Kernel Design

GP Summer School

Sheffield, June 2013

Nicolas Durrande

We have seen during the introduction lectures that the distribution of a GP Z depends on two functions:

- the mean m(.)
- the covariance K(.,.)

In this talk, we will focus on the covariance function:

 $K(x,y) = \operatorname{cov}\left(Z(x), Z(y)\right)$

The choice of the kernel is of great importance in GP regression

$$m(x) = \mathbf{k}(x)^{t} \mathbf{K}^{-1} \mathbf{Y}$$
$$c(x, y) = K(x, y) - \mathbf{k}(x)^{t} \mathbf{K}^{-1} \mathbf{k}(y)$$

Example

K has to reflect the prior belief on the function to approximate

Kernel Design

Introduction

What is a kernel?

- Kernels and positive definite functions
- Stationary kernels

Kernels and positive measures

- Bochner's theorem
- Examples on usual kernels
- Spectral approximation

Making new from old

- Multiplication by a scalar
- Sum of kernels
- Product of kernels
- Multiplication by a function
- Composition with a function
- Effect of a linear operator

Conclusion

- What is a kernel?
 - Kernels and positive definite functions
 - Stationary kernels
- 3 Kernels and positive measures
 Bochner's theorem
 - Examples on usual kernels
 - Spectral approximation
 - Making new from old
 - Multiplication by a scalar
 - Sum of kernels
 - Product of kernels
 - Multiplication by a function
 - Composition with a function
 - Effect of a linear operator
- 5 Conclusion

We will first recall some definitions

Gaussian vector

A *d*-dimensional random vector *Y* is said to be Gaussian iif $a^t Y$ is Gaussian $\forall a \in \mathbb{R}^d$

Gaussian process

A random process *Z* indexed by D is said to be Gaussian iif $(Z(x_1), \ldots, Z(x_n))$ is a Gaussian vector $\forall x_i \in D, \forall n \in \mathbb{N}$

Introduction

What is a kernel?

- Kernels and positive definite functions
- Stationary kernels
- 3 Kernels and positive measures
 - Bochner's theorem
 - Examples on usual kernels
 - Spectral approximation
- Making new from old
 - Multiplication by a scalar
 - Sum of kernels
 - Product of kernels
 - Multiplication by a function
 - Composition with a function
 - Effect of a linear operator
- Conclusion

Let Z be a random process. Some properties of kernels can be obtained directly from their definition.

Example

$$K(x, x) = \operatorname{cov} (Z(x), Z(x)) = \operatorname{var} (Z(x)) \ge 0$$

$$\Rightarrow K(x, x) \text{ is positive.}$$

$$K(x, y) = \operatorname{cov} (Z(x), Z(y)) = \operatorname{cov} (Z(y), Z(x)) = K(y, x)$$

$$\Rightarrow K(x, y) \text{ is symmetric.}$$

We can obtain a thinner result...

We introduce the random variable $T = \sum_{i=1}^{n} a_i Z(x_i)$ where *n*, a_i and x_i are arbitrary.

Computing the variance of T gives:

$$\operatorname{var}(T) = \sum \sum a_i a_j \operatorname{cov}(Z(x_i), Z(x_j)) = \sum \sum a_i a_j K(x_i, x_j)$$

We thus have:

$$\sum \sum a_i a_j K(x_i, x_j) \geq 0$$

Definition

The functions satisfying the above inequality for all $n \in \mathbb{N}$, for all $x_i \in D$, for all $a_i \in \mathbb{R}$ are called positive semi-definite functions.

We have not assumed here that Z is Gaussian!

We have seen:

K is a covariance \Rightarrow *K* is a positive semi-definite function

The reverse is also true:

Theorem (Loeve)

K corresponds to the covariance of a GP ↓ K is a (symmetric) positive definite function

Major issue

It is often intractable to show that function is positive definite directly from the definition...

A common approach is to use well known kernels such as:

white noise:	$K(x,y) = \delta_{x,y}$
bias:	K(x,y) = 1
exponential:	$K(x,y) = \exp\left(- x-y ight)$
Brownian:	$K(x,y) = \min(x,y)$
Gaussian:	$\mathcal{K}(x,y) = \exp\left(-(x-y)^2 ight)$
Matérn 3/2:	$\mathcal{K}(x,y) = (1+ x-y) \times \exp\left(- x-y \right)$
sinc:	$\mathcal{K}(x,y) = \frac{\sin(x-y)}{ x-y }$
÷	

Kernels that are a function of |x - y| are called **stationary** kernels.

^{12/67}

Let $K(x, y) = \tilde{K}(|x - y|)$ be a stationary kernel.

Properties

- If \tilde{K} is *n* times differentiable in 0, then it is *n* times differentiable everywhere.
- The maximum value of $\tilde{K}(t)$ is reached in t = 0.

Example

The following functions are not valid covariance structures

Introduction

- 2) What is a kernel?
 - Kernels and positive definite functions
 - Stationary kernels

Kernels and positive measures

- Bochner's theorem
- Examples on usual kernels
- Spectral approximation

Making new from old

- Multiplication by a scalar
- Sum of kernels
- Product of kernels
- Multiplication by a function
- Composition with a function
- Effect of a linear operator

Conclusion

Theorem (Bochner)

A stationary function $k(x, y) = \tilde{k}(|x - y|)$ is positive definite if and only if \tilde{k} can be represented as

$$ilde{k}(t) = \int_{\mathbb{R}} oldsymbol{e}^{i\omega t} \mathrm{d} \mu(\omega)$$

where μ is a finite positive measure.

This result is very useful to prove the positive definiteness of stationary functions.

Example

Bochner theorem can be used to prove the positive definiteness of many usual stationary kernels

- The Gaussian is the Fourier transform of itself
 ⇒ it is psd.
- $\delta_{x,y}$ is the inverse Fourier transform of the constant function \Rightarrow it is psd.
- the constant function is the inverse Fourier transform of $\delta_{x,y}$ \Rightarrow it is psd.

Spectral approximation with a mixture of Gaussian (A. Wilson, ICML 2013)

The inverse Fourier transform of a (symmetrised) non centred Gaussian is:

This can be generalised to a measure based on the sum of Gaussians.

Spectral approximation with a mixture of Gaussian (A. Wilson, ICML 2013)

We obtain a kernel that is parametrised by the means and the bandwidths of Gaussians bells in the measure space:

Spectral approximation with a mixture of Gaussian (A. Wilson, ICML 2013)

The sample paths have the following aspect:

Introduction

- 2) What is a kernel?
 - Kernels and positive definite functions
 - Stationary kernels

3 Kernels and positive measures

- Bochner's theorem
- Examples on usual kernels
- Spectral approximation

Making new from old

- Multiplication by a scalar
- Sum of kernels
- Product of kernels
- Multiplication by a function
- Composition with a function
- Effect of a linear operator

Conclusion

We have seen that it is difficult to prove directly the positive semi-definiteness of a function.

For all $n \in \mathbb{N}$, for all $x_i \in D$, for all $a_i \in \mathbb{R}$

$$\sum \sum a_i a_j K(x_i, x_j) \geq 0$$

However, many operations can be applied to a psd function while retaining this property. This is often called **making new from old**.

We will discuss the following operations:

- Multiplication by a scalar
- Sum of kernels
- Product of kernels

- Multiplication by a function
- Composition with a function
- Effect of a linear operator

Multiplication by a scalar

Hereafter, we assume that K_i is a kernel and that $Z_i \sim \mathcal{N}(0, K_i)$.

Property

Let α be a positive real, then

$$K(\mathbf{x},\mathbf{y}) = \alpha K_1(\mathbf{x},\mathbf{y})$$

is a valid kernel.

proof

 $\forall n \in \mathbb{N}, \forall x_i \in D, \forall a_i \in \mathbb{R}$

$$\sum \sum a_i a_j \alpha K(x_i, x_j) = \alpha \sum \sum a_i a_j K(x_i, x_j) \ge 0$$

From a GP point of view, *K* is the covariance of $\sqrt{\alpha}Z_1$:

 $\cos\left(\sqrt{\alpha}Z_{1}(x),\sqrt{\alpha}Z_{1}(y)\right)=\sqrt{\alpha}\sqrt{\alpha}\cot\left(Z_{1}(x),Z_{1}(y)\right)=\alpha K(x,y)$

Sum of kernels

Let
$$f_1, f_2$$
 be two functions $\mathbb{R} \to \mathbb{R}$: $f_1(x) = \sin(2\pi x)$
 $f_2(x) = 2x$

The sum $f = f_1 + f_2$ can be understood in two different ways:

Kernel Design

As a function defined over ${\mathbb R}$

$$f(x)=f_1(x)+f_2(x)$$

 As a function over $\mathbb{R}\times\mathbb{R}$

$$f(x_1, x_2) = f_1(x_1) + f_2(x_2)$$

24/67

Sum of kernels defined over the same space.

Property

$$K(x,y) = K_1(x,y) + K_2(x,y)$$

is a valid covariance structure.

proof

 $\forall n \in \mathbb{N}, \forall x_i \in D, \forall a_i \in \mathbb{R}$

$$\sum \sum a_i a_j \mathcal{K}(x_i, x_j) = \sum \sum a_i a_j (\mathcal{K}_1(x_i, x_j) + \mathcal{K}_2(x_i, x_j))$$
$$= \sum \sum a_i a_j \mathcal{K}_1(x_i, x_j) + \sum \sum a_i a_j \mathcal{K}_2(x_i, x_j) \ge 0$$

Remark:

• From a GP point of view, K is the kernel of $Z(x) = Z_1(x) + Z_2(x)$

Example

We can sum a Gaussian and an exponential kernel:

We obtain the following GP sample paths:

In practice, summing kernels is very useful.

Example (The Mauna Loa observatory dataset)

This famous dataset compiles the monthly CO_2 concentration in Hawaii since 1958.

Let's try to predict the concentration for the next 20 years.

We first consider a squared-exponential kernel:

The results are terrible!

What happen if we sum both kernels?

$$k(x, y) = \sigma_1^2 k_{rbf1}(x, y) + \sigma_2^2 k_{rbf2}(x, y)$$
What happen if we sum both kernels?

$$k(x, y) = \sigma_1^2 k_{rbf1}(x, y) + \sigma_2^2 k_{rbf2}(x, y)$$

The model is drastically improved!

GP Summer School (Sheffield, June 2013)

We can try the following kernel:

$$k(x, y) = \sigma_0^2 x^2 y^2 + \sigma_1^2 k_{rbf1}(x, y) + \sigma_2^2 k_{rbf2}(x, y) + \sigma_3^2 k_{per}(x, y)$$

We can try the following kernel:

$$k(x, y) = \sigma_0^2 x^2 y^2 + \sigma_1^2 k_{rbf1}(x, y) + \sigma_2^2 k_{rbf2}(x, y) + \sigma_3^2 k_{per}(x, y)$$

Once again, the model is significantly improved.

GP Summer School (Sheffield, June 2013)

Kernel Design

Property

$$K(\mathbf{x}, \mathbf{y}) = K_1(x_1, y_1) + K_2(x_2, y_2)$$

is valid covariance structure.

Remark:

• From a GP point of view, K is the kernel of $Z(\mathbf{x}) = Z_1(x_1) + Z_2(x_2)$

GP Summer School (Sheffield, June 2013)

Kernel Design

(1)

We can have a look at a few sample paths from Z:

 \Rightarrow They are additive (up to a modification)

Tensor Additive kernels are very useful for

- Approximating additive functions
- Building models over high dimensional inputs spaces

Approximating an additive function

We consider the test function $f(x) = \sin(4\pi x_1) + \cos(4\pi x_2) + 2x_2$ and a set of 20 observation in $[0, 1]^2$

Test function

Observations

Approximating an additive function

We obtain the following models:

Gaussian kernel

Mean predictor

RMSE is 1.06

Additive Gaussian kernel

Mean predictor

RMSE is 0.12

GP Summer School (Sheffield, June 2013)

Kernel Design

Approximating an additive function

Remark

• It is straightforward to show that the mean predictor is additive

$$m(\mathbf{x}) = (\mathbf{k_1}(x_1) + \mathbf{k_2}(x_2))^t (\mathbf{K_1} + \mathbf{K_2})^{-1} \mathbf{Y}$$

= $\underbrace{\mathbf{k_1}(x_1)^t (\mathbf{K_1} + \mathbf{K_2})^{-1} \mathbf{Y}}_{m_1(x_1)} + \underbrace{\mathbf{k_2}(x_2)^t (\mathbf{K_1} + \mathbf{K_2})^{-1} \mathbf{Y}}_{m_2(x_2)}$

 \Rightarrow The mean predictor shares the prior behaviour.

Approximating an additive function

Remark

• The prediction variance has interesting features

pred. var. with kernel product

Let's consider a toy example to illustrate this.

Kernel Design

Approximating an additive function

Provided that *f* is additive, we want to predict $f(\mathbf{x}^{(4)})$ knowing $f(\mathbf{x}^{(1)})$, $f(\mathbf{x}^{(2)})$ and $f(\mathbf{x}^{(3)})$ of an additive function,

Given an additive GP, we compute the prediction variance in $\mathbf{x}^{(4)}$

$$c(\mathbf{x}^{(4)}, \mathbf{x}^{(4)}) = \operatorname{var} \left(Z(\mathbf{x}^{(4)}) | Z(\mathbf{x}^{(1)}), Z(\mathbf{x}^{(2)}), Z(\mathbf{x}^{(3)}) \right)$$

= $\operatorname{var} \left(Z(\mathbf{x}^{(2)}) + Z(\mathbf{x}^{(3)}) - Z(\mathbf{x}^{(1)}) | Z(\mathbf{x}^{(1)}), Z(\mathbf{x}^{(2)}), Z(\mathbf{x}^{(3)}) \right)$
= 0

Approximating an additive function

Using this property we can construct a design of experiment that covers the space with only $cst \times d$ points!

Prediction variance

Kernel Design

Approximating an additive function

Note that the distribution of the points can be modified for a better coverage of the space:

High-dimensional modelling We assume here $f : \mathbb{R}^d \to \mathbb{R}$

Stationary kernels

 $K(\mathbf{x},\mathbf{y}) = f(|\mathbf{x} - \mathbf{y}|)$

Additive kernels

$$K(\mathbf{x},\mathbf{y}) = K_1(x_1,y_1) + K_2(x_2,y_2)$$

 \Rightarrow *cst^d* points are required to cover the space!

 \Rightarrow *cst* \times *d* points are required to cover the space!

GP Summer School (Sheffield, June 2013)

Kernel Design

What about the product of kernels?

As previously, two products can be defined

- Over the same space
- Over the tensor product space

Product over the same space

Property

Let K_1 , K_2 be two kernels over $D \times D$, then

$$K(x,y) = K_1(x,y) \times K_2(x,y)$$

is a kernel.

Example

We consider the product of a squared exponential with a cosine:

Product over the same space

Examples of sample paths from the previous kernel:

Product of kernels

Product over the tensor space

Property

Let K_1 , K_2 be two kernels resp over $D_1 \times D_1$ and $D_2 \times D_2$, then

$$K(\mathbf{x},\mathbf{y}) = K_1(x_1,y_1) \times K_2(x_1,y_1)$$

is a kernel over $(D_1 \times D_2) \times (D_1 \times D_2)$.

Tensor product can be used to obtain covariance structures in higher dimension.

Example

We compute the product of two squared exponential kernels

We have:

$$\mathcal{K}(\mathbf{x},\mathbf{y}) = e^{-(x_1-y_1)^2} \times e^{-(x_2-y_2)^2} = e^{-\sum (x_i-y_i)^2} = e^{-||\mathbf{x}-\mathbf{y}||^2}$$

 \Rightarrow We can recognise here a 2D squared exponential kernel.

Here is a few sample paths from Z:

This GP **cannot be seen** as the product of two independent GPs with kernels K_1 and K_2

$$Z(\mathbf{x}) \neq Z_1(x_1) \times Z_2(x_2)$$

Multiplication by a function

Property

Let f be an arbitrary function over D_1 , then

$$K(x,y) = f(x)f(y)K_1(x,y)$$

is a kernel over $D_1 \times D_1$. **proof**

$$\sum \sum a_i a_j \mathcal{K}(x_i, x_j) = \sum \sum \underbrace{a_i f(x_i)}_{b_i} \underbrace{a_j f(x_j)}_{b_j} \mathcal{K}_1(x_i, x_j) \ge 0$$

Remarks:

- This property is a generalization of the multiplication by a scalar
- f(x)f(y) corresponds to the covariance of Z₂(x) = αf(x) with α ~ N(0, 1). The property can thus be seen as the product of two kernels defined over the same space.

GP Summer School (Sheffield, June 2013)

Kernel Design

Example

We illustrate the previous property with $f(x) = \frac{1}{x}$ and a Matérn 3/2 kernel $K_1(x, y) = (1 + |x - y|)e^{-|x-y|}$.

Example

We illustrate the previous property with $f(x) = \frac{1}{x}$ and a Matérn 3/2 kernel $K_1(x, y) = (1 + |x - y|)e^{-|x-y|}$.

We obtain:

 This property can be seen as a (nonlinear) rescaling of the output space
 GP Summer School (Sheffield, June 2013) Kernel Design N. Durrande 48 / 67

Composition with a function

Property

Let K_1 be a kernel over $D_1 \times D_1$ and f be an arbitrary function $D \to D_1$, then

$$K(x,y) = K_1(f(x),f(y))$$

is a kernel over $D \times D$. **proof**

$$\sum \sum a_i a_j K(x_i, x_j) = \sum \sum a_i a_j K_1(\underbrace{f(x_i)}_{y_i}, \underbrace{f(x_j)}_{y_j}) \ge 0$$

Remarks:

- *K* corresponds to the covariance of $Z(x) = Z_1(f(x))$
- This can be seen as a (nonlinear) rescaling of the input space

Kernel Design

Example

We consider $f(x) = \frac{1}{x}$ and a Matérn 3/2 kernel $K_1(x, y) = (1 + |x - y|)e^{-|x-y|}$.

Example

We consider $f(x) = \frac{1}{x}$ and a Matérn 3/2 kernel $K_1(x, y) = (1 + |x - y|)e^{-|x-y|}$.

We obtain:

Property

Let L be a linear operator that commutes with the covariance, then

$$K(x,y) = L_x(L_y(K_1(x,y)))$$

is a kernel. **proof** *K* is the kernel of $L_x(Z_x)$

Remarks:

• The RKHS framework allows to give proper conditions for the above property, but it is out of the scope of this talk.

We want to approximate a function $[0, 1] \rightarrow \mathbb{R}$ that is symmetric with respect to 0.5. We will consider 2 linear operators:

$$egin{aligned} L_1: f(x) &
ightarrow egin{cases} f(x) & x < 0.5\ f(1-x) & x \ge 0.5 \end{aligned} \ L_2: f(x) &
ightarrow rac{f(x)+f(1-x)}{2}. \end{aligned}$$

Those operators transform any function into a symmetric function.

Let $K_1 = L_1(L_1(K))$ and $K_2 = L_2(L_2(K))$ be their associated kernels.

Effect of a linear operator: example (Ginsbourger, AFST 2013)

Examples of associated sample paths are

 K_1 K2 2 2 ≻ ≻ 0 0 Τ Τ Ŷ Ŷ 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 x

The differentiability is not always respected!

Ideally, we want to extract the subspace of symmetric functions in $\ensuremath{\mathcal{H}}$

and to define L as the orthogonal projection onto \mathcal{H}_{sym}

 \Rightarrow This can be difficult... but it raises interesting questions!

We now consider another example:

We want to approximate a function *f* that is exactly zero mean:

$$\int_D f(x) \mathrm{d}x = 0$$

Can we build a kernel that takes into account this property?

It is straightforward to build a linear operator that centres functions:

$$L: f(x) \rightarrow f_0(x) = f(x) - \int_D f(s) \mathrm{d}s$$

Let's apply *L* to a GP *Z* with kernel *K*:

$$Z_0(x) = L(Z)(x) = Z(x) - \int Z(s) \mathrm{d}s$$

and compute the covariance of Z_0 :

$$\begin{split} \mathcal{K}_0(x,y) &= \operatorname{cov}\left(\mathcal{Z}_0(x), \mathcal{Z}_0(y)\right) \\ &= \operatorname{cov}\left(\mathcal{Z}(x) - \int \mathcal{Z}(s) \mathrm{d}s, \mathcal{Z}(y) - \int \mathcal{Z}(s) \mathrm{d}s\right) \\ &= \operatorname{cov}\left(\mathcal{Z}(x), \mathcal{Z}(y)\right) - \operatorname{cov}\left(\mathcal{Z}(x), \int \mathcal{Z}(s) \mathrm{d}s\right) \\ &- \operatorname{cov}\left(\mathcal{Z}(y), \int \mathcal{Z}(s) \mathrm{d}s\right) + \operatorname{var}\left(\int \mathcal{Z}(s) \mathrm{d}s\right) \\ &= \mathcal{K}(x,y) - \int \mathcal{K}(x,s) \mathrm{d}s - \int \mathcal{K}(y,s) \mathrm{d}s - \iint \mathcal{K}(s,t) \mathrm{d}s \mathrm{d}t \end{split}$$

GP Summer School (Sheffield, June 2013)

We can use K_0 to simulate sample paths from Z_0 :

These sample paths are exacty zero-mean!

We can compare the predictions of two models m and m_0 respectively based on K and K_0 .

Are Z_0 and $Z - Z_0$ independent?

$$\begin{aligned} \operatorname{cov}\left(Z_{0}(x), Z(y) - Z_{0}(y)\right) \\ &= \operatorname{cov}\left(Z(x) - \int Z(s) \mathrm{d}s, Z(y) - Z(y) + \int Z(s) \mathrm{d}s\right) \\ &= \int \mathcal{K}(x, s) \mathrm{d}s - \int \mathcal{K}(s, t) \mathrm{d}s \mathrm{d}t \neq \mathbf{0} \end{aligned}$$

 \Rightarrow They are not!

GP Summer School (Sheffield, June 2013)

Are Z_0 and $Z - Z_0$ independent?

$$\begin{aligned} \operatorname{cov}\left(Z_0(x), Z(y) - Z_0(y)\right) \\ &= \operatorname{cov}\left(Z(x) - \int Z(s) \mathrm{d}s, Z(y) - Z(y) + \int Z(s) \mathrm{d}s\right) \\ &= \int K(x, s) \mathrm{d}s - \int K(s, t) \mathrm{d}s \mathrm{d}t \neq \mathbf{0} \end{aligned}$$

 \Rightarrow

 \Rightarrow They are not!

The alternative here is to change the way to center the functions:

$$L_{\perp}: f(x)
ightarrow f(x) - g(x) \int_D f(s) \mathrm{d}s$$

where $\int g(s) ds = 1$. It can be shown that:

$$g(x) = \frac{\int_D k(x, s) \mathrm{d}s}{\int_D k(s, t) \mathrm{d}s \mathrm{d}t}$$

gives:

$$\operatorname{cov}\left(Z_0(x),Z(y)-Z_0(y)\right)=0$$
Effect of a linear operator

We finally obtain:

In a space where the orthogonality is meaningful for the GP Z!

Conclusion

Introduction

- 2) What is a kernel?
 - Kernels and positive definite functions
 - Stationary kernels
- 3 Kernels and positive measures
 - Bochner's theorem
 - Examples on usual kernels
 - Spectral approximation
- Making new from old
 - Multiplication by a scalar
 - Sum of kernels
 - Product of kernels
 - Multiplication by a function
 - Composition with a function
 - Effect of a linear operator

Small recap

We have seen that

- The choice of the kernel has to reflect the prior belief about the function to approximate.
- Kernels can (and should) be tailored to the problem at hand.

Making new from old

Although a direct proof of the positive definiteness of a function is often intractable, it is possible to

- multiply kernels
- sum kernels

- multiply a kernel by a function
- compose a kernel with a function

Linear application

If we have a linear application that transforms any function into a function satisfying the desired property, it is possible to build a GP fulfilling the requirements.

Any questions ?