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The machine learning pipeline

we need a coherent framework for hierarchical machine learning

conditioning by quadrature estimation by optimization

p(0)

expectation by sampling

prediction by analysis

action by control

» black boxes cause unaccounted errors
» making errors explicit may improve quality / lower cost
» joint language required: probability



Numerical algorithms are the elements of inference

inferring solutions of non-analytic problems

Numerical algorithms
estimate an intractable property of a function
given evaluations of function values.

quadrature estimate fabf(x)dx given {f(z;)}
analysis estimate z(¢) under z’ = f(x,t) given { f(x;,t;)}
control estimate min,, z(¢,u) under ' = f(xz,t,u) {f(x; tiu)}
optimization estimate arg min,, f(x) given {f(x;),Vf(x:)}

» an inference problem
» even deterministic problems can be uncertain
» not a new idea’, but rarely studied

H. Poincaré, 1896, Diaconis 1988, O’Hagan 1992



Numerical algorithms are learning machines!

» now, let’s focus on optimization



Optimization

continuous, nonlinear, unconstrained

For f: RY — R, find local minimum arg min f(z), starting at z.

An old idea: Newton’s method

f(@)m f (o) + (2= 2) "V f(2) + %(w —2)" VY f () (2 - )
=B(z¢)

— Tps1 =2 — B (20) V(1)
Cost: O(N?)

High-dimensional optimization requires
giving up knowledge in return for lower cost.



Quasi-Newton methods (think BFGS, DFP, ...)

aka. variable metric optimization — low rank estimators for Hessians

» Instead of evaluating Hessian, build low-rank estimator

Byi1 = ByruwT+ou’ with u,v e RNVM — O(N?*+M?)

» want estimator fulfilling local difference relation . ..

Vf(xee1) = Vf(2t) = Bor (@41 — 4)
Yt = Bey1Se

» ...otherwise close to previous estimator in | Biy1 — Bt|rv
> ...S0 minimize regularised loss

By = argmin + 18- Bilfy |
BeRNxN
(ye — Bisi)si V

= Bt +
s{Vsy

Broyden’s (1965) method



Quasi-Newton methods: the probabilist’s view

Gaussian regression on matrices PH. & M. Kiefel, ICML 2012, JMLR 2013

By = lim arg max{- =B~ By}
B—0 "B
= lim arg max{ +logp(B| B, V)}
[3—»0 B ———
prior
= lim arg max p(B| B, V)
B—0 "B
= lim arg max N(E\;ﬁb\/@\/)
B—0 B
(v — Bysy)V's; Vss'V
= N|B;B+~+—— "t Vel|V-
arg;nax ! s{Vsy sTVs
posterior

Quasi-Newton methods perform local maximum a-posteriori
Gaussian inference on the Hessian’s elements.



QN-methods perform regression!

Whenever you see ¢, arguments, think of GPs!

» what prior assumptions allow low cost?



Encoding symmetry exactly is expensive

full probabilistic solution has quartic cost PH., ICML 2013

the naive idea: N
> “observe symmetry” using AB = 1(B - B")

p(0|B,A) =6(0-AB)
> however, rk A = LN (NN - 1): costs at least O(N*)



Instead, make two independent observations

observe B acting on two different spaces PH., ICML 2013

instead: Powell’s (1970) Symmetric Broyden (PSB) update
» before: y = Bs
» now, additionally: “dual observation”

p(yi | B,s],Vie1) =6(y] — s/ B) =ﬂlim0N(yI;SIB,B®W)

» gives posterior mean, covariance

(yi — Bi—15i)s, Vie1 + Vicisi(yi — Bi—18:) T
5] Vic18i
V;flsi(sz (yz - Bi—lsi))sz‘/i—l
(SiTVi—lsi)z
Vi—lsz'SiTVi—l ) ® (Vi—l B Vi—1SiSlTV¢—1)

T T
s; Vic1s; s; Vic1s;

Bi = Bifl +

Y= (V;—1 -



Is this allowed?

algebraic assumptions used to shape computational cost PH., ICML 2013

p(B) =N(B;By,VeV)
cov(Bij, Bre) = (V@ V) (ij),(key = Vi Vi
= cov(Di(V ), 0k (Vf)) - cov(d;(fV"),0e(fV"))

» each B;. is a map RVt »R: 9;(Vf)

» each B, isamap RN —R: 9;(fv")

» dual vector spaces are isomorphic, thus (Vf)V' = V(fV")

» but we won't tell the method! Treat the two maps as independent.
» replace f(z) : RY R with f(z7,2) : RV x RPN » R



Forgetting your good education to get ahead

QN methods deliberately ignore algebraic knowledge to lower computational cost

T

To achieve low computational cost, numerical methods may have
to deliberately ignore prior knowledge!

Whenever you see Kronecker products, someone is hiding an
independence assumption!

» where are the GPs already?



Hessians are not constant
can we have a prior over regular Hessians?




The unavoidable slide

nonparametric generalisation of Gaussians to space of real-valued functions
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p(f) =GP(f; 1. k)
p(Af) =GP(Af; A, AEAT)



The Gaussian family is closed under linear projections

thus provides the functionality for quasi-Newton inference

p(f)=GP(f;u k)
p(Af)=GP(Af; Ap, AKAT)

p([abf(x)dx) :Q'P([abf(m)dx;fabu(x)d%f[abk(a:,x')dxdx')




Nonparametric quasi-Newton methods

Inferring a changing Hessian P.H. & M. Kiefel, ICML 2012, JMLR 2013

» |dea: replace
Vf(xﬁl) - Vf(mt) ~ B($t+1 - xt)
— = /wm B(z) dx
» Gaussian process prior on B(z", )
p(B) = GP(B,By(a",z), k(aT,2'") ® k(z,2"))

» Gaussian likelihoods

1
e85 = B N (i S [ BT a(®) k(o) 05)

1
()" 1B =t N (s sl [ B O a5 k(e

» posterior of same algebraic form as before, but with linear maps of
nonlinear (integral of k) entries.
» same computational complexity as L-BFGS (Nocedal, 1980): O(N)



A consistent model of the Hessian function

nonparametric inference on elements of the Hessian PH. & M. Kiefel, ICML 2012, JMLR 2013
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Advantages of nonparametric modelling

analytic use of all observations PH. & M. Kiefel, ICML 2012, JMLR 2013

» choice of kernel allows more flexible model
» exact treatment of gradient observations
» can use all observations from line searches

22



Some empirical results

optimizing a 200-dimensional function PH. & M. Kiefel, ICML 2012, JMLR 2013
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Don't let them tell you GPs are expensive

quasi-Newton methods can be generalised to GP models.

GPs are cubic in the number of inputs, not the outputs!

» how does this all help machine learning?

24



Example I: noise

optimization of noisy objectives PH., ICML 2013

» noisy objectives a frequent in learning (mini-batch training)
» stochastic gradient descent widely used
» noisy quasi-Newton methods improve conceptually
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Example II: dynamics

optimization of dynamically changing objectives P.H., in preparation

further generalisations
» dynamic settings — filtering

1)
DN O DN
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Conclusion

» the numerical methods used in ML are learners themselves
don’t treat them as black boxes

» BFGS is a Gaussian regressor
think | - |2 < N(z) and |- | < N'(A) and | - | s < GP(f)
» to be fast, you may need to ignore even pertinent knowledge
watch out for ® in covariances

» GP numerical optimization need not be expensive
design your model carefully

» machine learning needs probabilistic numerical methods

» major theoretical, practical questions still open
Want to stay informed? Befriend Maren!

27



Open issue: convergence

Are quasi-Newton methods locally linearly convergent?

Definition (local linear convergence)

QN update is locally linearly convergent at the minimum x.. if 3¢, > 0, s.t.

(lzo -z <en|Bo-B(z:)| <8) = (Jax-2.] = O(e™))

nonparametric QN methods does not, in general, obey this, just like
nonlinear regression does not collapse linearly fast.

Theorem (Broyden, Dennis, Moré, 1973)

QN update is locally linearly convergent if

|B; = B(x)|| < [1+a0o(zi1,2:)]|Bi-1 = B(x)|| + Bo(wi-1, ;)

(i1, i) = maxt{|e; — o], [2ia - 2]}

28



positive definiteness?

as similar story to symmetry

the naive idea:
» prior exclusively over positive definite matrices: Wishart

B =uu’ with u; ~N(0,V)

» however, inference not analytically tractable!

29



positive definiteness?

as similar story to symmetry

instead: BFGS / DFP:
p(B)=N(B;Bo,VeV) and set V=B
o[BIV exp [—% (N -2tr(BoB™") + tr(BOB’lBOB*))]

» posterior mean is positive definite if y"s > 0
» but prior puts nonzero mass on indefinite matrices like

p-(s ) = e eenc)

BFGS and DFP have other advantages (scale-freedom, etc.).
But they do not explicitly encode positive definiteness.

30



Performance on Neural Networks

# of optimization steps, 102 samples

f [irrelevant linear scale]
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Performance on Neural Networks
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Performance on Neural Networks

# of optimization steps, 6 - 10* samples
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Performance on Neural Networks

wallclock time, 103 samples
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Performance on Neural Networks

wallclock time, 6 - 10* samples
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