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The machine learning pipeline
we need a coherent framework for hierarchical machine learning
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conditioning by quadrature
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estimation by optimization
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action by control

▸ black boxes cause unaccounted errors
▸ making errors explicit may improve quality / lower cost
▸ joint language required: probability
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Numerical algorithms are the elements of inference
inferring solutions of non-analytic problems

Numerical algorithms
estimate an intractable property of a function

given evaluations of function values.

quadrature estimate ∫ ba f(x)dx given {f(xi)}
analysis estimate x(t) under x′ = f(x, t) given {f(xi, ti)}

control estimate minu x(t, u) under x′ = f(x, t, u) {f(xi, ti, ui)}
optimization estimate arg minx f(x) given {f(xi),∇f(xi)}
▸ an inference problem
▸ even deterministic problems can be uncertain
▸ not a new idea1, but rarely studied

1H. Poincaré, 1896, Diaconis 1988, O’Hagan 1992
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So what?

Numerical algorithms are learning machines!

▸ now, let’s focus on optimization
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Optimization
continuous, nonlinear, unconstrained

For f ∶ RN _R, find local minimum arg min f(x), starting at x0.

An old idea: Newton’s method

f(x) ≈ f(xt) + (x − xt)⊺∇f(xt) + 1

2
(x − xt)⊺∇∇⊺f(xt)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶=∶B(xt)

(x − xt)
_ xt+1 = xt −B−1(xt)∇f(xt)

Cost: O(N3)
High-dimensional optimization requires

giving up knowledge in return for lower cost.

5 ,



Quasi-Newton methods (think BFGS, DFP, . . . )
aka. variable metric optimization — low rank estimators for Hessians

▸ Instead of evaluating Hessian, build low-rank estimator

Bt+1 = Bt+uv⊺+vu⊺ with u, v ∈ RN×M _ O(N2+M3)
▸ want estimator fulfilling local difference relation . . .

∇f(xt+1) −∇f(xt) = Bt+1(xt+1 − xt)
yt = Bt+1st

▸ . . . otherwise close to previous estimator in ∥Bt+1 −Bt∥F,V
▸ . . . so minimize regularised loss

Bt+1 = arg min
B∈RN×N

{ lim
β_0

1
β
∥yt −Bst∥2V + ∥B −Bt∥2F,V }

= Bt + (yt −Btst)s⊺t V
s⊺t V st Broyden’s (1965) method
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Quasi-Newton methods: the probabilist’s view
Gaussian regression on matrices P.H. & M. Kiefel, ICML 2012, JMLR 2013

Bt+1 = lim
β_0

arg max
B

{− 1
β
∥yt −Bst∥2V − ∥B −Bt∥2F,V }

= lim
β_0

arg max
B

{log p(yt ∣B,st, β, V )´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
likelihood

+ log p(B ∣Bt, V )´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
prior

}
= lim
β_0

arg max
B

p(yt ∣B,st, β, V )p(B ∣Bt, V )
= lim
β_0

arg max
B

N (yt;Bst, βV )N (Ð⇀B ;
Ð⇀
B t, V ⊗ V )

= arg max
B

N [B;Bt + (yt −Btst)V s⊺t
s⊺t V st , V ⊗ (V − V ss⊺V

s⊺V s )]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

posterior

Quasi-Newton methods perform local maximum a-posteriori
Gaussian inference on the Hessian’s elements.
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Outline

QN-methods perform regression!

Whenever you see `2 arguments, think of GPs!

▸ what prior assumptions allow low cost?
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Encoding symmetry exactly is expensive
full probabilistic solution has quartic cost P.H., ICML 2013

the naïve idea:
▸ “observe symmetry” using ∆

Ð⇀
B = 1

2
(Ð⇀B −Ð⇀B⊺)

p(0 ∣B,∆) = δ(0 −∆
Ð⇀
B )

▸ however, rk ∆ = 1
2
N(N − 1): costs at least O(N4)
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Instead, make two independent observations
observe B acting on two different spaces P.H., ICML 2013

instead: Powell’s (1970) Symmetric Broyden (PSB) update
▸ before: y = Bs
▸ now, additionally: “dual observation”

p(y⊺i ∣B,s⊺i , Vi−1) = δ(y⊺i − s⊺iB) = lim
β_0

N (y⊺i ; s⊺iB,β ⊗ Vi)
▸ gives posterior mean, covariance

Bi = Bi−1 + (yi −Bi−1si)s⊺i Vi−1 + Vi−1si(yi −Bi−1si)⊺
s⊺i Vi−1si

− Vi−1si(s⊺i (yi −Bi−1si))s⊺i Vi−1(s⊺i Vi−1si)2
Σi = (Vi−1 − Vi−1sis⊺i Vi−1

s⊺i Vi−1si )⊗ (Vi−1 − Vi−1sis⊺i Vi−1
s⊺i Vi−1si )
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Is this allowed?
algebraic assumptions used to shape computational cost P.H., ICML 2013

p(B) = N (B;B0, V ⊗ V )
cov(Bij ,Bk`) = (V ⊗ V )(ij),(k`) = VikVj`= cov(∂i(∇f), ∂k(∇f)) ⋅ cov(∂j(f∇⊺), ∂`(f∇⊺))

▸ each Bi∶ is a map RN×1 _R: ∂i(∇f)
▸ each B∶j is a map R1×N _R: ∂j(f∇⊺)
▸ dual vector spaces are isomorphic, thus (∇f)∇⊺ = ∇(f∇⊺)
▸ but we won’t tell the method! Treat the two maps as independent.
▸ replace f(x) ∶ RN _R with f(x⊺, x) ∶ RN×1 ×R1×N _R
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Forgetting your good education to get ahead
QN methods deliberately ignore algebraic knowledge to lower computational cost

x

x
⊺

x

x
⊺

To achieve low computational cost, numerical methods may have
to deliberately ignore prior knowledge!

Whenever you see Kronecker products, someone is hiding an
independence assumption!

▸ where are the GPs already?
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Hessians are not constant
can we have a prior over regular Hessians?
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The unavoidable slide
nonparametric generalisation of Gaussians to space of real-valued functions

p(f) = GP(f ;µ, k)
p(Af) = GP(Af ;Aµ,AkA⊺)

14 ,



The Gaussian family is closed under linear projections
thus provides the functionality for quasi-Newton inference

p(f) = GP(f ;µ, k)
p(Af) = GP(Af ;Aµ,AkA⊺)

p(∫ b

a
f(x)dx) = GP (∫ b

a
f(x)dx;∫ b

a
µ(x)dx,∬ b

a
k(x,x′)dxdx′)
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Nonparametric quasi-Newton methods
Inferring a changing Hessian P.H. & M. Kiefel, ICML 2012, JMLR 2013

▸ Idea: replace

∇f(xt+1) −∇f(xt) ≈ B(xt+1 − xt)
_ = ∫ xt+1

xt

B(x)dx
▸ Gaussian process prior on B(x⊺, x)

p(B) = GP(B,B0(x⊺, x), k(x⊺, x′⊺)⊗ k(x,x′))
▸ Gaussian likelihoods

p(yi(x⊺) ∣B,si) = lim
β_0

N (yi;∑
m

sim ∫ 1

0
B(x⊺, x(t)) dt, k(x⊺, x′⊺)⊗ β)

p(yi(x)⊺ ∣B,s⊺i ) = lim
β_0

N (y⊺i ;∑
m

s⊺im ∫ 1

0
B(x⊺(t), x) dt, β ⊗ k(x,x′))

▸ posterior of same algebraic form as before, but with linear maps of
nonlinear (integral of k) entries.▸ same computational complexity as L-BFGS (Nocedal, 1980): O(N)
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A consistent model of the Hessian function
nonparametric inference on elements of the Hessian P.H. & M. Kiefel, ICML 2012, JMLR 2013
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A consistent model of the Hessian function
nonparametric inference on elements of the Hessian P.H. & M. Kiefel, ICML 2012, JMLR 2013

−2 −1 0 1 2
−1

0

1

2

3

−2 −1 0 1 2
−1

0

1

2

3

0

2,000

4,000

−2 −1 0 1 2
−1

0

1

2

3

0

500

1,000

1,500

2,000

−2 −1 0 1 2
−1

0

1

2

3

0

2,000

4,000

18 ,



A consistent model of the Hessian function
nonparametric inference on elements of the Hessian P.H. & M. Kiefel, ICML 2012, JMLR 2013
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A consistent model of the Hessian function
nonparametric inference on elements of the Hessian P.H. & M. Kiefel, ICML 2012, JMLR 2013
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A consistent model of the Hessian function
nonparametric inference on elements of the Hessian P.H. & M. Kiefel, ICML 2012, JMLR 2013
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Advantages of nonparametric modelling
analytic use of all observations P.H. & M. Kiefel, ICML 2012, JMLR 2013

▸ choice of kernel allows more flexible model
▸ exact treatment of gradient observations
▸ can use all observations from line searches
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Some empirical results
optimizing a 200-dimensional function P.H. & M. Kiefel, ICML 2012, JMLR 2013
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Don’t let them tell you GPs are expensive

quasi-Newton methods can be generalised to GP models.

GPs are cubic in the number of inputs, not the outputs!

▸ how does this all help machine learning?
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Example I: noise
optimization of noisy objectives P.H., ICML 2013

▸ noisy objectives a frequent in learning (mini-batch training)▸ stochastic gradient descent widely used▸ noisy quasi-Newton methods improve conceptually
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Example II: dynamics
optimization of dynamically changing objectives P.H., in preparation

further generalisations
▸ dynamic settings _ filtering
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Conclusion

▸ the numerical methods used in ML are learners themselves
don’t treat them as black boxes

▸ BFGS is a Gaussian regressor
think ∥ ⋅ ∥2 ↔ N (x) and ∥ ⋅ ∥F ↔ N (A) and ∥ ⋅ ∥HS ↔ GP(f)

▸ to be fast, you may need to ignore even pertinent knowledge
watch out for ⊗ in covariances

▸ GP numerical optimization need not be expensive
design your model carefully

▸ machine learning needs probabilistic numerical methods
▸ major theoretical, practical questions still open

Want to stay informed? Befriend Maren!
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Open issue: convergence
Are quasi-Newton methods locally linearly convergent?

Definition (local linear convergence)

QN update is locally linearly convergent at the minimum x∗ if ∃ε, δ > 0, s.t.

(∥x0 − x∗∥ < ε ∧ ∥B0 −B(x∗)∥ < δ) ⇒ (∥xk − x∗∥ = O(e−k))
nonparametric QN methods does not, in general, obey this, just like
nonlinear regression does not collapse linearly fast.

Theorem (Broyden, Dennis, Moré, 1973)

QN update is locally linearly convergent if

∥Bi −B(x∗)∥ ≤ [1 + ασ(xi−1, xi)]∥Bi−1 −B(x∗)∥ + βσ(xi−1, xi)
σ(xi−1, xi) ∶= max{∥xi − x∗∥, ∥xi−1 − x∗∥}
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positive definiteness?
as similar story to symmetry

the naïve idea:
▸ prior exclusively over positive definite matrices: Wishart

B = uu⊺ with ui ∼ N (0, V )
▸ however, inference not analytically tractable!
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positive definiteness?
as similar story to symmetry

instead: BFGS / DFP:

p(B) = N (B;B0, V ⊗ V ) and set V = B
∝ ∣B∣−N2/2 ⋅ exp [−1

2
(N − 2 tr(B0B

−1) + tr(B0B
−1B0B

−1))]
▸ posterior mean is positive definite if y⊺s > 0

▸ but prior puts nonzero mass on indefinite matrices like

B = (1 0
0 −1

) ⇒ p(B)∝ exp(−2)
BFGS and DFP have other advantages (scale-freedom, etc.).

But they do not explicitly encode positive definiteness.

30 ,



Performance on Neural Networks
# of optimization steps, 103 samples
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Performance on Neural Networks
# of optimization steps, 3 ⋅ 104 samples
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Performance on Neural Networks
# of optimization steps, 6 ⋅ 104 samples
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Performance on Neural Networks
wallclock time, 103 samples

0 200 400

computation time t [s]

34 ,



Performance on Neural Networks
wallclock time, 3 ⋅ 104 samples
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Performance on Neural Networks
wallclock time, 6 ⋅ 104 samples
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