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Outline

e On-line, sequential and incremental learn-
ing.

e Gaussian processes and Hilbert spaces.

e Batch learning in RKHS.

e On-line learning in RKHS.

e Sparse solutions.

e Examples.

e Challenges and open questions.
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On-line, Sequential and
Incremental Learning

e Batch learning - all the data available.

e On-line learning - process single data point
at a time.

e aka sequential learning.

e Should be recursive and incremental.

Applications

e On-line learning.
e Large data sets.

e Adaptive, non-stationary, learning.
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Historial Perspective

e Simple on-line parameter estimation (LMS,
NLMS, RLS, Kalman filter...).

e Method of potential functions (Aizerman
and Braverman).

e Stochastic approximation (many).

e Resource allocating network (Platt and
others).

e Constrained sequential projections in Hilbert
space (Kadirkamanathan and Niranjan).

e On-line Gaussian processes (Csaté and Op-
per).

e Exact incremental methods (Sugiyama and
Ogawa).

e On-line kernel methods (Various including
Kivinen et al).
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(Gaussian Processes and Hilbert
Spaces

This talk is based on RKHS.

So what has this go to do with Gaussian
processes?

Fundamental link is the covariance function.

Let X (¢) be a family of zero-mean Gaussian
variables with F[X (s) X (t)] = k(s, ).

Can also define a RKHS with reproducing
kernel £.

Then the Hilbert space spanned by X (%) is
isometrically isomorphic to the RKHS.

There exists a 1:1 inner product preserving
correspondence.

This is simplifying matters but is sufficient
to motivate the rest of the talk.

More on RKHS in a minute.
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Finite Data Function
Approximation

Assume some unknown function, f.

Can only observe at finite number, N, of
points.

f belongs to Hilbert space, F, defined on
input set X C R".

Denote observations by linear operator
] = Lz'f.

Given class, F, and observations, {z;}, ap-
proximation problem is then to estimate f.

Written as linear operator equation

N
2= Lf =) (Lif)s:
1=1
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Reproducing Kernel Hilbert
Spaces

Assume F is a RKHS then observation func-
tionals, L;, continuous (hence bounded).

By Riesz representation theorem
Lif = (f k(zi),-))
where k(x;, -) is the reproducing kernel.
Conditions on k(-, -):
1. k(x,-) € F,; and
2 (f, k(. ) = f(z)
k(-,-) is positive definite (RBF).
Functions, g € F,
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Least Squares Solution

Since range of linear operator equation is fi-
nite dimensional it is closed.

Least squares solution, u, satisfies:

1. Lu = Pz;

2. |[Lu — z|| < ||Lf — z|| for any f € F;
and

3. L"Lu = L*z.

P denotes projection of z onto R(L), and
L™ is the adjoint operator of L defined by

(Lf,z) = (f,L72)

(think matrix transpose).
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(Generalised Solution

Since R(L) is closed a least-squares solution
always exists, but may be many...

Seek the least-squares solution of minimum
norm - generalised solution.

LT = (L*L)'L* = L*(LL*)!

Since finite-dimensional we have

N
Le=> Kz, -)e,
i—1

N N
LL* = Z Z k(x;, xj)eje;-r = K.
j=1 i=1
Then
F1() = LY LL*) 'z = L*c
and

@) = (f10), k(z, ) = kT K1z,
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Regularised Solution

Generalised solution may still be sensitive to
noise (but never ill-posed as problem is finite
dimensional).

Method of Tikhonov regularisation

1 2 P2
— —| LT — — .
f?“eg arng%1%2‘| / ZH T 2||fH

Unique minimiser
freg(s) = (pI + L*L)"'L*z
= L¥(pI + LL*)™!
and

f?“eg(x) <f7“eg() (x, )>
=kl (pI + K)7 L2,
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Batch Gradient Methods

Assume all the data, z, is available and seek
iterative solutions.

Define
1

Treg(f) = SILF = 2P +SII1P

which is Fréchet differentiable at each point

of F and

General iterative solutions - move in direc-
tion of negative gradient

Jo € R(L*)a Jnt1 = Jn— nnvjreg<fn)-
Applicable to large data sets.
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Gradient and Steepest Descent

Gradient descent:

Jo € R(L*)a fn—H = Jn— nnvjreg<fn)

0 <np <

Steepest descent:

Jo € R(L*)v Jn1=Jn— Unvjreg<fn)a

Vel
1LV Jreg(fu)ll? + plIV Jreg(fn)ll?

Conjugate gradient can also be developed
similarly.

In =

Early stopping.
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Computational Forms

Since f;, = L*cp,
frne1 = L cn—nn[L*(LL cp—2)+ pL*cp)
and letting

Cnt1 = cn — nn(LL ey — 2) + pep
we have f,,.1 = L cp41.
Computationally

cp €R",  cpi1=cn—Mmlp

where ¢, = (K¢ — 2) + pep.

Gradient descent:
O

2
0 <y < : = 0.

n=>0
Steepest descent:

¢l Ke,
_TKQCn + chKcn

Parametric vs functional forms.

Mn =
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Stochastic Gradient Methods

Suppose we make new observations at each
Iteration

Define instantaneous, non-negative, functional

. 2 P 2
gigl(fn) —§||Ln+1fn_zn+1|| —|—§||fn|| :

Given initial approximation, fj, method of
stochastic gradient descent

Jn+1 = Jn — 77n+1v JY <fn)

where

reg (fn) — n+1(Ln+1fn_Zn+1)+pfn-

Hence

Jnt1 = (1 — 77n+1p)fn—
nn+1L;+1<Ln+1fn — Zn+1)-
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Computational Form (1)

For some constant, a € R,
%

and

Lyp+1fn = fn(Tni1).
Therefore

fn+1 = <1 — 77n+1p)fn_
M1 @Tnr1) — 2nt1)bni1-
Assume model at iteration n is

p
fn = Z cpki
1=1
Then
p .
fnr1 = (1 = pg1p) Z Cpki = Mn+1€n+1kn41
1=1

p+1

_ 2 ,
_ Z CTH—lkZ'
1=1
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Computational Form (2)

Parameters updated as

g { (1 = npt1p)ey, fori <p

LT - fori=p+1
Mn+1€n+1 ore=p-+

New parameter equal to -prediction error on
new data point weighted by learning rate.

Old parameters decayed by factor (1—mn,,11p).

This is like a forgetting factor (decaying mem-
ory).
Insight: consider 7,,.1 = 7, then

p+1

-
fas1 =) _(1=np)" " ineik;.

1=1
Regularisation in on-line learning — decay-
Ing memory.
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Conditions on Learning Rate

To ensure monotonicity of instantaneous er-
ror function require

0 <Mp+1 <
jre
2|V ()l

| L1 VI A 1+ IV 55 () 12

Can also derlve stochastic steepest descent

n+1 =
IV T4 (fa)l?

| L1V, (fn)ll2 + VI G ()12

Construction of full convergence proof for
these learning rates is ongoing.
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Computing the Learning Rate

Can be shown that

VI ()l =

k<xn+1> 5’3n+1)<fn<xn+1) - Zn+1) +
pQCng,pcn +
2p frn(@n1) (fn(®ne1) — 2n41)

and

1Ly 1 VI ()l =
[k<xn+1> 5’3n+1)<fn<xn+1) - Zn+1) +

an(xn+1)]2
where K, € RP*P is the kernel matrix.
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Sparsity

Problem: the number of terms grows with-
out bound.

Solution: restrict model growth by only in-
cluding “significant” kernels.

Also remove kernels which are no longer im-
portant.

But, always include effect of new data points
on existing parameters.

fn—H

—TNn+1€n+1 kn+1
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Algorithm

. Choose an initial approximation, fj, typically zero.
. Choose thresholds, x;, k4.
. For each observation, {z,,y,}, calculate:

e posterior estimate, f,11;
1.

~-; and

® posterior projection,

e the error norm, || f11 — frqll”.

N | fus1 — fi5qll > ki update the function esti-
mate as f'.; = fn41 and set m = p + 1. Oth-

erwise choose the update as [ ; = f--; and set
m = p.
.Forallz=1,...,m, calculate

e the decremental estimates f |, corresponding

to the removal of the [th kernel; and
e the error norm, || fi., — f4.|.
. If the lowest (out of all possible kernels) error
norm satisfies || f1,; — f& ||| < kq update the

function estimate. Otherwise do not include a
decremental step.

. Repeat steps 3 to 6 for each new data point.
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Relationship to Other Methods

In the unregularised case, stochastic steepest
descent is equivalent to:

e Method of potential functions.
e Stochastic approximation.

e Matching pursuit.

e Boosting.

e Resource allocating network.

e Method of F-projections.
Regularised case very similar to:

e On-line Gaussian processes.

e Other on-line kernel algorithms.
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Example: Channel Equalisation

Consider a communication channel

where

{fu, € A} is a discrete-valued input se-
quence,

{x,, € R} is the channel output sequence,
{h; € R} are the channel coefficients,
{gn} is a noise sequence, and

L is the channel order.

Equalisation problem: recover an estimate
of {un} given {x,}.
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Channel Equalisation (cont.)

For a symbol-decision equaliser

Up—7 = d(?Jn)
and
yn = f(n,Tn)
Tn = |Tn,Tp—1,- s Tp_L
The Lg order equaliser, with delay, 7, is

given by f(n,-), and d(-) is a decision func-
tion with range A.

.

Problem: estimate the function f(-).
Choose:
ho, by, ho] = [0.3482,0.8704, 0.3482]

and Lp = 3,7 = 1,uy € {£1} and ¢, ~
N(0,0'g).

Use Gaussian kernel with o = 20¢.
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Results
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Results
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Learning Rates

A number of approaches have been proposed
for the learning rates.

Three considered:

e Constant - n, = .
A

e Decay - ), = non~ .
e Adaptive - 1, as previous.
Which is the most appropriate:

e Convergence.

e Non-stationarity.
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Comparing Learning Rates
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Challenges and Open Questions

e Completion of convergence proofs (large
data).

e What is the best learning rate?

e Second order methods.

e Efficient model computation.

e Hyperparameters.

e Uncertainty.

e Stochastic conjugate gradient methods.
e WWhat about non-stationary processes.

e What about correlated data - time series.

e Recurrent - non-Gaussian.
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