) =
Nex∏
i

fi(x)p0(x)

Iterate approximation Nex times to get tractable qi(x):

qi(x) =
1

Zi(λ)
fi(x) exp(λTg(x))p0(x)

s(x) =
1

Z0(λ)
exp(λTg(x))p0(x)
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Free Energy Mixture Models

− lnZEC = − lnZ0(
∑
i

λq,i)−
∑
i

lnZi(λs,i − λq,i) +
∑
i

lnZ0(λs,i)

Z0(λ) =
∫
dx exp(λTg(x))p0(x)

Zi(λ) =
∫
dxfi(x) exp(λTg(x))p0(x)

Expectation consistency:
∑
i′ λq,i′ = λs,i = λs

− lnZEC = −
∑
i

lnZi(
∑
i′ 6=i

λq,i′) + (Nex − 1) lnZ0(
∑
i

λq,i)

Similar to Aspect model (Minka & Lafferty).
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Beyond EC – Higher Order Models

(Not so) low density parity check decoding

p(x) ∝
M∏
m

exp

Jm∏
im

xim

 N∏
i

exp(hixi)

Bayesian treatment of linear models

y = Ax + ε .

Distributions over A, x and ε.

Mean field theory:

identify statistics that can be approximated with Gaussians.
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Summary and Conclusions

Expectation consistent global approximations q(x) and r(x).

Approximation works because of CLT. We are averaging more

(than in variational Bayes) and not over-counting (as opposed to

loopy BP).

Non-trivial estimates of correlations.

Closely related to Minka’s EP and Opper & Winther’s adaptive

TAP.

Not possible to use for all models (where variational and/or Bethe

apply). Further approximations needed.
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Abstract

We propose a novel framework for deriving approximations for in-

tractable probabilistic models. This framework is based on a free

energy (negative log marginal likelihood) and can be seen as a

generalization of adaptive TAP [1-3] and expectation propagation

(EP) [4,5] The free energy is constructed from two approximat-

ing distributions which encode different aspects of the intractable

model such a single node constraints and couplings and are by

construction consistent on a chosen set of moments. We test the

framework on a difficult benchmark problem with binary variables

on fully connected graphs and 2D grid graphs. We find good perfor-

mance using sets of moments which either specify factorized nodes

or a spanning tree on the nodes (structured approximation). Sur-

prisingly, the Bethe approximation gives very inferior results even

on grids.
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Approximate inference

Compute expectations over distribution

p(x) =
1

Z
f(x)

with random variables x = (x1, x2, . . . , xN) and partition function

Z =
∫
dxf(x).

Intractability arises either because the necessary sums are over

a too large number of variables or because multivariate integrals

cannot be evaluated exactly.

Many application areas: Loopy belief propagation, mixture mod-

els, factor models, independent component analysis, Gaussian pro-

cesses, bootstrap methods for kernel machines, etc.
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Tractability from simpler forms

In a typical scenario, f(x) is expressed as a product of two functions

f(x) = f1(x)f2(x) (1)

with f1,2(x) ≥ 0, where f1 is “simple” enough to allow for tractable
computations. Approximate inference (e.g. variational) make sub-
stitution

f2(x) → exp
(
λTg(x)

)
≡ exp

 K∑
j=1

λjgj(x)


such that computations becomes tractable. But how to choose λ?

In the expectation consistent framework: λ is chosen such that two
different global approximations q(x) and r(x) agree on a chosen
set of moments of the distributions: 〈g(x)〉q(x) = 〈g(x)〉r(x).

It is convenient to use the Gibbs free energy to formalize this.

We will discuss relation to other approaches at the end!
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Gibbs free energy – Two-stage
optimization

Introduce trial distribution q(x).

Step 1: fix a set of generalized moments 〈g(x)〉q Definition of Gibbs

Free Energy G(µµµ):

G(µµµ) = min
q
{KL(q, p) | 〈g(x)〉q = µµµ} − lnZ (2)

with KL-divergence

KL(q, p) =
∫
dx q(x) ln

q(x)

p(x)
. (3)

Step 2: Optimize wrt. moments

min
µµµ

G(µµµ) = − lnZ and 〈g〉 = argmin
µµµ

G(µµµ) . (4)
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Gibbs free energy – properties

Explicit form of the optimized trial distribution, Z(λ) =
∫
dx f(x) exp

(
λTg(x)

)
:

q(x) =
f(x)

Z(λ)
exp

(
λTg(x)

)
, (5)

The set of Lagrange parameters λ = λ(µµµ) (often called messages in

belief propagation) is chosen such that the conditions 〈g(x)〉q = µµµ

are fulfilled, i.e. λ satisfies

∂ lnZ(λ)

∂λ
= µµµ . (6)

Inserting the optimized trial distribution in G(µµµ):

G(µµµ) = − lnZ(λ(µµµ)) + λT (µµµ)µµµ = max
λ

{
− lnZ(λ) + λTµµµ

}
, (7)

i.e. G is the Legendre transform or dual of − lnZ(λ) and is convex.
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Examples – factorized, tree and Gaussian

Completely factorized, i.e. p(x) =
∏
iψi(xi). For simplicity we

will consider biased binary variables: Ψi(xi) = [δ(xi + 1) + δ(xi −
1)]eθixi and fix the first moments m = 〈x〉. Denoting the conjugate
Lagrange parameters by γ:

G(m) =
∑
i

Gi(mi) with Gi(mi) = max
γi

{− lnZi(γi) +miγi} (8)

and Zi(γi) =
∫
dxi Ψi(ξ)e

γixi = 2cosh(γi + θi).

Tree-connected graph. For the case where either the couplings
and the moments together define a tree-connected graph, we can
write the free energy in term of single- and two-node free ener-
gies. Considering again completely factorized binary variables, all
non-trivial moments on the graph (ij) ∈ G are the means m and
correlations of linked nodes Mij = 〈xixj〉:

G(m, {Mij}(ij)∈G) =
∑

(ij)∈G
Gij(mi,mj,Mij)+

∑
i

(1−ni)Gi(mi) , (9)
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where Gij(mi,mj,Mij) is the two-node free energy defined in a

similar fashion as the one-node free energy, ni the number of links

to node i and Gi(mi) is the one-node free energy.

Gaussian distribution. We set µµµ = (m,M) with all first moments

m and an arbitrary subset of second moments M for a Gaussian

model Ψi(xi) ∝ exp[aixi − bi
2x

2
i ] and p(x) ∝

∏
iΨi(xi) exp(xTJx/2).

We introduce conjugate variables γ and −Λ/2. γ can be elimi-

nated analytically, whereas we get a log-determinant maximization

problem for Λ [6]:

G(m,M) = −
1

2
mTJm−mTa +

1

2

∑
i

Miibi (10)

+max
Λ

{
1

2
ln det(Λ− J)−

1

2
TrΛ(M−mmT )

}
.
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Exact interpolation for Gibbs free energy

Introduce smooth interpolant on f2(x) → f2(x, t),

f2(x, t = 0) = 1 and f2(x, t = 1) = f2(x) , 0 ≤ t ≤ 1

q(x|t) =
1

Zq(λ, t)
f1(x)f2(x, t) exp

(
λTg(x)

)
(11)

Gq(µµµ, t) = max
λ

{
− lnZq(λ, t) + λTµµµ

}
. (12)

Interpolation between exact G(µµµ) = Gq(µµµ, t = 1) and ‘free model’

Gq(µµµ,1)−Gq(µµµ,0) =
∫ 1

0
dt
dGq(µµµ, t)

dt
= −

∫ 1

0
dt

〈
d ln f2(x, t)

dt

〉
q(x|t)

.

because ∂ lnZ(λ,t)
∂t =

〈
d ln f2(x,t)

dt

〉
q(x|t)

and saddlepoint condition:

dG(µµµ, t)

dt
= −

∂ lnZ(λ, t)

∂t
+

(
µµµ−

∂ lnZ(λ, t)

∂λ

)
dλT

dt
= −

∂ lnZ(λ, t)

∂t
.
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Expectation consistent (EC)
approximation

Introduce second tractable familiy (the first is the ‘free’ distribution

q(x, t = 0))

r(x|t) =
1

Zr(λ, t)
f2(x, t) exp

(
λTg(x)

)
, (13)

Note the f1(x)-factor does not appear. Again parameters λ will

be chosen to guarantee consistency for the expectations of g, i.e.

〈g(x)〉r(x|t) = µµµ

Using r(x|t) instead of q(x|t) gives us the central approximation

Gq(µµµ,1)−Gq(µµµ,0) ≈ −
∫ 1

0
dt

〈
d ln f2(x, t)

dt

〉
r(x|t)

= Gr(µµµ,1)−Gr(µµµ,0) .
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The last equality holds because q and r contain the same (expo-

nential) family.

Gq(µµµ,1) ≈ Gq(µµµ,0) +Gr(µµµ,1)−Gr(µµµ,0) ≡ GEC(µµµ) .

Simplified notation: Gq ≡ Gq(µµµ,0), Gr ≡ Gr(µµµ,1) and Gs ≡ Gr(µµµ,0).



Variational approximation

The main advantage of the EC approximation is that it takes into
account interaction of the variables in the f2(x) part retained in
r(x) distribution. The EC approximation can also be justified by
central limit theory (cavity) arguments. See below for a discussion
of when to expect the different types of approximations to work
well.

If the interpolant is f2(x, t) = [f2(x)]t, we can recover the varia-
tional approximation by replacing the average over q(x|t) with an
average over the free model, q(x|0):

G(µµµ) ≈ G(µµµ,0)−
∫ 1

0
dt

〈
d ln f2(x, t)

dt

〉
q(x|0)

= G(µµµ,0)− 〈ln f2(x)〉q(x|0) = Gvar(µµµ) .

In the variational approx. we are neglecting even more of the in-
teraction part!
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Pairwise potentials

p(x) =
1

Z

∏
α

Ψα(xα) exp

∑
i<j

xiJijxj

 , (14)

where the xα denote tractable non-Gaussian potentials defined on

disjoint subsets of variables xα, (e.g. factorized or a spanning tree).

Fix mi = 〈xi〉 and Mij = 〈xixj〉 and take as our second tractable

family r(x), the Gaussian part of p(x), i.e. f2(x) = exp
(∑

i<j xiJijxj
)
,

then Gr and Gs will be free energies of a Gaussian with J and J = 0,

respectively:

GEC(m,M) = Gq(m,M,0)−
1

2
mTJm (15)

+max
Λ

{
1

2
ln det(Λ− J)−

1

2
TrΛ(M−mmT )

}
−max

Λ

{
1

2
ln detΛ−

1

2
TrΛ(M−mmT )

}
,
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where the free energy Gq(m,M,0) will depend explicitly upon the

potentials Ψα(xα).



What can we get non-trivial estimates for
in EC?

The two complementary approximations q(x) and r(x) (here ex-

emplified for pairwise interactions) give:

• Marginal distributions

q(x) ∝
∏
i

Ψi(xi) exp(γTq x− xTΛqx/2)

is tractable and includes the non-trivial constraints on the vari-

ables. For e.g. factorized moments, the marginals are:

q(xi) ∝ Ψi(xi) exp(γq,ixi − x2i Λq,i/2) .

• Correlations

r(x) ∝ exp(γTr x− xT (Λr − J)x/2)

is a global Gaussian approximation with non-trivial covariance

C(xi, xj) = 〈xixj〉r(x) − 〈xi〉r(x)〈xj〉r(x) =
[
(Λr − J)−1

]
ij
.
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• The free energy GEC ≈ − lnZ. Useful in Bayesian statistics

since Z is the marginal likelihood (or evidence) of the model.



EC free energy is upper bounded by
variational free energy
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Algorithmics

Solving the optimization problem minµµµGEC(µµµ) is non-trivial: it may
be non-convex:

GEC(µµµ) = Gq(µµµ) +Gr(µµµ)−Gs(µµµ)

because it is a non-convex combination of (convex) free energies.
We can use

• Guaranteed convergent – double loop, variational bounding [7].

• Gradient methods directly on G(µµµ) (or unconstrained transfor-
mation of µµµ, e.g. for xi = ±1 use γi = tanh−1(mi) instead of
mean value mi.

• Expectation propagation [4,5,8].
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Guaranteed convergent – Variational
bounding, double loop

The basic idea is to minimize a decreasing sequence of convex

upper bounds to GEC [7,8,9]. Linearize concave term −Gs(µµµ) at

the present iteration µµµ∗, Gs(µµµ) ≥ Glbound
s (µµµ) = −C∗ + µµµTλ∗s, C∗ ≡

lnZq(λ∗s) and λ∗s = λs(µµµ∗).

GEC(µµµ) ≤ Gq(µµµ) +Gr(µµµ)−µµµTλ∗s + C∗

= min
µµµ

max
λq,λr

{
− lnZq(λq)− lnZr(λr) +µµµT (λq + λr − λ∗s) + C∗

}
= max

λq,λr

{− lnZq(λq)− lnZr(λr)|λq + λr = λ∗s}+ C∗

= max
λr

{− lnZq(λ
∗
s − λr)− lnZr(λr) + C∗} . (16)
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Double loop recipe

1. Outer loop: For fixed old value µµµ∗, bound the concave term

−Gs(µµµ) by −Glbound
s (µµµ) go get the convex upper bound to

GEC(µµµ).

2. Inner loop: Solve the concave maximization problem

max
λr

L with L = − lnZq(λ
∗
s − λr)− lnZr(λr) . (17)

Inserting the solution into µµµ(λr) = 〈g(x)〉r gives new value

µµµ∗ = µµµ.

Currently, we either solve the non-linear inner-loop optimization by

a sequential approach that are computationally efficient when Gr
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is the free energy of a multivariate Gaussian or by interior point

methods [6,10,11].

Unfortunately, this approach can be very slow especially for hard

problems.



Expectation propagation (EP) [4,5,8]

EP can be interpreted as a greedy algorithm [8] for minimizing the

EC free energy: Cycling over the factors

Ψ̃i(xi) = exp(λTr,igi(xi)) and r(x) =
∏
i

Ψ̃i(xi)f2(x)

for simplicity assuming that they contain only one variable.

1. Deletion of factor from r(x): r\i(x) ∝ r(x)/Ψ̃i(xi) or

r
\i
i (xi) ∝ si(xi)/Ψ̃i(xi) ∝ exp[(λs,i − λr,i)

Tgi(xi)] ,

where si(xi) ∝ exp[λTs,igi(xi)] is the marginal distribution of r(x).

2. Incorporate evidence Ψi(xi): qi(xi) ∝ Ψi(xi)r
\i
i (xi) and up-

date sufficient statistics mi(xi) = 〈gi(xi)〉qi:
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3. Update factor Ψ̃i(xi) ∝ si(xi)/r
\i(x): First set the marginal

distribution si(xi) to match the moments: mi(xi) = 〈gi(xi)〉qi. Fi-

nally, recalculate all the sufficient statistics from the new r(x):

m = 〈g(x)〉r.

We can identify all steps as sequentially updating the distributions

and moments: λs, λq, µµµ, λs, λr, µµµ,... using the saddlepoint condi-

tions on µµµ, λq, λr and λs.

This greedy approach is fast when it converges, unfortunately, it

often fails especially for hard (non-convex?) problems.



Simulations – Ising models

N binary variables with pairwise interactionse Jij:

p(x) =
1

Z

∏
i

Ψi(xi) exp
(
1

2
xTJx

)
Ψi(xi) = [δ(xi + 1) + δ(xi − 1)]eθixi

Look at the approximation for the

• One-variable marginals p(xi) = 1+ximi
2 , mean mi = 〈xi〉.

• Two-variable marginals p(xi, xj) =
xixjCij

4 + p(xi)p(xj), covari-

ance Cij = 〈xixj〉 − 〈xi〉〈xj〉.

• Free energy G = − lnZ.

ec015



EC in practice – choosing g(x)

Factorized restricted: consistency on 〈xi〉, i = 1, . . . , N and
∑
i〈x2i 〉

g(x) =

x1, . . . , xN ,−1

2

∑
i

x2i
2


λ = (γ1, . . . , γN ,Λ)

Factorized: consistency on 〈xi〉 and 〈x2i 〉 = 1, i = 1, . . . , N

g(x) =

(
x1,−

x21
2
, . . . , xN ,−

x2N
2

)
λ = (γ1,Λ1, . . . , γN ,ΛN)

Structured – spanning tree: as above and Mij = 〈xixj〉, (ij) ∈ G

q(x) =
∏

(ij)∈G

qij(xi, xj)

qi(xi)qj(xj)

∏
i

qi(xi)

G(m, {Mij}(ij)∈G) =
∑

(ij)∈G
Gij(mi,mj,Mij) +

∑
i

(1− ni)Gi(mi)
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Methods compared

• Exact.

• Factorized expectation consistent.

• Spanning tree structured expectation consistent.

• Bethe (and Kikuchi) approximation.

• Log-determinant relaxation (Wainwright & Jordan, 2002).
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Scenario I: Kappen and Albers

N = 10, Jij = βwij, wij ∼ N (0,1) and β ∈ [0.1; 10].

Error-measures:

MAD1 = max
i

|p(xi = 1)− p(xi = 1|Method)|

MAD2 = max
i,j

max
xi=±1,xj=±1

∣∣∣p(xi, xj)− p(xi, xj|Method)
∣∣∣

AD Free energy =
∣∣∣G−GMethod

∣∣∣
In EC, the non-trivial correlation estimates: Cij =

[
(Λr − J)−1

]
ij

is

used for the two-variables marginals.
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Scenario II: Wainwright and Jordan

N = 16

Fully connected or

4-by-4 nearest neighbor grid.

Coupling strength:

• repulsive (anti-ferromagnetic) Jij ∼ U[−2dcoup,0],

• mixed Jij ∼ U[−dcoup,+dcoup] and

• attractive (ferromagnetic) Jij ∼ U[0,+2dcoup] with dcoup > 0.

θi from uniform distribution: θi ∼ U[−dobs, dobs] with dobs = 0.25.
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Problem type Method
SP LD EC factorized EC tree

Graph Coupling dcoup Mean Mean Mean ± std Max Mean ± std Max
Repulsive 0.25 0.037 0.020 0.003 ± 0.002 0.00 0.0017 ± 0.0011 0.007
Repulsive 0.50 0.071 0.018 0.031 ± 0.045 0.20 0.0143 ± 0.0141 0.102

Full Mixed 0.25 0.004 0.020 0.002 ± 0.002 0.00 0.0013 ± 0.0008 0.005
Mixed 0.50 0.055 0.021 0.022 ± 0.030 0.17 0.0151 ± 0.0204 0.163

Attractive 0.06 0.024 0.027 0.004 ± 0.002 0.01 0.0025 ± 0.0014 0.007
Attractive 0.12 0.435 0.033 0.117 ± 0.090 0.30 0.0211 ± 0.0307 0.159
Repulsive 1.0 0.294 0.047 0.153 ± 0.123 0.58 0.0031 ± 0.0021 0.013
Repulsive 2.0 0.342 0.041 0.198 ± 0.135 0.49 0.0021 ± 0.0010 0.009

Grid Mixed 1.0 0.014 0.016 0.011 ± 0.010 0.08 0.0018 ± 0.0011 0.006
Mixed 2.0 0.095 0.038 0.082 ± 0.081 0.32 0.0068 ± 0.0053 0.028

Attractive 1.0 0.440 0.047 0.125 ± 0.104 0.36 0.0028 ± 0.0018 0.013
Attractive 2.0 0.520 0.042 0.177 ± 0.125 0.41 0.0024 ± 0.0022 0.016

Error measure (averaged over 100 trials)

MeanAD =
∑
i

|p(xi = 1)− p(xi = 1|Method)|/N .

SP = Sum Product = Bethe

LD = log determinant relaxation.
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There is no universal best approximation.

The need for more than a framework!

Understanding the ‘physics’ of the problem is neecssary:

• Sparse: use Bethe approximation and extensions (loopy belief

propagation).

• Dense: Use central limit theorem (or cavity) arguments and

extensions (replica symmetry breaking).

• In between: structured extensions of the above.
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Conclusion

EC provides a framework for approximate inference.

Relation to other approaches: variational (Bayes), adaptive TAP,

expectation propagation, Bethe+, EP, log-determinant relaxation.
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Outlook

EC for RSB.

More efficient algorithms needed – variational bounding can be

very slow when the problem is hard. E.g. EP is fast, but doesn’t

converge on hard cases.

Perhaps relax the requirement for complete consistency of comple-

mentary approximations.
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