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We have seen during the introduction lectures that the distribution of a
GP Z depends on two functions:

the mean m(.)

the covariance K (., .)

In this talk, we will focus on the covariance function:

K (x , y) = cov (Z (x),Z (y))
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The choice of the kernel is of great importance in GP regression

m(x) = k(x)tK−1Y

c(x , y) = K (x , y)− k(x)tK−1k(y)

Example
exponential kernel
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K has to reflect the prior belief on the function to approximate
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Introduction

We will first recall some definitions

Gaussian vector

A d-dimensional random vector Y is said to be Gaussian iif atY is
Gaussian ∀a ∈ Rd

Gaussian process
A random process Z indexed by D is said to be Gaussian iif
(Z (x1), . . . ,Z (xn)) is a Gaussian vector ∀xi ∈ D, ∀n ∈ N
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Introduction

Same definitions with images:
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What is a kernel? Kernels and positive definite functions

Let Z be a random process. Some properties of kernels can be
obtained directly from their definition.

Example
K (x , x) = cov (Z (x),Z (x)) = var (Z (x)) ≥ 0

⇒ K (x , x) is positive.

K (x , y) = cov (Z (x),Z (y)) = cov (Z (y),Z (x)) = K (y , x)

⇒ K (x , y) is symmetric.

We can obtain a thinner result...
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What is a kernel? Kernels and positive definite functions

We introduce the random variable T =
∑n

i=1 aiZ (xi) where n, ai and xi
are arbitrary.

Computing the variance of T gives:

var (T ) =
∑∑

aiajcov
(
Z (xi),Z (xj)

)
=
∑∑

aiajK (xi , xj)

We thus have: ∑∑
aiajK (xi , xj) ≥ 0

Definition
The functions satisfying the above inequality for all n ∈ N, for all
xi ∈ D, for all ai ∈ R are called positive semi-definite functions.

We have not assumed here that Z is Gaussian!
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What is a kernel? Kernels and positive definite functions

We have seen:

K is a covariance⇒ K is a positive semi-definite function

The reverse is also true:

Theorem (Loeve)
K corresponds to the covariance of a GP

m
K is a (symmetric) positive definite function

Major issue
It is often intractable to show that function is positive definite directly
from the definition...
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What is a kernel? Kernels and positive definite functions

A common approach is to use well known kernels such as:

white noise: K (x , y) = δx ,y

bias: K (x , y) = 1

exponential: K (x , y) = exp (−|x − y |)
Brownian: K (x , y) = min(x , y)

Gaussian: K (x , y) = exp
(
−(x − y)2)

Matérn 3/2: K (x , y) = (1 + |x − y |)× exp (−|x − y |)

sinc: K (x , y) = sin(|x − y |)
|x − y |

...

Kernels that are a function of |x − y | are called stationary kernels.
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What is a kernel? Kernels and positive definite functions
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What is a kernel? Stationary kernels

Let K (x , y) = K̃ (|x − y |) be a stationary kernel.

Properties

If K̃ is n times differentiable in 0, then it is n times differentiable
everywhere.
The maximum value of K̃ (t) is reached in t = 0.

Example
The following functions are not valid covariance structures

t

K(t)

t

K(t)

t

K(t)
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Kernels and positive measures Bochner’s theorem

Theorem (Bochner)

A stationary function k(x , y) = k̃(|x − y |) is positive definite if and only
if k̃ can be represented as

k̃(t) =
∫
R

eiωtdµ(ω)

where µ is a finite positive measure.

This result is very useful to prove the positive definiteness of stationary
functions.
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Kernels and positive measures Examples on usual kernels

Example

We consider the following measure:

Its Fourier transform gives k̃(t) =
sin(t)

t
:

0.0

0.0

As a consequence, K (x , y) =
sin(x − y)

x − y
is a valid covariance function.
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Kernels and positive measures Examples on usual kernels

Bochner theorem can be used to prove the positive definiteness of
many usual stationary kernels

The Gaussian is the Fourier transform of itself
⇒ it is psd.

δx ,y is the inverse Fourier transform of the constant function
⇒ it is psd.

the constant function is the inverse Fourier transform of δx ,y
⇒ it is psd.
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Kernels and positive measures Spectral approximation

Spectral approximation with a mixture of Gaussian (A. Wilson,
ICML 2013)

The inverse Fourier transform of a (symmetrised) non centred
Gaussian is:

µ(ω)

0.0

−→
F−1

k̃(t)

0.0

This can be generalised to a measure based on the sum of Gaussians.
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Kernels and positive measures Spectral approximation

Spectral approximation with a mixture of Gaussian (A. Wilson,
ICML 2013)

We obtain a kernel that is parametrised by the means and the
bandwidths of Gaussians bells in the measure space:

µ(ω)

0.0

−→
F−1

k̃(t)

0.0
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Kernels and positive measures Spectral approximation

Spectral approximation with a mixture of Gaussian (A. Wilson,
ICML 2013)

The sample paths have the following aspect:
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Making new from old

We have seen that it is difficult to prove directly the positive
semi-definiteness of a function.

For all n ∈ N, for all xi ∈ D, for all ai ∈ R∑∑
aiajK (xi , xj) ≥ 0

However, many operations can be applied to a psd function while
retaining this property. This is often called making new from old.

We will discuss the following operations:

Multiplication by a scalar
Sum of kernels
Product of kernels

Multiplication by a function
Composition with a function
Effect of a linear operator
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Making new from old Multiplication by a scalar

Multiplication by a scalar

Hereafter, we assume that Ki is a kernel and that Zi ∼ N (0,Ki).

Property
Let α be a positive real, then

K (x , y) = αK1(x , y)

is a valid kernel.

proof
∀n ∈ N, ∀xi ∈ D, ∀ai ∈ R∑∑

aiajαK (xi , xj) = α
∑∑

aiajK (xi , xj) ≥ 0

From a GP point of view, K is the covariance of
√
αZ1:

cov
(√
αZ1(x),

√
αZ1(y)

)
=
√
α
√
αcov (Z1(x),Z1(y)) = αK (x , y)
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Making new from old Sum of kernels

Sum of kernels

Let f1, f2 be two functions R→ R: f1(x) = sin(2πx)
f2(x) = 2x

The sum f = f1 + f2 can be understood in two different ways:

As a function defined over R

f (x) = f1(x) + f2(x)

As a function over R×R

f (x1, x2) = f1(x1) + f2(x2)
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Making new from old Sum of kernels

Sum of kernels defined over the same space.

Property
K (x , y) = K1(x , y) + K2(x , y)

is a valid covariance structure.

proof
∀n ∈ N, ∀xi ∈ D, ∀ai ∈ R∑∑

aiajK (xi , xj) =
∑∑

aiaj(K1(xi , xj) + K2(xi , xj))

=
∑∑

aiajK1(xi , xj) +
∑∑

aiajK2(xi , xj) ≥ 0

Remark:
From a GP point of view, K is the kernel of Z (x) = Z1(x) + Z2(x)
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Making new from old Sum of kernels

Example
We can sum a Gaussian and an exponential kernel:

Gaussian

+

Exponential

=

psd kernel

We obtain the following GP sample paths:
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Making new from old Sum of kernels

In practice, summing kernels is very useful.

Example (The Mauna Loa observatory dataset)
This famous dataset compiles the monthly CO2 concentration in
Hawaii since 1958.
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Let’s try to predict the concentration for the next 20 years.
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Making new from old Sum of kernels

We first consider a squared-exponential kernel:
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The results are terrible!
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Making new from old Sum of kernels

What happen if we sum both kernels?

k(x , y) = σ2
1krbf1(x , y) + σ2

2krbf2(x , y)
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The model is drastically improved!
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Making new from old Sum of kernels

We can try the following kernel:

k(x , y) = σ2
0x2y2 + σ2

1krbf1(x , y) + σ2
2krbf2(x , y) + σ2

3kper (x , y)
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Once again, the model is significantly improved.
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Making new from old Sum of kernels

Sum of kernels defined over different spaces

Property

K (x,y) = K1(x1, y1) + K2(x2, y2) (1)

is valid covariance structure.
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Remark:
From a GP point of view, K is the kernel of Z (x) = Z1(x1) + Z2(x2)

GP Summer School (Sheffield, June 2013) Kernel Design N. Durrande 31 / 67



Making new from old Sum of kernels

Sum of kernels defined over different spaces

We can have a look at a few sample paths from Z :
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⇒ They are additive (up to a modification)

Tensor Additive kernels are very useful for
Approximating additive functions
Building models over high dimensional inputs spaces
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Making new from old Sum of kernels

Sum of kernels defined over different spaces

Approximating an additive function

We consider the test function f (x) = sin(4πx1) + cos(4πx2) + 2x2 and
a set of 20 observation in [0,1]2
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Making new from old Sum of kernels

Sum of kernels defined over different spaces

Approximating an additive function

We obtain the following models:

Gaussian kernel

Mean predictor
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RMSE is 1.06

Additive Gaussian kernel

Mean predictor
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RMSE is 0.12
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Making new from old Sum of kernels

Sum of kernels defined over different spaces

Approximating an additive function

Remark
It is straightforward to show that the mean predictor is additive

m(x) = (k1(x1) + k2(x2))
t(K1 + K2)

−1Y

= k1(x1)
t(K1 + K2)

−1Y︸ ︷︷ ︸
m1(x1)

+k2(x2)
t(K1 + K2)

−1Y︸ ︷︷ ︸
m2(x2)

⇒ The mean predictor shares the prior behaviour.
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Making new from old Sum of kernels

Sum of kernels defined over different spaces

Approximating an additive function

Remark
The prediction variance has interesting features

pred. var. with kernel product
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Let’s consider a toy example to illustrate this.
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Making new from old Sum of kernels

Sum of kernels defined over different spaces

Approximating an additive function

Provided that f is additive, we want
to predict f (x(4)) knowing f (x(1)),
f (x(2)) and f (x(3)) of an additive
function, × ×

×

x1

x2

x(1) x(2)

x(3)
b

x(4)
?

Given an additive GP, we compute the prediction variance in x(4)

c(x(4),x(4)) = var
(

Z (x(4))|Z (x(1)),Z (x(2)),Z (x(3))
)

= var
(

Z (x(2)) + Z (x(3))− Z (x(1))|Z (x(1)),Z (x(2)),Z (x(3))
)

= 0
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Making new from old Sum of kernels

Sum of kernels defined over different spaces

Approximating an additive function

Using this property we can construct a design of experiment that
covers the space with only cst × d points!
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Prediction variance
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Making new from old Sum of kernels

Sum of kernels defined over different spaces

Approximating an additive function

Note that the distribution of the points can be modified for a better
coverage of the space:

× × × × ×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

x1

x2

x1

x2

x1

x2
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Making new from old Sum of kernels

Sum of kernels defined over different spaces

High-dimensional modelling We assume here f : Rd → R

Stationary kernels

K (x,y) = f (|x− y|)
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⇒ cstd points are required to
cover the space!

Additive kernels

K (x,y) = K1(x1, y1) + K2(x2, y2)
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⇒ cst × d points are required to
cover the space!
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Making new from old Product of kernels

Product of kernels

What about the product of kernels?

As previously, two products can be defined
Over the same space
Over the tensor product space
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Making new from old Product of kernels

Product over the same space

Property
Let K1, K2 be two kernels over D × D, then

K (x , y) = K1(x , y)× K2(x , y)

is a kernel.

Example
We consider the product of a squared exponential with a cosine:

× =
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Making new from old Product of kernels

Product over the same space

Examples of sample paths from the previous kernel:
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Making new from old Product of kernels

Product over the tensor space

Property
Let K1, K2 be two kernels resp over D1 × D1 and D2 × D2, then

K (x,y) = K1(x1, y1)× K2(x1, y1)

is a kernel over (D1 × D2)× (D1 × D2).

Tensor product can be used to obtain covariance structures in higher
dimension.
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Making new from old Product of kernels

Example
We compute the product of two squared exponential kernels

0.0 0.2 0.4 0.6 0.8 1.00.0
0.2

0.4
0.6

0.8
1.0

0.2

0.4

0.6

0.8

1.0

×

0.0 0.2 0.4 0.6 0.8 1.00.0
0.2

0.4
0.6

0.8
1.0

0.2

0.4

0.6

0.8

1.0

=

0.0 0.2 0.4 0.6 0.8 1.00.0
0.2

0.4
0.6

0.8
1.0

0.2

0.4

0.6

0.8

1.0

We have:

K (x,y) = e−(x1−y1)
2 × e−(x2−y2)

2
= e−

∑
(xi−yi )

2
= e−||x−y||2

⇒We can recognise here a 2D squared exponential kernel.
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Making new from old Product of kernels

Here is a few sample paths from Z :

0.0 0.2 0.4 0.6 0.8 1.00.0
0.2

0.4
0.6

0.8
1.0

1.5
1.0
0.5

0.0
0.5
1.0
1.5
2.0

0.0 0.2 0.4 0.6 0.8 1.00.0
0.2

0.4
0.6

0.8
1.0

2

1

0

1

2

0.0 0.2 0.4 0.6 0.8 1.00.0
0.2

0.4
0.6

0.8
1.0

2

1

0

1

This GP cannot be seen as the product of two independent GPs with
kernels K1 and K2

Z (x) 6= Z1(x1)× Z2(x2)
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Making new from old Multiplication by a function

Multiplication by a function

Property
Let f be an arbitrary function over D1, then

K (x , y) = f (x)f (y)K1(x , y)

is a kernel over D1 × D1.
proof ∑∑

aiajK (xi , xj) =
∑∑

ai f (xi)︸ ︷︷ ︸
bi

aj f (xj)︸ ︷︷ ︸
bj

K1(xi , xj) ≥ 0

Remarks:
This property is a generalization of the multiplication by a scalar
f (x)f (y) corresponds to the covariance of Z2(x) = αf (x) with
α ∼ N (0,1). The property can thus be seen as the product of two
kernels defined over the same space.
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Making new from old Multiplication by a function

Example

We illustrate the previous property with f (x) = 1
x and a Matérn 3/2

kernel K1(x , y) = (1 + |x − y |)e−|x−y |.

We obtain:

Kernel

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

50

60

70

Sample paths

0.0 0.2 0.4 0.6 0.8 1.0

40

20

0

20

40

This property can be seen as a (nonlinear) rescaling of the output
space
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Making new from old Composition with a function

Composition with a function

Property
Let K1 be a kernel over D1 × D1 and f be an arbitrary function D → D1,
then

K (x , y) = K1(f (x), f (y))

is a kernel over D × D.
proof ∑∑

aiajK (xi , xj) =
∑∑

aiajK1(f (xi)︸︷︷︸
yi

, f (xj)︸︷︷︸
yj

) ≥ 0

Remarks:
K corresponds to the covariance of Z (x) = Z1(f (x))
This can be seen as a (nonlinear) rescaling of the input space
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Making new from old Composition with a function

Example

We consider f (x) = 1
x and a Matérn 3/2 kernel

K1(x , y) = (1 + |x − y |)e−|x−y |.

We obtain:

Kernel

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Sample paths

0.0 0.2 0.4 0.6 0.8 1.03

2

1

0

1

2

3
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Making new from old Composition with a function

Example

We consider f (x) = 1
x and a Matérn 3/2 kernel
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Making new from old Effect of a linear operator

Effect of a linear operator

Property
Let L be a linear operator that commutes with the covariance, then

K (x , y) = Lx(Ly (K1(x , y)))

is a kernel.
proof
K is the kernel of Lx(Zx)

Remarks:
The RKHS framework allows to give proper conditions for the
above property, but it is out of the scope of this talk.
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Making new from old Effect of a linear operator

We want to approximate a function [0,1]→ R that is symmetric with
respect to 0.5. We will consider 2 linear operators:

L1 : f (x)→
{

f (x) x < 0.5
f (1− x) x ≥ 0.5

L2 : f (x)→ f (x) + f (1− x)
2

.

Those operators transform any function into a symmetric function.

Let K1 = L1(L1(K )) and K2 = L2(L2(K )) be their associated kernels.
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Making new from old Effect of a linear operator

Effect of a linear operator: example (Ginsbourger, AFST 2013)

Examples of associated sample paths are

K1

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2
3

x

Y

K2

0.0 0.2 0.4 0.6 0.8 1.0

−
2

−
1

0
1

2
3

x

Y

The differentiability is not always respected!
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Making new from old Effect of a linear operator

Effect of a linear operator

Ideally, we want to extract the subspace of symmetric functions in H

H

Hsym

f

L1f
L2f

and to define L as the orthogonal projection onto Hsym

⇒ This can be difficult... but it raises interesting questions!
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Making new from old Effect of a linear operator

Effect of a linear operator

We now consider another example:

We want to approximate a function f that is exactly zero mean:∫
D

f (x)dx = 0

Can we build a kernel that takes into account this property?

It is straightforward to build a linear operator that centres functions:

L : f (x)→ f0(x) = f (x)−
∫

D
f (s)ds

L2

L2
0

f

f0
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Making new from old Effect of a linear operator

Effect of a linear operator

Let’s apply L to a GP Z with kernel K :

Z0(x) = L(Z )(x) = Z (x)−
∫

Z (s)ds

and compute the covariance of Z0:

K0(x , y) = cov (Z0(x),Z0(y))

= cov
(

Z (x)−
∫

Z (s)ds,Z (y)−
∫

Z (s)ds
)

= cov (Z (x),Z (y))− cov
(

Z (x),
∫

Z (s)ds
)

− cov
(

Z (y),
∫

Z (s)ds
)
+ var

(∫
Z (s)ds

)
= K (x , y)−

∫
K (x , s)ds −

∫
K (y , s)ds −

∫∫
K (s, t)dsdt
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Making new from old Effect of a linear operator

Effect of a linear operator

We can use K0 to simulate sample paths from Z0:

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

These sample paths are exacty zero-mean!
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Making new from old Effect of a linear operator

Effect of a linear operator

We can compare the predictions of two models m and m0 respectively
based on K and K0.

m

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2
3

4
5 test function

best predictor
95% confidence intervals

m0

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2
3

4
5 test function

best predictor
95% confidence intervals
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Making new from old Effect of a linear operator

Effect of a linear operator

L2

L2
0

Z

Z0

Are Z0 and Z − Z0 independent?

cov (Z0(x),Z (y)− Z0(y))

= cov
(

Z (x)−
∫

Z (s)ds,Z (y)− Z (y) +
∫

Z (s)ds
)

=

∫
K (x , s)ds −

∫
K (s, t)dsdt 6= 0

⇒ They are not!
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Making new from old Effect of a linear operator

Effect of a linear operator

L2

L2
0

Z

Z0

⇒

L2
0

Z

Z0

Are Z0 and Z − Z0 independent?

cov (Z0(x),Z (y)− Z0(y))

= cov
(

Z (x)−
∫

Z (s)ds,Z (y)− Z (y) +
∫

Z (s)ds
)

=

∫
K (x , s)ds −

∫
K (s, t)dsdt 6= 0

⇒ They are not!
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Making new from old Effect of a linear operator

Effect of a linear operator

The alternative here is to change the way to center the functions:

L⊥ : f (x)→ f (x)− g(x)
∫

D
f (s)ds

where
∫

g(s)ds = 1. It can be shown that:

g(x) =

∫
D

k(x , s)ds∫
D

k(s, t)dsdt

gives:
cov (Z0(x),Z (y)− Z0(y)) = 0
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Making new from old Effect of a linear operator

Effect of a linear operator

We finally obtain:

Z

Z0

In a space where the orthogonality is meaningful for the GP Z !
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Conclusion

Small recap
We have seen that

The choice of the kernel has to reflect the prior belief about the
function to approximate.
Kernels can (and should) be tailored to the problem at hand.
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Conclusion

Making new from old
Although a direct proof of the positive definiteness of a function is often
intractable, it is possible to

multiply kernels
sum kernels

multiply a kernel by a function
compose a kernel with a function
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Conclusion

Linear application
If we have a linear application that transforms any function into a
function satisfying the desired property, it is possible to build a GP
fulfilling the requirements.
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Conclusion

Any questions ?
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