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Talk plan

(a) UQ and computer experiments

(b) Gaussian process emulators

(c) 3 examples:

(i) calibration using emulators
(ii) simulator discrepancy modelling
(iii) accelerating ABC using GPs
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Computer experiments

Baker 1977 (Science):

‘Computerese is the new lingua franca of science’

Rohrlich (1991): Computer simulation is

‘a key milestone somewhat comparable to the milestone that
started the empirical approach (Galileo) and the deterministic
mathematical approach to dynamics (Newton and Laplace)’

The gold-standard of empirical research is the designed experiment, which
usually involves concepts such as replication, blocking, and randomization.

However, in the past three decades computer experiments (in silico
experiments) have become commonplace in nearly all fields.
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Engineering
Carbon capture and storage technology - PANACEA project

Knowledge about the geology of the wells is uncertain.
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Climate Science
Predicting future climate
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Challenges of computer experiments
Climate Predictions
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Challenges for statistics

The statistical challenges posed by computer experiments are somewhat
different to physical experiments and have only recently begun to be
tackled by statisticians.

For example, replication, randomization and blocking are irrelevant
because a computer model will give identical answers if run multiple times.

Key questions: How do we make inferences about the world from a
simulation of it?

how do we relate simulators to reality? (model error)

how do we estimate tunable parameters? (calibration)

how do we deal with computational constraints? (stat. comp.)

how do we make uncertainty statements about the world that
combine models, data and their corresponding errors? (UQ)

There is an inherent a lack of quantitative information on the uncertainty
surrounding a simulation - unlike in physical experiments.
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Incorporating and accounting for uncertainty

Perhaps the biggest challenge faced is incorporating uncertainty in
computer experiments.

We are used to dealing with uncertainty in physical experiments. But if
your computer model is deterministic, there is no natural source of
variation and so the experimenter must carefully assess where errors might
arise.

Types of uncertainty:

Parametric uncertainty

Model inadequacy

Observation errors

Code uncertainty
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Code uncertainty
We think of the simulator as a function

η : X → Y
Typically both the input and output space will be subsets of Rn for some
n.

Monte Carlo (brute force) methods can be used for most tasks if sufficient
computational resource is available.

For example, uncertainty analysis is finding the distribution of η(θ) when
θ ∼ π(·):

draw a sample of parameter values from the prior θ1, . . . , θN ∼ π(θ),

Look at η(θ1), . . . , η(θN) to find the distribution π(η(θ)).

However, for complex simulators, run times might be long.
Consequently, we will only know the simulator output at a finite number
of points:

code uncertainty
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Code uncertainty

For slow simulators, we are uncertain about the simulator value at all
points except those in a finite set.

All inference must be done using a finite ensemble of model runs

Dsim = {(θi , η(θi ))}i=1,...,N

If θ is not in the ensemble, then we are uncertainty about the value
of η(θ).

If θ is multidimensional, then even short run times can rule out brute
force approaches

θ ∈ R10 then 1000 simulator runs is only enough for one point in
each corner of the design space.
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Meta-modelling

Idea: If the simulator is expensive, build a cheap model of it and use this
in any analysis.

‘a model of the model’

We call this meta-model an emulator of our simulator.

We use the emulator as a cheap approximation to the simulator.

ideally an emulator should come with an assessment of its accuracy

rather just predict η(θ) it should predict π(η(θ)|Dsim) - our
uncertainty about the simulator value given the ensemble Dsim.
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Meta-modelling
Gaussian Process Emulators

Gaussian processes provide a flexible nonparametric distributions for our
prior beliefs about the functional form of the simulator:

η(·) ∼ GP(m(·), σ2c(·, ·))

where m(·) is the prior mean function, and c(·, ·) is the prior covariance
function (semi-definite).

If we observe the ensemble of model runs Dsim, then update our prior
belief about η in light of the ensemble of model runs:

η(·)|Dsim ∼ GP(m∗(·), σ2c∗(·, ·))

where m∗ and c∗ are the posterior mean and covariance functions (simple
functions of Dsim, m and c).
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Gaussian Process Illustration
Zero mean
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Gaussian Process Illustration
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Emulator choices

η(x) = h(x)β + u(x)

emulator = mean structure + residual

u(x) can be taken to be a zero-mean Gaussian process

u(·) ∼ GP(0, c(·, ·))

Emulator choices:

mean structure h(x)
I 1, x , x2, . . ., Legendre polynomials?
I Allows us to build in known trends and exploit power of linear

regression

covariance function c(·, ·) - cf Nicolas’ talk
I Stationary? Smooth?
I Length-scale?
I Nb - we don’t a nugget term
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Multivariate Emulation
Higdon et al. 2008

How can we deal with multivariate ouput?

Build independent or separable multivariate emulators,

Outer product emulators,

Linear model of coregionalization?

Instead, if the outputs are highly correlated we can reduce the dimension
of the data by projecting the data onto some lower dimensional manifold
Ypc .
We can use any dimension reduction technique as long as

we can reconstruct to the original output space

we can quantify the reconstruction error.
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We can then emulate the function that maps the input space Θ to the
reduced dimensional output space Ypc , i.e., ηpc(·) : Θ→ Ypc

It doesn’t matter what dimension reduction scheme we use, as long as we
can reconstruct from Ypc and quantify the error in the reconstruction.
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Comments

This approach (PCA emulation) requires that the outputs are highly
correlated.

We are assuming that the output Dsim is really a linear combination
of a smaller number of variables,

η(θ) = v1η
1
pc(θ) + . . .+ vn∗ηn∗

pc (θ)

which may be a reasonable assumption in many situations, eg,
temporal spatial fields.

Although PCA is a linear method, the method can be used on highly
non-linear models as we are still using non-linear Gaussian processes
to map from Θ to Ypc – the linear assumption applied only to the
dimension reduction.

This method accounts for code uncertainty and automatically
accounts for the reconstruction error caused by reducing the
dimension of the data.
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Example 1: Calibration
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Calibration
Inverse problems

For forwards models we specify parameters θ and i.c.s and the model
generates output Dsim. Usually, we are interested in the inverse-problem,
i.e., observe data Dfield , want to estimate parameter values.

We have three sources of information that we wish to combine

1 Scientific knowledge captured by the model, η

2 Empirical information contained in the data, Dfield

3 Expert opinion based upon experience.

We want to combine all three sources to produce the ‘best’ parameter
estimates we can.
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Carbon feedbacks

Terrestrial ecosystems currently absorb a considerable fraction of
anthropogenic carbon emissions.

However, the fate of this sink is highly uncertain due to insufficient
knowledge about key feedbacks.

I We are uncertain about the sensitivity of soil respiration to increasing
global temperature.

I GCM predictions don’t agree on the sign of the net terrestrial carbon
flux.

The figure shows inter-model spread in uncalibrated GCM model
predictions.

How much additional spread is there from parametric uncertainty?
(as opposed to model structural uncertainty?)

Would calibration reduce the range of the ensemble predictions? Or
would it increase our uncertainty?

We can’t answer these questions with full GCMs at present, but we can
begin to investigate with simplified EMIC models.
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Friedlingstein et al. 2006 - ‘uncalibrated’ GCM carbon cycle predictions

Climate simulators tend to be ‘tuned’ rather than calibrated, due to their complexity.
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UVic Earth System Climate Model
Ricciutio et al. 2011, Wilkinson 2010

UVic ESCM is an intermediate complexity model with a general
circulation ocean and dynamic/thermodynamic sea-ice components
coupled to a simple energy/moisture balance atmosphere. It has a
dynamic vegetation and terrestrial carbon cycle model (TRIFFID) as well
as an inorganic carbon cycle.

Inputs: Q10 = soil respiration sensitivity to temperature (carbon
source) and Kc = CO2 fertilization of photosynthesis (carbon sink).

Output: time-series of CO2 values, cumulative carbon flux
measurements, spatial-temporal field of soil carbon measurements.

The observational data are limited, and consist of 60 measurements
Dfield :

40 instrumental CO2 measurements from 1960-1999 (the Mauna Loa
data)

17 ice core CO2 measurements

3 cumulative ocean carbon flux measurements
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Calibration
The aim is to combine the physics coded into UVic with the empirical
observations to learn about the carbon feedbacks.
However, UVic takes approximately two weeks to run for a single input
configuration. Consequently, all inference must be done from a limited
ensemble of model runs.

48 member ensemble, grid design D, output Dsim (48× n).
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- this is overkill for this model - benefit of sequential designs
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Model runs and data
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PC Plots
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Diagnostics

Diagnostic checks are vital if we are to trust the use of the emulator in
place of the simulator.

For the PC emulator, we ultimately want to predict the spatial field - so
most diagnostic effort should be spent on the reconstructed emulator.

Looking only at the percentage of variance explained by the principal
components can be misleading, even if the emulators are perfect, as we
can find that PCs that have small eigenvalues (so explain a small amount
of variance) can play an important role in prediction.
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Leave-one-out (LOA) plots for PC1
Leave-one-out plots are a type of cross-validation to asses whether the
final emulator is working well both in terms of the mean prediction, and
the uncertainty estimates.

We leave each ensemble member, we leave it out of the training set and
build a new emulator. We then predict the left-out ensemble member
using the emulator
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We would like accurate coverage.
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One-step-ahead (OSA) plots for PC1

One-step-ahead diagnostics are created by first ordering the ensemble
according to one of the input variables, in this case θ1. We then train an
emulator using only the first n − 1 ensemble members, before predicting
the nth ensemble member.

One-step-ahead diagnostics primarily test whether the uncertainty
estimates of the emulator are accurate. Because the size of the ensemble
grows, we can check more easily whether the length-scale and covariance
structure of the emulator are satisfactory.
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Calibration Framework
Kennedy and O’Hagan 2001

Assume that reality ζ(t) is the computer model run at the ‘true’ value of
the parameter θ̂ plus model error:

ζ(t) = η(t, θ̂) + δ(t)

We observe reality plus noise:

Dfield (t) = ζ(t) + ε(t)

so that
Dfield (t) = η(t, θ̂) + δ(t) + ε(t).

We then aim to find π(θ̂|Dsim,Dfield ).
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Model Discrepancy
The calibration framework used is:

Dfield (t) = η(θ, t) + δ(t) + ε(t)

The model predicts the underlying trend, but real climate fluctuates
around this. We model

discrepancy as an AR1 process: δ(0) ∼ N(0, σ2
δ ), and

δ(t) = ρδ(t − 1) + N(0, σ2
δ ).

Measurement error as heteroscedastic independent random noise
ε(t) ∼ N(0, λ(t)).
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Once we have specified all these choices, we can then find the posterior
using an MCMC scheme.
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Results
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Example 2: simulator discrepancy
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All models are wrong, but ...
Kennedy and O’Hagan 2001

Lets acknowledge that most models are imperfect.

Consequently,

predictions will be wrong, or will be made with misleading degree of
confidence

solving the inverse problem y(x) = f (x , θ) + e may not give sensible
estimates of θ.

I e is measurement error
I f (x , θ) is our computer model
I y is our data

Can we

account for the error?

correct the error?

Richard Wilkinson (Nottingham) GPs for UQ in DACE June 2013 36 / 70



All models are wrong, but ...
Kennedy and O’Hagan 2001

Lets acknowledge that most models are imperfect. Consequently,

predictions will be wrong, or will be made with misleading degree of
confidence

solving the inverse problem y(x) = f (x , θ) + e may not give sensible
estimates of θ.

I e is measurement error
I f (x , θ) is our computer model
I y is our data

Can we

account for the error?

correct the error?

Richard Wilkinson (Nottingham) GPs for UQ in DACE June 2013 36 / 70



All models are wrong, but ...
Kennedy and O’Hagan 2001

Lets acknowledge that most models are imperfect. Consequently,

predictions will be wrong, or will be made with misleading degree of
confidence

solving the inverse problem y(x) = f (x , θ) + e may not give sensible
estimates of θ.

I e is measurement error
I f (x , θ) is our computer model
I y is our data

Can we

account for the error?

correct the error?

Richard Wilkinson (Nottingham) GPs for UQ in DACE June 2013 36 / 70



Dynamic models
Wilkinson et al. 2011

Kennedy and O’Hagan (2001) suggested we introduce reality ζ into our
statistical inference

Reality ζ(x) = f (x , θ̂) + δ(x), the best model prediction plus model
error δ(x).

Data y(x) = ζ(x) + e where e represents measurement error

In many cases, we may have just a single realisation from which to learn δ

For dynamical systems the model sequentially makes predictions before
then observing the outcome.

Embedded in this process is information about how well the model
performs for a single time-step.

We can specify a class of models for the error, and then try to learn
about the error from our predictions and the realised data.
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Mathematical Framework

Suppose we have

State vector xt which evolves through time. Let x0:T denote
(x0, x1, . . . , xT ).

Computer model f which encapsulates our beliefs about the
dynamics of the state vector

xt+1 = f (xt , ut)

which depends on forcings ut . We treat f as a black-box.

Observations
yt = h(xt)

where h(·) usually contains some stochastic element
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Moving from white to coloured noise

A common approach is to treat the model error as white noise

State evolution: xt+1 = f (xt , ut) + εt where εt are iid rvs.

Instead of the white noise model error, we ask whether there is a stronger
signal that could be learnt:

State evolution: xt+1 = f (xt , ut) + δ(xt , ut) + εt

Observations: yt = h(xt).

Our aim is to learn a functional form plus stochastic error description of δ
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Why this is difficult?

x0:T is usually unobserved, but given observations y0:T and a fully
specified model we can infer x0:T .

I the filtering/smoothing problem

When we want to learn the discrepancy δ(x) we are in the situation
where we estimate δ from x0:T , . . .

but we must estimate x0:T from a description of δ.
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Toy Example: Freefall

Consider an experiment where we drop a weight
from a tower and measure its position xt every
∆t seconds.

Noisy observation: yn ∼ N(xn, σ
2
obs)

Suppose we are given a computer model based on

dv

dt
= g

Which gives predictions at the observations of

xn+1 = xn + vk ∆t + 1
2g(∆t)2

vn+1 = vn + g∆t

Richard Wilkinson (Nottingham) GPs for UQ in DACE June 2013 41 / 70



Toy Example: Freefall

Consider an experiment where we drop a weight
from a tower and measure its position xt every
∆t seconds.

Noisy observation: yn ∼ N(xn, σ
2
obs)

Suppose we are given a computer model based on

dv

dt
= g

Which gives predictions at the observations of

xn+1 = xn + vk ∆t + 1
2g(∆t)2

vn+1 = vn + g∆t

Richard Wilkinson (Nottingham) GPs for UQ in DACE June 2013 41 / 70



Toy Example: Freefall

Consider an experiment where we drop a weight
from a tower and measure its position xt every
∆t seconds.

Noisy observation: yn ∼ N(xn, σ
2
obs)

Suppose we are given a computer model based on

dv

dt
= g

Which gives predictions at the observations of

xn+1 = xn + vk ∆t + 1
2g(∆t)2

vn+1 = vn + g∆t

Richard Wilkinson (Nottingham) GPs for UQ in DACE June 2013 41 / 70



Toy Example: Freefall

Assume that the ‘true’ dynamics include a
Stokes’ drag term

dv

dt
= g − kv

Which gives single time step updates

xn+1 = xn +
1

k
(
g

k
− vt)(e−k∆t − 1) +

g∆t

k

vn+1 = (vn −
g

k
)e−k∆t +

g

k
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Model Error Term

In this toy problem, the true discrepancy function can be calculated.

It is a two dimensional function

δ =

(
δx

δv

)
= ζ − f

giving the difference between the one time-step ahead dynamics of
reality and the prediction from our model.

If we expand e−k∆t to second order we find

δ(x , v , t) =

(
δx

δv

)
=

(
0

−gk(∆t)2

2

)
− vt

(
k(∆t)2

2

k∆t(1− k∆t
2 )

)

This is solely a function of v .

Note, to learn δ we only have the observations y1, . . . , yn of
x1, . . . , xn - we do not observe v .
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Expected form of the discrepancy

Forget the previous slide.

There are three variables in this problem, displacement, velocity and time
(x , v , t) so we might think to model δ as a function of these three terms.

However, universality suggests that δ should be independent of x and t.

With input from an experienced user of our model, it is feasible we might
be able to get other information such as that δ approximately scales with
v , or at least that the error is small at low speeds and large at high speeds.
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Basic idea
We can use GPs as non-parametric models of the simulator discrepancy

δ(·) ∼ GP(m(·), σ2c(·, ·))

We can infer δ(x) by looping around two steps:

1 Given an estimate for δ, estimate the true trajectory x0:T from
π(x0:T | y0:T , δ).

2 Given samples from π(x0:T | y0:T , δ), estimate a value for δ.

An EM style argument provides the formal justification for why this
approach should work.

We require samples from the smoothing distribution π(x0:T |y0:T , θ)

We can generate approximate samples using the KF and its
extensions, but this can be difficult to achieve good results

Sequential Monte Carlo methods can be used to generate a more
accurate approximation but at great computational cost
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Results
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Example 3: accelerating ABC
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Approximate Bayesian Computation (ABC)

ABC algorithms are a collection of Monte Carlo methods used for
calibrating simulators

they do not require explicit knowledge of the likelihood function
π(x |θ)

inference is done using simulation from the model (they are
‘likelihood-free’).

ABC methods have become popular in the biological sciences and versions
of the algorithm exist in most modelling communities.

ABC methods can be crude but they have an important role to play.

Scientists are building simulators (intractable ones), and fitting them
to data.

I There is a need for simple methods that can be credibly applied.
I Likelihood methods for complex simulators are complex.
I Modelling is something that can be done well by scientists not trained

in complex statistical methods.
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Uniform ABC algorithms

Uniform ABC

Draw θ from π(θ)

Simulate X ∼ f (θ)

Accept θ if ρ(D,X ) ≤ ε

As ε→∞, we get observations from the prior, π(θ).

If ε = 0, we generate observations from π(θ | D)

ε reflects the tension between computability and accuracy.

The hope is that πABC (θ) ≈ π(θ|D,PSH) for ε small, where
PSH=‘perfect simulator hypothesis’
There are uniform ABC-MCMC, ABC-SMC, ABC-EM, ABC-EP,
ABC-MLE algorithms, etc.
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Generalized ABC (GABC)
Wilkinson 2008, 2013, Fearnhead and Prangle 2012

We can generalise the rejection-ABC algorithm by using arbitrary
acceptance kernels:

Generalized rejection ABC (Rej-GABC)

1 θ ∼ π(θ) and X ∼ π(x |θ)

2 Accept (θ,X ) if

U ∼ U[0, 1] ≤ πABC (θ, x)

Mg(θ, x)
=

π(D|X )

maxx π(D|x)

In uniform ABC we take

π(D|X ) =

{
1 if ρ(D,X ) ≤ ε
0 otherwise

this reduces the algorithm to

2’ Accept θ ifF ρ(D,X ) ≤ ε
ie, we recover the uniform ABC algorithm.

Richard Wilkinson (Nottingham) GPs for UQ in DACE June 2013 50 / 70



Generalized ABC (GABC)
Wilkinson 2008, 2013, Fearnhead and Prangle 2012

We can generalise the rejection-ABC algorithm by using arbitrary
acceptance kernels:

Generalized rejection ABC (Rej-GABC)

1 θ ∼ π(θ) and X ∼ π(x |θ)

2 Accept (θ,X ) if

U ∼ U[0, 1] ≤ πABC (θ, x)

Mg(θ, x)
=

π(D|X )

maxx π(D|x)

In uniform ABC we take

π(D|X ) =

{
1 if ρ(D,X ) ≤ ε
0 otherwise

this reduces the algorithm to

2’ Accept θ ifF ρ(D,X ) ≤ ε
ie, we recover the uniform ABC algorithm.
Richard Wilkinson (Nottingham) GPs for UQ in DACE June 2013 50 / 70



Uniform ABC algorithm

This allows us to interpret uniform ABC. Suppose X ,D ∈ R

Proposition

Accepted θ from the uniform ABC algorithm (with ρ(D,X ) = |D − X |)
are samples from the posterior distribution of θ given D where we assume
D = f (θ) + e and that

e ∼ U[−ε, ε]

In general, uniform ABC assumes that

D|x ∼ U{d : ρ(d , x) ≤ ε}

We can think of this as assuming a uniform error term when we relate the
simulator to the observations.

ABC gives ‘exact’ inference under a different model!
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Problems with Monte Carlo methods

Monte Carlo methods are generally guaranteed to succeed if we run them
for long enough.

This guarantee comes at a cost.

Most methods sample naively - they don’t learn from previous
simulations.

They don’t exploit known properties of the likelihood function, such
as continuity

They sample randomly, rather than using space filling designs.

This naivety can make a full analysis infeasible without access to a large
amount of computational resource.

If we are prepared to lose the guarantee of eventual success, we can
exploit the continuity of the likelihood function to learn about its shape,
and to dramatically improve the efficiency of our computations.
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Likelihood estimation

The GABC framework assumes

π(D|θ) =

∫
π(D|X )π(X |θ)dX

≈ 1

N

∑
π(D|Xi )

where Xi ∼ π(X |θ). Or in Wood (2010),

π(D|θ) = φ(D;µθ,Σθ)

For many problems, we believe the likelihood is continuous and smooth,
so that π(D|θ) is similar to π(D|θ′) when θ − θ′ is small

We can model π(D|θ) and use the model to find the posterior in place of
running the simulator.
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Example: Ricker Model

The Ricker model is one of the prototypic ecological models.

used to model the fluctuation of the observed number of animals in
some population over time

It has complex dynamics and likelihood, despite its simple
mathematical form.

Ricker Model

Let Nt denote the number of animals at time t.

Nt+1 = rNte
−Nt +er

where et are independent N(0, σ2
e ) process noise

Assume we observe counts yt where

yt ∼ Po(φNt)

Used in Wood to demonstrate the synthetic likelihood approach.
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Design 1 - 128 pts
We use a Sobol sequence on the prior input space to find a design
{θi}d

i=1. We estimate the likelihood at each point in the design, and aim
to fit a GP model to estimate the likelihood at θ values not in the design.
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Difficulties

i. The likelihood is too difficult to model, so we model the
log-likelihood instead.

l̂(D|θ) = log

(
1

N

∑
π(D|Xi )

)
ii. Use bootstrapped replicates of the log-likelihood to estimate the

variance of the nugget term (we could estimate it as part of the GP
fitting, but typically this is very poorly behaved).

iii. Var(l̂(D|θ)) is far from constant as a function of θ - this causes a
problem as simple GP covariance functions assume the nugget is
constant through space.

1 Crude fix: pick a small sensible value estimated for a θ value near the
mode of the posterior.
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History matching waves
The log-likelihood varies across too wide a range of values, e.g., -10 near
the mode, but essentially −∞ at the extremes of the prior range.
Consequently, any Gaussian process model will struggle to model the
log-likelihood across the entire input range.

To fix this we introduce the idea of waves, similar to those used in
Michael Goldstein’s approach to history-matching.
In each wave, we build a GP model that can rule out large swathes of
space as implausible.

We decide that θ is implausible if

m(θ) + 3σ < max
θi

log π(D|θi )− 10

where m(θ) is the Gaussian process estimate of log π(D|θ), and σ is
the variance of the GP estimate.

I We subtract 10, as for the Ricker model, a difference of 10 on the log
scale between two likelihoods, means that assigning the θ with the
smaller log-likelihood a posterior density of 0 (by saying it is
implausible) is a good approximation.
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Difficulties II ctd

This still wasn’t enough in some problems, so for the first wave we
model log(− log π(D|θ))

For the next wave, we begin by using the Gaussian processes from
the previous waves to decide which parts of the input space are
implausible.

We then extend the design into the not-implaussible range and build
a new Gaussian process

This new GP will lead to a new definition of implausibility

. . .
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Results - Design 1 - 128 pts
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Diagnostics for GP 1 - threshold = 5.6
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Results - Design 2 - 314 pts - 38% of space implausible
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Diagnostics for GP 2 - threshold = -21.8
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Design 3 - 149 pts - 62% of space implausible
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Diagnostics for GP 3 - threshold = -20.7
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Design 4 - 400 pts - 95% of space implausible
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Diagnostics for GP 4 - threshold = -16.4
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MCMC Results
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Computational details

The Wood MCMC method used 105 × 500 simulator runs

The GP code used (128 + 314 + 149 + 400) = 991× 500 simulator
runs

I 1/100th of the number used by Wood’s method.

By the final iteration, the Gaussian processes had ruled out over 98% of
the original input space as implausible,

the MCMC sampler did not need to waste time exploring those
regions.
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Conclusions
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