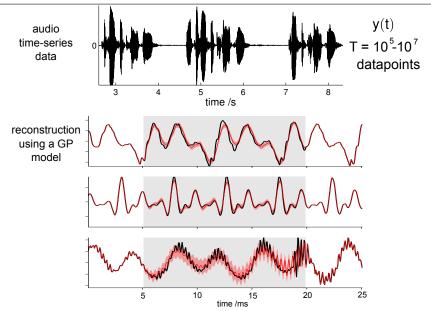
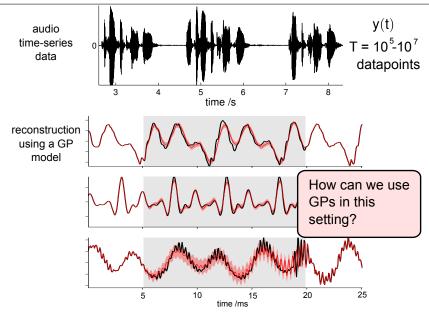
Sparse Gaussian Process Approximations

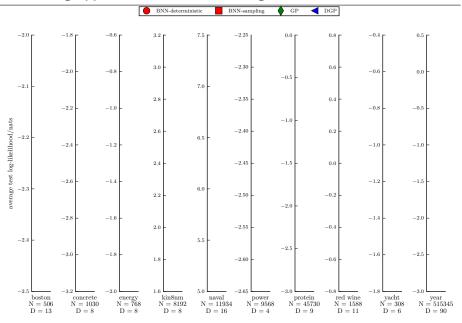
Dr. Richard E. Turner (ret26@cam.ac.uk) Computational and Biological Learning Lab, Department of Engineering, University of Cambridge

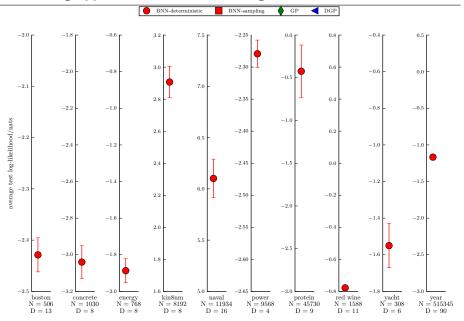
Motivating application 1: Audio modelling

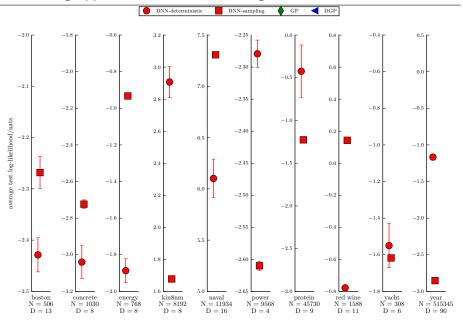


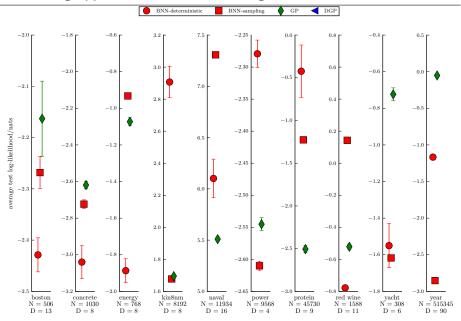
Motivating application 1: Audio modelling

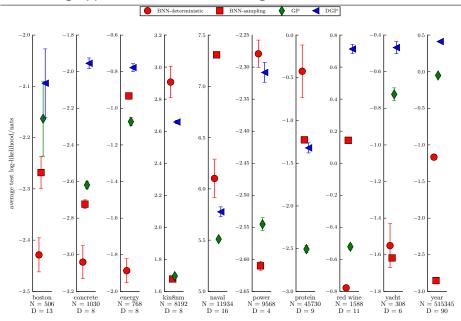


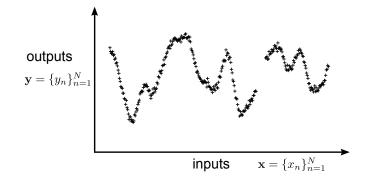


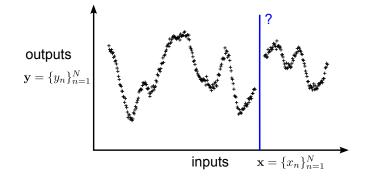


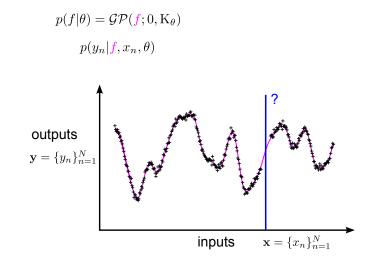


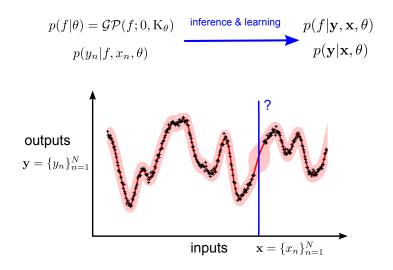


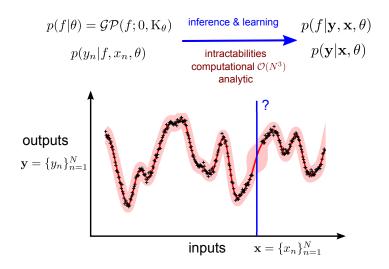


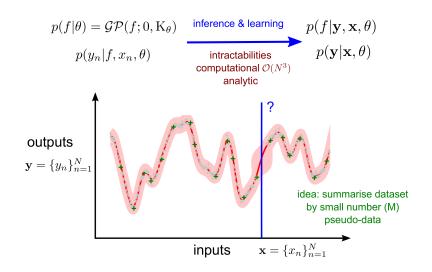


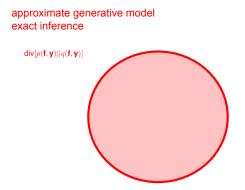


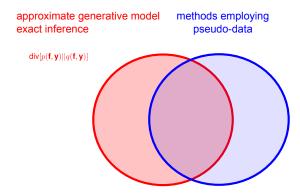


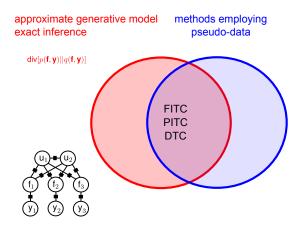


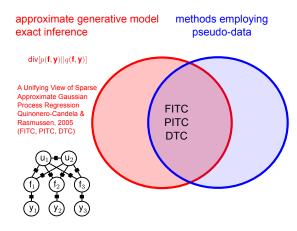


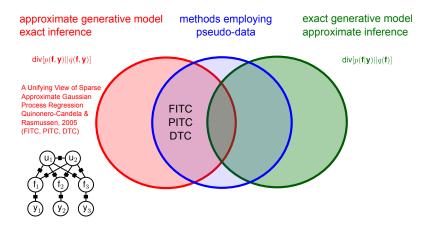


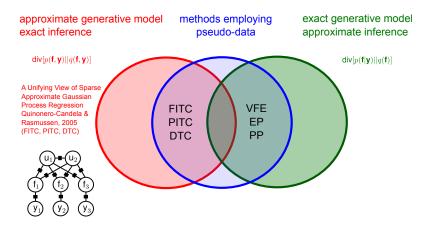


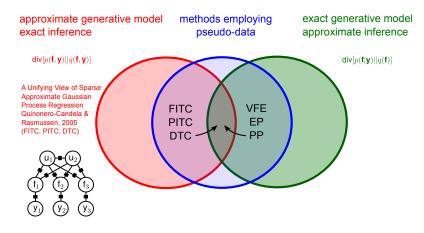


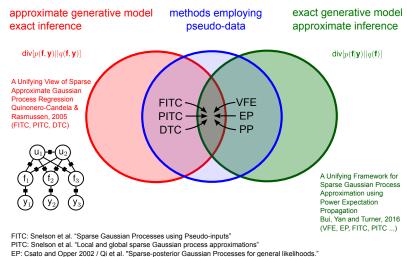












VFE: Titsias "Variational Learning of Inducing Variables in Sparse Gaussian Processes"

DTC / PP: Seeger et al. "Fast Forward Selection to Speed Up Sparse Gaussian Process Regression"

Factor Graphs: introduction / reminder

factor graph examples

$$p(x_1, x_2, x_3) = g(x_1, x_2, x_3)$$

$$p(x_1, x_2, x_3) = g_1(x_1, x_2)g_2(x_2, x_3)$$

$$\begin{array}{c} x_2 \\ x_1 & \hline & x_3 \end{array}$$

$$x_1 & \hline & x_2 & \hline & x_3 \\ \hline x_1 & \hline & x_2 & \hline & x_3 \\ \end{array} \quad x_3 \perp x_1 | x_2$$

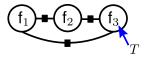
Factor Graphs: introduction / reminder

factor graph examples $p(x_1, x_2, x_3) = q(x_1, x_2, x_3)$ $p(x_1, x_2, x_3) = q_1(x_1, x_2)q_2(x_2, x_3)$ (x_3) $x_3 \perp x_1 | x_2$ what is the minimal factor graph for this multivariate Gaussian? $p(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \mathcal{N}(\mathbf{x};\boldsymbol{\mu},\boldsymbol{\Sigma})$ 4 dimensional $\Sigma = \begin{vmatrix} 1 & 1/2 & 1/2 & 1/4 \\ 1/2 & 5/4 & 1/4 & 1/8 \\ 1/2 & 1/4 & 5/4 & 5/8 \\ 1/4 & 1/8 & 5/8 & 21/16 \end{vmatrix} \qquad \Sigma^{-1} = \begin{vmatrix} 1.5 & -1/2 & -1/2 & 0 \\ -1/2 & 1 & 0 & 0 \\ -1/2 & 0 & 5/4 & -1/2 \\ 0 & 0 & -1/2 & 1 \end{vmatrix}$

Factor Graphs: introduction / reminder

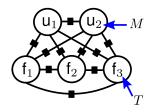
factor graph examples $p(x_1, x_2, x_3) = q(x_1, x_2, x_3)$ $p(x_1, x_2, x_3) = q_1(x_1, x_2)q_2(x_2, x_3)$ x_3 $x_3 \perp x_1 \mid x_2$ what is the minimal factor graph for this multivariate Gaussian? $n(\mathbf{x}|\mu, \Sigma) = \mathcal{N}(\mathbf{x}; \mu, \Sigma)$ 4 dimensional $\Sigma = \begin{vmatrix} 1 & 1/2 & 1/2 & 1/4 \\ 1/2 & 5/4 & 1/4 & 1/8 \\ 1/2 & 1/4 & 5/4 & 5/8 \\ 1/4 & 1/8 & 5/8 & 21/16 \end{vmatrix} \qquad \Sigma^{-1} = \begin{vmatrix} 1.5 & -1/2 & -1/2 & 0 \\ -1/2 & 1 & 0 & 0 \\ -1/2 & 0 & 5/4 & -1/2 \\ 0 & 0 & -1/2 & 1 \end{vmatrix}$

solution:



construct new generative model (with pseudo-data) cheaper to perform exact learning and inference calibrated to original

1. augment model with M<T pseudo data $p(\mathbf{f}, \mathbf{u}) = \mathcal{N}\left(\begin{bmatrix} \mathbf{f} \\ \mathbf{u} \end{bmatrix}; \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \mathsf{K}_{\mathbf{ff}} & \mathsf{K}_{\mathbf{fu}} \\ \mathsf{K}_{\mathbf{uf}} & \mathsf{K}_{\mathbf{uu}} \end{bmatrix}\right)$

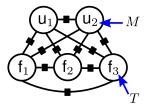


construct new generative model (with pseudo-data) cheaper to perform exact learning and inference calibrated to original

1. augment model with M<T pseudo data

$$p(\mathbf{f}, \mathbf{u}) = \mathcal{N}\left(\left[\begin{array}{c} \mathbf{f} \\ \mathbf{u} \end{array} \right]; \left[\begin{array}{c} 0 \\ 0 \end{array} \right], \left[\begin{array}{c} \mathbf{K}_{\mathbf{f}\mathbf{f}} & \mathbf{K}_{\mathbf{f}\mathbf{u}} \\ \mathbf{K}_{\mathbf{u}\mathbf{f}} & \mathbf{K}_{\mathbf{u}\mathbf{u}} \end{array} \right] \right)$$

2. remove some of the dependencies (results in simpler model)



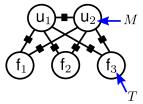
$$(f_i) \bullet (f_j) \longrightarrow (f_i) (f_j)$$
 all factors

construct new generative model (with pseudo-data) cheaper to perform exact learning and inference calibrated to original

1. augment model with M<T pseudo data

$$p(\mathbf{f}, \mathbf{u}) = \mathcal{N}\left(\begin{bmatrix} \mathbf{f} \\ \mathbf{u} \end{bmatrix}; \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \mathsf{K}_{\mathbf{f}\mathbf{f}} & \mathsf{K}_{\mathbf{f}\mathbf{u}} \\ \mathsf{K}_{\mathbf{u}\mathbf{f}} & \mathsf{K}_{\mathbf{u}\mathbf{u}} \end{bmatrix} \right)$$

2. remove some of the dependencies (results in simpler model)



$$(f_i) \bullet (f_j) \longrightarrow (f_i) (f_j)$$
 all factors

construct new generative model (with pseudo-data) cheaper to perform exact learning and inference calibrated to original

1. augment model with M<T pseudo data

$$p(\mathbf{f}, \mathbf{u}) = \mathcal{N}\left(\begin{bmatrix} \mathbf{f} \\ \mathbf{u} \end{bmatrix}; \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} \mathbf{K}_{\mathbf{f}\mathbf{f}} & \mathbf{K}_{\mathbf{f}\mathbf{u}} \\ \mathbf{K}_{\mathbf{u}\mathbf{f}} & \mathbf{K}_{\mathbf{u}\mathbf{u}} \end{bmatrix} \right)$$

2. remove some of the dependencies (results in simpler model)

$$(f_i) \bullet (f_j) \longrightarrow (f_i) (f_j)$$
 all factors

3. calibrate model

(e.g. using KL divergence, many choices)

$$\underset{q(\mathbf{u}),\{q(\mathbf{f}_{t}|\mathbf{u})\}_{t=1}^{T}}{\operatorname{\mathsf{KL}}}(p(\mathbf{f},\mathbf{u})||q(\mathbf{u})\prod_{t=1}^{T}q(\mathbf{f}_{t}|\mathbf{u})) \implies \begin{array}{c}q(\mathbf{u}) = p(\mathbf{u})\\q(\mathbf{f}_{t}|\mathbf{u}) = p(\mathbf{f}_{t}|\mathbf{u})\end{array}$$

equal to exact conditionals

construct new generative model (with pseudo-data) cheaper to perform exact learning and inference calibrated to original

1. augment model with M<T pseudo data

$$p(\mathbf{f}, \mathbf{u}) = \mathcal{N}\left(\left[\begin{array}{c} \mathbf{f} \\ \mathbf{u} \end{array} \right]; \left[\begin{array}{c} 0 \\ 0 \end{array} \right], \left[\begin{array}{c} \mathbf{K}_{\mathbf{f}\mathbf{f}} & \mathbf{K}_{\mathbf{f}\mathbf{u}} \\ \mathbf{K}_{\mathbf{u}\mathbf{f}} & \mathbf{K}_{\mathbf{u}\mathbf{u}} \end{array} \right] \right)$$

2. remove some of the dependencies (results in simpler model)

$$(f_i) \bullet (f_j) \longrightarrow (f_i) (f_j)$$
 all factors

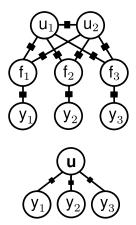
3. calibrate model

(e.g. using KL divergence, many choices)

$$\underset{q(\mathbf{u}),\{q(\mathbf{f}_t|\mathbf{u})\}_{t=1}^T}{\arg\min} \mathsf{KL}(p(\mathbf{f},\mathbf{u})||q(\mathbf{u})\prod_{t=1}^{T}q(\mathbf{f}_t|\mathbf{u})) \implies \begin{array}{c} q(\mathbf{u}) = p(\mathbf{u}) \\ q(\mathbf{f}_t|\mathbf{u}) = p(\mathbf{f}_t|\mathbf{u}) \end{array}$$

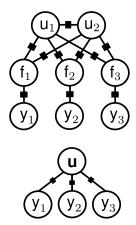
equal to exact conditionals

construct new generative model (with pseudo-data)indirectcheaper to perform exact learning and inferenceposteriorcalibrated to originalapproximation



construct new generative model (with pseudo-data) cheaper to perform exact learning and inference calibrated to original

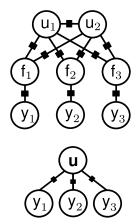
 $q(\mathbf{u}) = p(\mathbf{u}) = \mathcal{N}(\mathbf{u}; 0, \mathsf{K}_{\mathsf{uu}})$



construct new generative model (with pseudo-data) cheaper to perform exact learning and inference calibrated to original

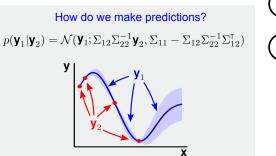
$$q(\mathbf{u}) = p(\mathbf{u}) = \mathcal{N}(\mathbf{u}; 0, \mathsf{K}_{\mathsf{uu}})$$

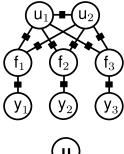
 $q(\mathbf{f}_t|\mathbf{u}) = p(\mathbf{f}_t|\mathbf{u})$



construct new generative model (with pseudo-data) cheaper to perform exact learning and inference calibrated to original

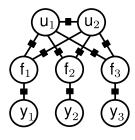
$$\begin{aligned} q(\mathbf{u}) &= p(\mathbf{u}) = \mathcal{N}(\mathbf{u}; 0, \mathsf{K}_{\mathsf{uu}}) \\ q(\mathsf{f}_t | \mathbf{u}) &= p(\mathsf{f}_t | \mathbf{u}) \end{aligned}$$

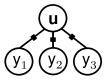




 (y_1, y_2, y_3)

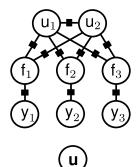
construct new generative model (with pseudo-data) cheaper to perform exact learning and inference calibrated to original





construct new generative model (with pseudo-data) cheaper to perform exact learning and inference calibrated to original

$$\begin{split} q(\mathbf{u}) &= p(\mathbf{u}) = \mathcal{N}(\mathbf{u}; 0, \mathsf{K}_{\mathsf{uu}}) \\ q(\mathsf{f}_t | \mathbf{u}) &= p(\mathsf{f}_t | \mathbf{u}) \\ &= \mathcal{N}(\mathsf{f}_t; \mathsf{K}_{\mathsf{f}_t \mathsf{u}} \mathsf{K}_{\mathsf{uu}}^{-1} \mathbf{u}, \mathsf{K}_{\mathsf{f}_t \mathsf{f}_t} - \mathsf{K}_{\mathsf{f}_t \mathsf{u}} \mathsf{K}_{\mathsf{uu}}^{-1} \mathsf{K}_{\mathsf{uf}_t}) \end{split}$$



construct new generative model (with pseudo-data) cheaper to perform exact learning and inference calibrated to original

$$q(\mathbf{u}) = p(\mathbf{u}) = \mathcal{N}(\mathbf{u}; 0, \mathsf{K}_{\mathsf{uu}})$$

$$q(\mathsf{f}_t | \mathbf{u}) = p(\mathsf{f}_t | \mathbf{u})$$

$$= \mathcal{N}(\mathsf{f}_t; \mathsf{K}_{\mathsf{f}_t \mathsf{u}} \mathsf{K}_{\mathsf{uu}}^{-1} \mathbf{u}, \mathsf{K}_{\mathsf{f}_t \mathsf{f}_t} - \mathsf{K}_{\mathsf{f}_t \mathsf{u}} \mathsf{K}_{\mathsf{uu}}^{-1} \mathsf{K}_{\mathsf{ut}})$$

$$D_{tt}$$

$$y_1$$

$$y_2$$

$$y_3$$

$$(\mathsf{u})$$

$$(\mathsf{u$$

construct new generative model (with pseudo-data) cheaper to perform exact learning and inference calibrated to original

$$q(\mathbf{u}) = p(\mathbf{u}) = \mathcal{N}(\mathbf{u}; 0, \mathsf{K}_{\mathsf{uu}})$$

$$q(\mathbf{f}_t | \mathbf{u}) = p(\mathbf{f}_t | \mathbf{u})$$

$$= \mathcal{N}(\mathbf{f}_t; \mathsf{K}_{\mathsf{f}_t \mathsf{u}} \mathsf{K}_{\mathsf{uu}}^{-1} \mathbf{u}, \mathsf{K}_{\mathsf{f}_t \mathsf{f}_t} - \mathsf{K}_{\mathsf{f}_t \mathsf{u}} \mathsf{K}_{\mathsf{uu}}^{-1} \mathsf{K}_{\mathsf{ut}})$$

$$p(\mathbf{y}_t | \mathbf{f}_t) = p(\mathbf{y}_t | \mathbf{f}_t) = \mathcal{N}(\mathbf{y}_t; \mathbf{f}_t, \sigma_y^2)$$

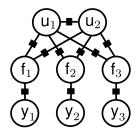
$$q(\mathbf{y}_t | \mathbf{f}_t) = p(\mathbf{y}_t | \mathbf{f}_t) = \mathcal{N}(\mathbf{y}_t; \mathbf{f}_t, \sigma_y^2)$$

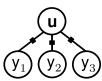
$$q(\mathbf{y}_t | \mathbf{f}_t) = p(\mathbf{y}_t | \mathbf{f}_t) = \mathcal{N}(\mathbf{y}_t; \mathbf{f}_t, \sigma_y^2)$$

construct new generative model (with pseudo-data) cheaper to perform exact learning and inference calibrated to original

$$\begin{split} q(\mathbf{u}) &= p(\mathbf{u}) = \mathcal{N}(\mathbf{u}; 0, \mathsf{K}_{\mathsf{uu}}) \\ q(\mathsf{f}_t | \mathbf{u}) &= p(\mathsf{f}_t | \mathbf{u}) \\ &= \mathcal{N}(\mathsf{f}_t; \mathsf{K}_{\mathsf{f}_t \mathsf{u}} \mathsf{K}_{\mathsf{uu}}^{-1} \mathbf{u}, \underbrace{\mathsf{K}_{\mathsf{f}_t \mathsf{f}_t} - \mathsf{K}_{\mathsf{f}_t \mathsf{u}} \mathsf{K}_{\mathsf{uu}}^{-1} \mathsf{K}_{\mathsf{u}_t}}_{\mathsf{D}_{tt}}) \\ q(\mathbf{y}_t | \mathsf{f}_t) &= p(\mathbf{y}_t | \mathsf{f}_t) = \mathcal{N}(\mathbf{y}_t; \mathsf{f}_t, \sigma_{\mathbf{y}}^2) \end{split}$$

cost of computing likelihood is $O(TM^2)$



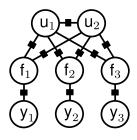


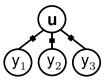
construct new generative model (with pseudo-data) cheaper to perform exact learning and inference calibrated to original

$$\begin{split} q(\mathbf{u}) &= p(\mathbf{u}) = \mathcal{N}(\mathbf{u}; 0, \mathsf{K}_{\mathsf{uu}}) \\ q(\mathbf{f}_t | \mathbf{u}) &= p(\mathbf{f}_t | \mathbf{u}) \\ &= \mathcal{N}(\mathbf{f}_t; \mathsf{K}_{\mathsf{f}_t \mathsf{u}} \mathsf{K}_{\mathsf{uu}}^{-1} \mathbf{u}, \underbrace{\mathsf{K}_{\mathsf{f}_t \mathsf{f}_t} - \mathsf{K}_{\mathsf{f}_t \mathsf{u}} \mathsf{K}_{\mathsf{uu}}^{-1} \mathsf{K}_{\mathsf{u}_t}}_{\mathsf{D}_{tt}}) \\ q(\mathbf{y}_t | \mathbf{f}_t) &= p(\mathbf{y}_t | \mathbf{f}_t) = \mathcal{N}(\mathbf{y}_t; \mathbf{f}_t, \sigma_{\mathbf{y}}^2) \end{split}$$

cost of computing likelihood is $O(TM^2)$

$$p(\mathbf{y}_t|\boldsymbol{\theta}) = \mathcal{N}(\mathbf{y}; \mathbf{0}, \mathsf{K}_{\mathsf{fu}}\mathsf{K}_{\mathsf{uu}}^{-1}\mathsf{K}_{\mathsf{uu}}\mathsf{K}_{\mathsf{uu}}^{-1}\mathsf{K}_{\mathsf{uf}} + \mathsf{D} + \sigma_{\mathbf{y}}^2\mathsf{I})$$

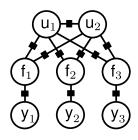


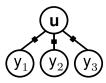


construct new generative model (with pseudo-data) cheaper to perform exact learning and inference calibrated to original

$$\begin{split} q(\mathbf{u}) &= p(\mathbf{u}) = \mathcal{N}(\mathbf{u}; 0, \mathsf{K}_{\mathsf{uu}}) \\ q(\mathbf{f}_t | \mathbf{u}) &= p(\mathbf{f}_t | \mathbf{u}) \\ &= \mathcal{N}(\mathbf{f}_t; \mathsf{K}_{\mathsf{f}_t \mathsf{u}} \mathsf{K}_{\mathsf{uu}}^{-1} \mathbf{u}, \underbrace{\mathsf{K}_{\mathsf{f}_t \mathsf{f}_t} - \mathsf{K}_{\mathsf{f}_t \mathsf{u}} \mathsf{K}_{\mathsf{uu}}^{-1} \mathsf{K}_{\mathsf{uf}_t}}_{\mathsf{D}_{tt}}) \\ q(\mathbf{y}_t | \mathbf{f}_t) &= p(\mathbf{y}_t | \mathbf{f}_t) = \mathcal{N}(\mathbf{y}_t; \mathbf{f}_t, \sigma_{\mathbf{y}}^2) \\ \text{cost of computing likelihood is } \mathcal{O}(TM^2) \\ p(\mathbf{y}_t | \theta) &= \mathcal{N}(\mathbf{y}; \mathbf{0}, \mathsf{K}_{\mathsf{fu}} \mathsf{K}_{\mathsf{uu}}^{-1} \mathsf{K}_{\mathsf{uu}} \mathsf{K}_{\mathsf{uu}}^{-1} \mathsf{K}_{\mathsf{uf}} + \mathsf{D} + \sigma_{\mathbf{y}}^2 \mathsf{I}) \end{split}$$

$$= \mathcal{N}(\mathbf{y}; \mathbf{0}, \mathsf{K}_{\mathsf{fu}}\mathsf{K}_{\mathsf{uu}}^{-1}\mathsf{K}_{\mathsf{uf}} + \mathsf{D} + \sigma_{\mathsf{y}}^{2}\mathsf{I})$$





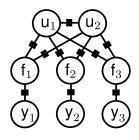
construct new generative model (with pseudo-data) cheaper to perform exact learning and inference calibrated to original

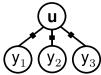
$$\begin{aligned} q(\mathbf{u}) &= p(\mathbf{u}) = \mathcal{N}(\mathbf{u}; 0, \mathsf{K}_{\mathsf{uu}}) \\ q(\mathsf{f}_t | \mathbf{u}) &= p(\mathsf{f}_t | \mathbf{u}) \\ &= \mathcal{N}(\mathsf{f}_t; \mathsf{K}_{\mathsf{f}_t \mathsf{u}} \mathsf{K}_{\mathsf{uu}}^{-1} \mathbf{u}, \mathsf{K}_{\mathsf{f}_t \mathsf{f}_t} - \mathsf{K}_{\mathsf{f}_t \mathsf{u}} \mathsf{K}_{\mathsf{uu}}^{-1} \mathsf{K}_{\mathsf{u}_t}) \\ q(\mathsf{y}_t | \mathsf{f}_t) &= p(\mathsf{y}_t | \mathsf{f}_t) = \mathcal{N}(\mathsf{y}_t; \mathsf{f}_t, \sigma_{\mathsf{y}}^2) \end{aligned}$$

cost of computing likelihood is $O(TM^2)$

$$p(\mathbf{y}_t|\boldsymbol{\theta}) = \mathcal{N}(\mathbf{y}; \mathbf{0}, \mathsf{K}_{\mathsf{fu}}\mathsf{K}_{\mathsf{uu}}^{-1}\mathsf{K}_{\mathsf{uu}}\mathsf{K}_{\mathsf{uu}}^{-1}\mathsf{K}_{\mathsf{uf}} + \mathsf{D} + \sigma_{\mathsf{y}}^{2}\mathsf{I})$$

$$= \mathcal{N}(\mathbf{y}; \mathbf{0}, \mathsf{K}_{\mathsf{fu}}\mathsf{K}_{\mathsf{uu}}^{-1}\mathsf{K}_{\mathsf{uf}} + \mathbf{D} + \sigma_{\mathsf{y}}^{2}\mathbf{I})$$

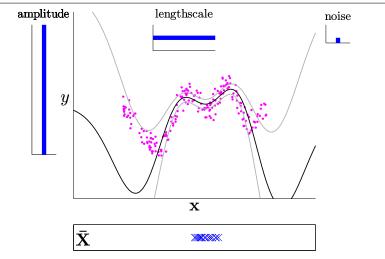




original variances along diagonal: stops variances collapsing

construct new generative model (with pseudo-data) cheaper to perform exact learning and inference calibrated to original

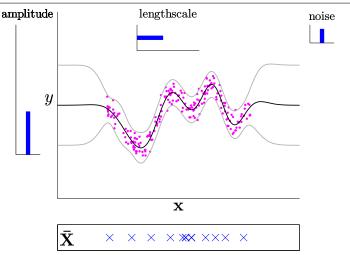
FITC: Demo (Snelson)



Initialize adversarially:

amplitude and lengthscale too big noise too small pseudo-inputs bunched up

FITC: Demo (Snelson)



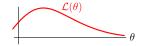
Pseudo-inputs and hyperparameters optimized

- parametric (although cleverly so)
- if I see more data, should I add extra pseudo-data?
 - unnatural from a generative modelling perspective
 - natural from a prediction perspective (posterior gets more complex)
 - \implies lost elegant separation of model, inference and approximation
- example of prior approximation

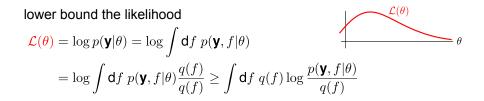
Extensions:

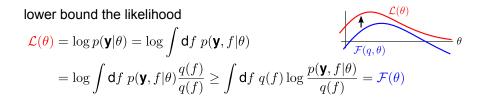
- inter-domain GP (pseudo-data in a different space)
- partially independent training conditional and tree-structured approximations

lower bound the likelihood $\mathcal{L}(\theta) = \log p(\mathbf{y}|\theta) = \log \int \mathrm{d}f \; p(\mathbf{y}, f|\theta)$



lower bound the likelihood $\begin{aligned} \mathcal{L}(\theta) &= \log p(\mathbf{y}|\theta) = \log \int \mathrm{d}f \; p(\mathbf{y}, f|\theta) \\ &= \log \int \mathrm{d}f \; p(\mathbf{y}, f|\theta) \frac{q(f)}{q(f)} \end{aligned}$





lower bound the likelihood

$$\mathcal{L}(\theta) = \log p(\mathbf{y}|\theta) = \log \int df \ p(\mathbf{y}, f|\theta)$$

$$= \log \int df \ p(\mathbf{y}, f|\theta) \frac{q(f)}{q(f)} \ge \int df \ q(f) \log \frac{p(\mathbf{y}, f|\theta)}{q(f)} = \mathcal{F}(\theta)$$

$$\mathcal{F}(\theta) = \int df \ q(f) \log \frac{p(f|\mathbf{y}, \theta)p(\mathbf{y}|\theta)}{q(f)}$$

lower bound the likelihood

$$\mathcal{L}(\theta) = \log p(\mathbf{y}|\theta) = \log \int df \ p(\mathbf{y}, f|\theta)$$

$$= \log \int df \ p(\mathbf{y}, f|\theta) \frac{q(f)}{q(f)} \ge \int df \ q(f) \log \frac{p(\mathbf{y}, f|\theta)}{q(f)} = \mathcal{F}(\theta)$$

$$\mathcal{F}(\theta) = \int df \ q(f) \log \frac{p(f|\mathbf{y}, \theta)p(\mathbf{y}|\theta)}{q(f)} = \log p(\mathbf{y}|\theta) - \mathsf{KL}(q(f)||p(f|\mathbf{y}))$$
KL between stochastic processes

lower bound the likelihood

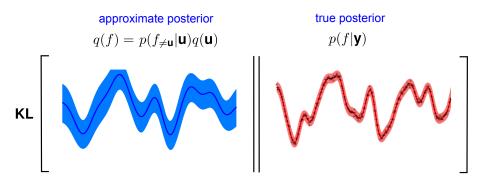
$$\mathcal{L}(\theta) = \log p(\mathbf{y}|\theta) = \log \int df \ p(\mathbf{y}, f|\theta)$$

$$= \log \int df \ p(\mathbf{y}, f|\theta) \frac{q(f)}{q(f)} \ge \int df \ q(f) \log \frac{p(\mathbf{y}, f|\theta)}{q(f)} = \mathcal{F}(\theta)$$

$$\mathcal{F}(\theta) = \int df \ q(f) \log \frac{p(f|\mathbf{y}, \theta)p(\mathbf{y}|\theta)}{q(f)} = \log p(\mathbf{y}|\theta) - \mathsf{KL}(q(f)||p(f|\mathbf{y}))$$
KL between stochastic processes

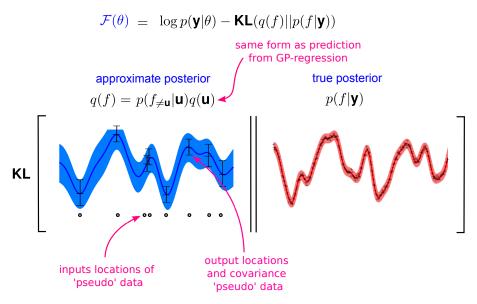
$$\begin{split} q(f) &= q(\mathbf{u}, f_{\neq \mathbf{u}}) = q(f_{\neq \mathbf{u}} | \mathbf{u}) q(\mathbf{u}) = p(f_{\neq \mathbf{u}} | \mathbf{u}) q(\mathbf{u}) \\ \text{exact:} \quad q(f_{\neq \mathbf{u}} | \mathbf{u}) = p(f_{\neq \mathbf{u}} | \mathbf{y}, \mathbf{u}) \end{split}$$

$$\mathcal{F}(\theta) = \log p(\mathbf{y}|\theta) - \mathbf{KL}(q(f)||p(f|\mathbf{y}))$$



Variational free-energy method (VFE)

Variational free-energy method (VFE)



optimise variational free-energy wrt to these variational parameters

lower bound the likelihood

$$\mathcal{L}(\theta) = \log p(\mathbf{y}|\theta) = \log \int df \ p(\mathbf{y}, f|\theta)$$

$$= \log \int df \ p(\mathbf{y}, f|\theta) \frac{q(f)}{q(f)} \ge \int df \ q(f) \log \frac{p(\mathbf{y}, f|\theta)}{q(f)} = \mathcal{F}(\theta)$$

$$\mathcal{F}(\theta) = \int df \ q(f) \log \frac{p(f|\mathbf{y}, \theta)p(\mathbf{y}|\theta)}{q(f)} = \log p(\mathbf{y}|\theta) - \mathsf{KL}(q(f)||p(f|\mathbf{y}))$$
KL between stochastic processes

$$\begin{split} q(f) &= q(\mathbf{u}, f_{\neq \mathbf{u}}) = q(f_{\neq \mathbf{u}} | \mathbf{u}) q(\mathbf{u}) = p(f_{\neq \mathbf{u}} | \mathbf{u}) q(\mathbf{u}) & \longleftarrow \text{ predictive from GP} \\ \text{regression} \\ \text{exact:} \quad q(f_{\neq \mathbf{u}} | \mathbf{u}) = p(f_{\neq \mathbf{u}} | \mathbf{y}, \mathbf{u}) \end{split}$$

lower bound the likelihood

$$\mathcal{L}(\theta) = \log p(\mathbf{y}|\theta) = \log \int df \ p(\mathbf{y}, f|\theta)$$

$$= \log \int df \ p(\mathbf{y}, f|\theta) \frac{q(f)}{q(f)} \ge \int df \ q(f) \log \frac{p(\mathbf{y}, f|\theta)}{q(f)} = \mathcal{F}(\theta)$$

$$\mathcal{F}(\theta) = \int df \ q(f) \log \frac{p(f|\mathbf{y}, \theta)p(\mathbf{y}|\theta)}{q(f)} = \log p(\mathbf{y}|\theta) - \mathsf{KL}(q(f)||p(f|\mathbf{y}))$$
KL between stochastic processes

$$\begin{split} q(f) &= q(\mathbf{u}, f_{\neq \mathbf{u}}) = q(f_{\neq \mathbf{u}} | \mathbf{u}) q(\mathbf{u}) = p(f_{\neq \mathbf{u}} | \mathbf{u}) q(\mathbf{u}) & \longleftarrow \text{ predictive from GP} \\ \text{regression} \\ \text{exact:} \quad q(f_{\neq \mathbf{u}} | \mathbf{u}) = p(f_{\neq \mathbf{u}} | \mathbf{y}, \mathbf{u}) \end{split}$$

plug into Free-energy:

$$\mathcal{F}(\theta) = \int \mathrm{d}f \ q(f) \log \frac{p(\mathbf{y}, f|\theta)}{p(f_{\neq \mathbf{u}}|\mathbf{u})q(\mathbf{u})}$$

lower bound the likelihood

$$\mathcal{L}(\theta) = \log p(\mathbf{y}|\theta) = \log \int df \ p(\mathbf{y}, f|\theta)$$

$$= \log \int df \ p(\mathbf{y}, f|\theta) \frac{q(f)}{q(f)} \ge \int df \ q(f) \log \frac{p(\mathbf{y}, f|\theta)}{q(f)} = \mathcal{F}(\theta)$$

$$\mathcal{F}(\theta) = \int df \ q(f) \log \frac{p(f|\mathbf{y}, \theta)p(\mathbf{y}|\theta)}{q(f)} = \log p(\mathbf{y}|\theta) - \mathsf{KL}(q(f)||p(f|\mathbf{y}))$$
KL between stochastic processes

$$\begin{split} q(f) &= q(\mathbf{u}, f_{\neq \mathbf{u}}) = q(f_{\neq \mathbf{u}} | \mathbf{u}) q(\mathbf{u}) = p(f_{\neq \mathbf{u}} | \mathbf{u}) q(\mathbf{u}) & \longleftarrow \text{ predictive from GP} \\ \text{regression} \\ \text{exact:} \quad q(f_{\neq \mathbf{u}} | \mathbf{u}) = p(f_{\neq \mathbf{u}} | \mathbf{y}, \mathbf{u}) \end{split}$$

plug into Free-energy:

$$\mathcal{F}(\theta) = \int \mathrm{d}f \ q(f) \log \frac{p(\mathbf{y}, f|\theta)}{p(f_{\neq \mathbf{u}}|\mathbf{u})q(\mathbf{u})} = \int \mathrm{d}f \ q(f) \log \frac{p(\mathbf{y}|\mathbf{f}, \theta)p(f_{\neq \mathbf{u}}|\mathbf{u})p(\mathbf{u})}{p(f_{\neq \mathbf{u}}|\mathbf{u})q(\mathbf{u})}$$

$$(47/90)$$

lower bound the likelihood

$$\mathcal{L}(\theta) = \log p(\mathbf{y}|\theta) = \log \int df \ p(\mathbf{y}, f|\theta)$$

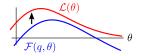
$$= \log \int df \ p(\mathbf{y}, f|\theta) \frac{q(f)}{q(f)} \ge \int df \ q(f) \log \frac{p(\mathbf{y}, f|\theta)}{q(f)} = \mathcal{F}(\theta)$$

$$\mathcal{F}(\theta) = \int df \ q(f) \log \frac{p(f|\mathbf{y}, \theta)p(\mathbf{y}|\theta)}{q(f)} = \log p(\mathbf{y}|\theta) - \mathsf{KL}(q(f)||p(f|\mathbf{y}))$$
KL between stochastic processes

$$\begin{split} q(f) &= q(\mathbf{u}, f_{\neq \mathbf{u}}) = q(f_{\neq \mathbf{u}} | \mathbf{u}) q(\mathbf{u}) = p(f_{\neq \mathbf{u}} | \mathbf{u}) q(\mathbf{u}) & \longleftarrow \text{ predictive from GP} \\ \text{regression} \\ \text{exact:} \quad q(f_{\neq \mathbf{u}} | \mathbf{u}) = p(f_{\neq \mathbf{u}} | \mathbf{y}, \mathbf{u}) \end{split}$$

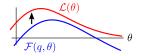
plug into Free-energy:

$$\mathcal{F}(\theta) = \int \mathrm{d}f \; q(f) \log \frac{p(\mathbf{y}, f|\theta)}{p(f_{\neq \mathbf{u}}|\mathbf{u})q(\mathbf{u})} = \int \mathrm{d}f \; q(f) \log \frac{p(\mathbf{y}|\mathbf{f}, \theta) \frac{p(f_{\neq \mathbf{u}}|\mathbf{u})p(\mathbf{u})}{p(f_{\neq \mathbf{u}}|\mathbf{u})}q(\mathbf{u})}{\frac{p(f_{\neq \mathbf{u}}|\mathbf{u})q(\mathbf{u})}{p(f_{\neq \mathbf{u}}|\mathbf{u})}q(\mathbf{u})}$$



$$\mathcal{F}(\theta) = \int \mathsf{d}f \ q(f) \log \frac{p(\mathbf{y}, f|\theta)}{p(f_{\neq \mathbf{u}}|\mathbf{u})q(\mathbf{u})} = \int \mathsf{d}f \ q(f) \log \frac{p(\mathbf{y}|\mathbf{f}, \theta)\overline{p(f_{\neq \mathbf{u}}|\mathbf{u})}p(\mathbf{u})}{\overline{p(f_{\neq \mathbf{u}}|\mathbf{u})}q(\mathbf{u})}$$

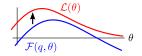
where $q(f) = q(\mathbf{u}, f_{\neq \mathbf{u}}) = q(f_{\neq \mathbf{u}} | \mathbf{u})q(\mathbf{u}) = p(f_{\neq \mathbf{u}} | \mathbf{u})q(\mathbf{u})$



$$\mathcal{F}(\theta) = \int \mathsf{d}f \ q(f) \log \frac{p(\mathbf{y}, f|\theta)}{p(f_{\neq \mathbf{u}}|\mathbf{u})q(\mathbf{u})} = \int \mathsf{d}f \ q(f) \log \frac{p(\mathbf{y}|\mathbf{f}, \theta)p(f_{\neq \mathbf{u}}|\mathbf{u})p(\mathbf{u})}{p(f_{\neq \mathbf{u}}|\mathbf{u})q(\mathbf{u})}$$

where $q(f) = q(\mathbf{u}, f_{\neq \mathbf{u}}) = q(f_{\neq \mathbf{u}} | \mathbf{u}) q(\mathbf{u}) = p(f_{\neq \mathbf{u}} | \mathbf{u}) q(\mathbf{u})$

$$\begin{aligned} \mathcal{F}(\theta) &= \langle \log p(\mathbf{y}|\mathbf{f},\theta) \rangle_{q(f)} - \mathbf{KL}(q(\mathbf{u})||p(\mathbf{u})) \\ & \bigstar \\ \text{average of} \\ \text{quadratic form} \\ \end{aligned} \\ \begin{aligned} \mathbf{KL} \text{ between two} \\ \text{multivariate Gaussians} \end{aligned}$$



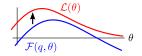
$$\mathcal{F}(\theta) = \int \mathrm{d}f \; q(f) \log \frac{p(\mathbf{y}, f|\theta)}{p(f_{\neq \mathbf{u}}|\mathbf{u})q(\mathbf{u})} = \int \mathrm{d}f \; q(f) \log \frac{p(\mathbf{y}|\mathbf{f}, \theta)p(f_{\neq \mathbf{u}}|\mathbf{u})p(\mathbf{u})}{p(f_{\neq \mathbf{u}}|\mathbf{u})q(\mathbf{u})}$$

where $q(f) = q(\mathbf{u}, f_{\neq \mathbf{u}}) = q(f_{\neq \mathbf{u}} | \mathbf{u}) q(\mathbf{u}) = p(f_{\neq \mathbf{u}} | \mathbf{u}) q(\mathbf{u})$

$$\mathcal{F}(\theta) = \langle \log p(\mathbf{y}|\mathbf{f}, \theta) \rangle_{q(f)} - \mathbf{KL}(q(\mathbf{u})||p(\mathbf{u}))$$

$$\mathbf{A} \qquad \mathbf{A} \qquad$$

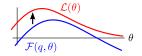
make bound as tight as possible: $q^*(\mathbf{u}) = \underset{q(\mathbf{u})}{\arg \max} \mathcal{F}(q, \theta)$



$$\mathcal{F}(\theta) = \int \mathsf{d}f \ q(f) \log \frac{p(\mathbf{y}, f|\theta)}{p(f_{\neq \mathbf{u}}|\mathbf{u})q(\mathbf{u})} = \int \mathsf{d}f \ q(f) \log \frac{p(\mathbf{y}|\mathbf{f}, \theta)p(f_{\neq \mathbf{u}}|\mathbf{u})p(\mathbf{u})}{p(f_{\neq \mathbf{u}}|\mathbf{u})}q(\mathbf{u})$$

where $q(f) = q(\mathbf{u}, f_{\neq \mathbf{u}}) = q(f_{\neq \mathbf{u}} | \mathbf{u}) q(\mathbf{u}) = p(f_{\neq \mathbf{u}} | \mathbf{u}) q(\mathbf{u})$

make bound as tight as possible: $q^*(\mathbf{u}) = \underset{q(\mathbf{u})}{\arg \max} \mathcal{F}(q, \theta)$ $q^*(\mathbf{u}) \propto p(\mathbf{u}) \mathcal{N}(\mathbf{y}; \mathsf{K}_{\mathsf{fu}} \mathsf{K}_{\mathsf{uu}}^{-1} \mathbf{u}, \sigma_{\mathsf{y}}^2 \mathbf{I})$ (DTC)



$$\mathcal{F}(\theta) = \int \mathsf{d}f \ q(f) \log \frac{p(\mathbf{y}, f|\theta)}{p(f_{\neq \mathbf{u}}|\mathbf{u})q(\mathbf{u})} = \int \mathsf{d}f \ q(f) \log \frac{p(\mathbf{y}|\mathbf{f}, \theta)p(f_{\neq \mathbf{u}}|\mathbf{u})p(\mathbf{u})}{p(f_{\neq \mathbf{u}}|\mathbf{u})q(\mathbf{u})}$$

where $q(f) = q(\mathbf{u}, f_{\neq \mathbf{u}}) = q(f_{\neq \mathbf{u}} | \mathbf{u}) q(\mathbf{u}) = p(f_{\neq \mathbf{u}} | \mathbf{u}) q(\mathbf{u})$

$$\begin{aligned} \mathcal{F}(\theta) &= \langle \log p(\mathbf{y}|\mathbf{f},\theta) \rangle_{q(f)} - \mathbf{KL}(q(\mathbf{u})||p(\mathbf{u})) \\ & \mathbf{\uparrow} & \mathbf{\uparrow} \\ \text{average of} & \mathbf{KL} \text{ between two} \\ \text{quadratic form} & \text{multivariate Gaussians} \end{aligned}$$

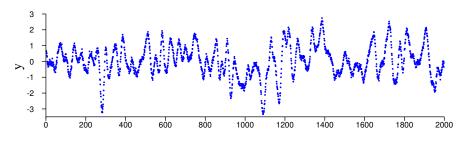
make bound as tight as possible: $q^*(\mathbf{u}) = \underset{q(\mathbf{u})}{\arg \max} \mathcal{F}(q, \theta)$ $q^*(\mathbf{u}) \propto p(\mathbf{u}) \mathcal{N}(\mathbf{y}; \mathbf{K}_{\mathsf{fu}} \mathbf{K}_{\mathsf{uu}}^{-1} \mathbf{u}, \sigma_{\mathbf{y}}^2 \mathbf{I})$ (DTC) $\mathcal{F}(q^*, \theta) = \log \mathcal{N}(\mathbf{y}; \mathbf{0}, \mathbf{K}_{\mathsf{fu}} \mathbf{K}_{\mathsf{uu}}^{-1} \mathbf{K}_{\mathsf{uf}}, \sigma_{\mathbf{y}}^2 \mathbf{I}) - \frac{1}{2\sigma_{\mathbf{y}}^2} \operatorname{trace}(\mathbf{K}_{\mathsf{ff}} - \mathbf{K}_{\mathsf{fu}} \mathbf{K}_{\mathsf{uu}}^{-1} \mathbf{K}_{\mathsf{uf}})$ DTC like uncertainty based correction

- optimisation of pseudo point inputs: VFE has better guarantees than FITC
- variational methods known to underfit (and have other biases)
- no augmentation required: target is posterior over functions, which includes inducing variables
 - pseudo-input locations are pure variational parameters (do not parameterise the generative model like they do in FITC)
 - coherent way of adding pseudo-data: more complex posteriors require more computational resources (more pseudo-points)
- Rule of thumb:

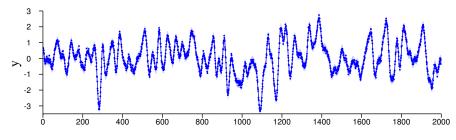
VFE returns better mean estimates

FITC returns better error-bar estimates

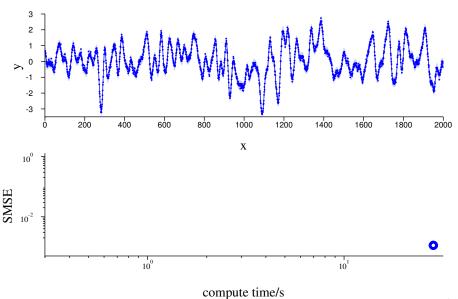
• how should we select M = number of pseudo-points?

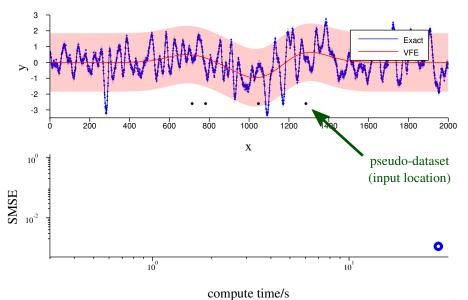


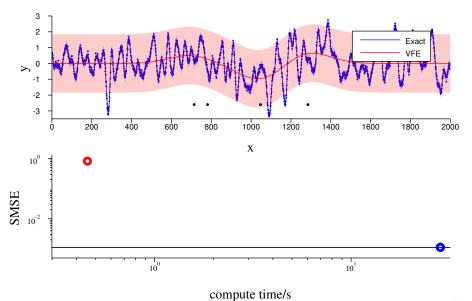
Х

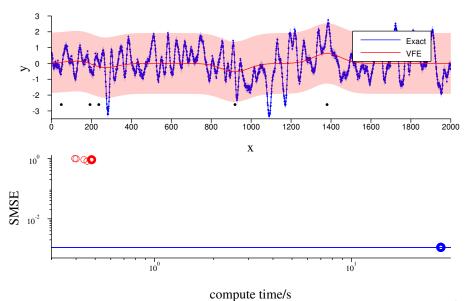


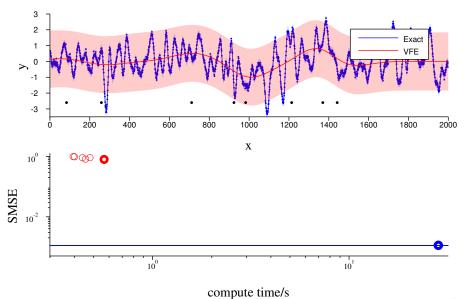
Х

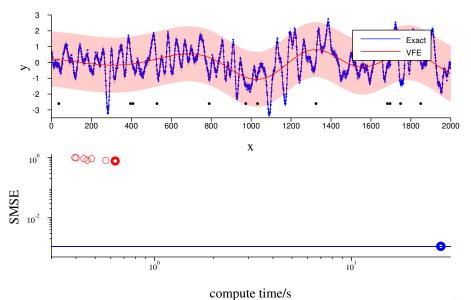


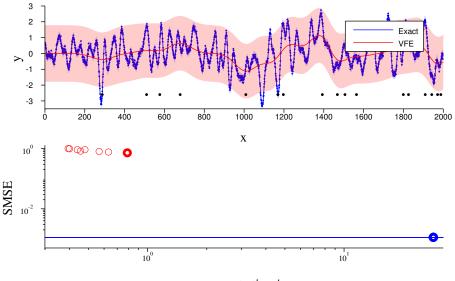


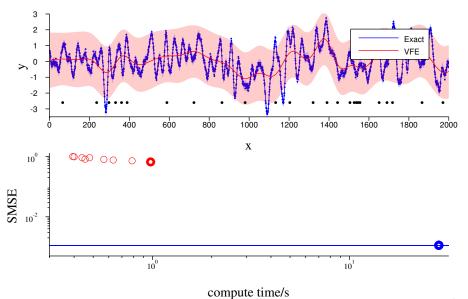


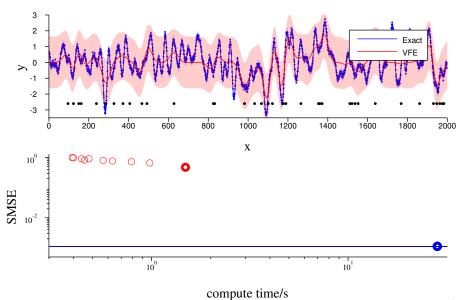


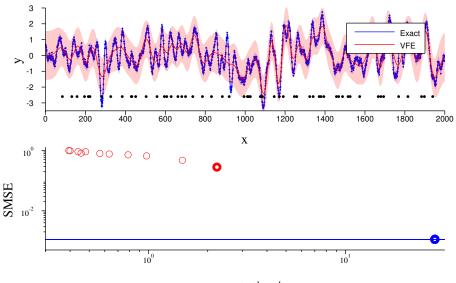


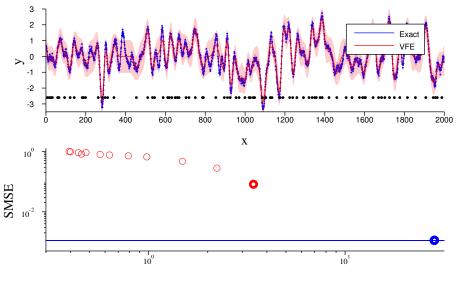


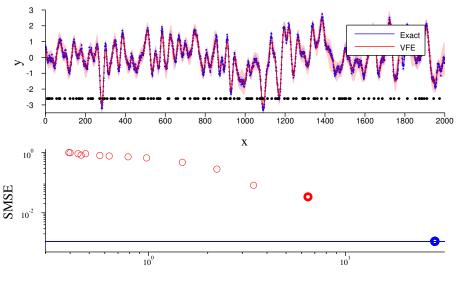


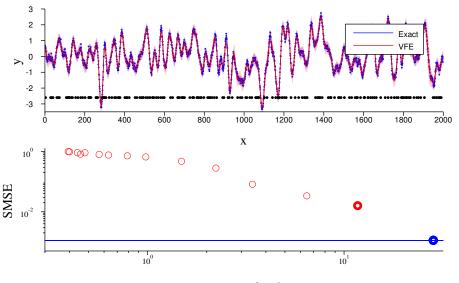


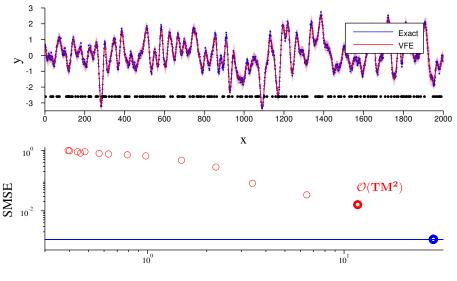


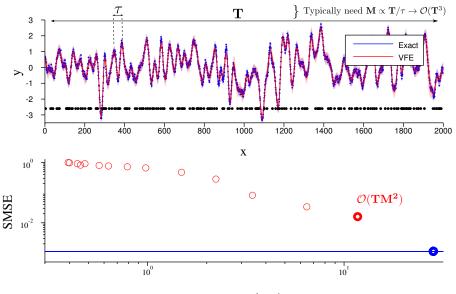






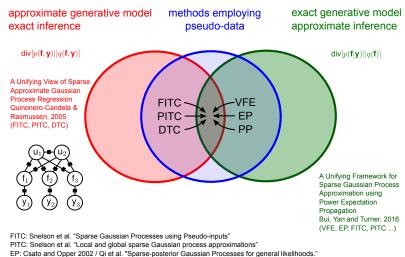






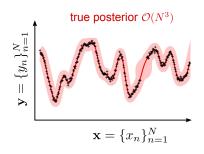
Power Expectation Propagation and Gaussian Processes

A Brief History of Gaussian Process Approximations

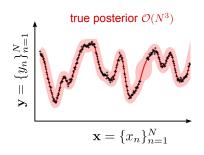


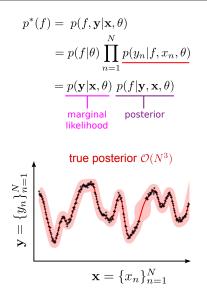
VFE: Titsias "Variational Learning of Inducing Variables in Sparse Gaussian Processes"

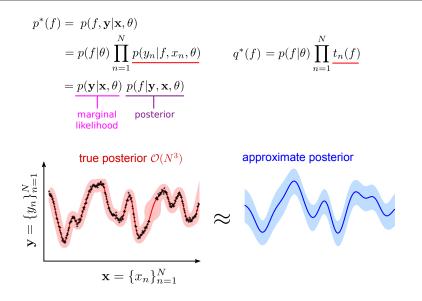
 $p^*(f) = p(f, \mathbf{y} | \mathbf{x}, \theta)$

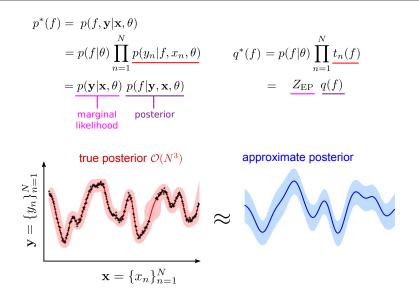


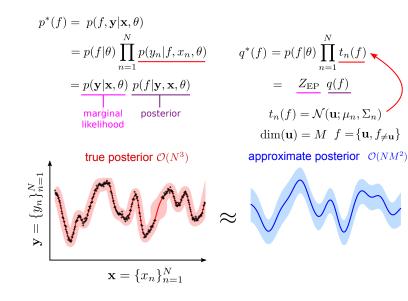
$$p^{*}(f) = p(f, \mathbf{y} | \mathbf{x}, \theta)$$
$$= p(f|\theta) \prod_{n=1}^{N} \underline{p(y_n|f, x_n, \theta)}$$

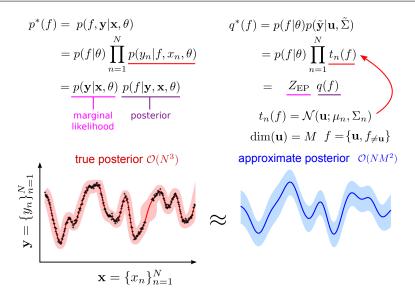


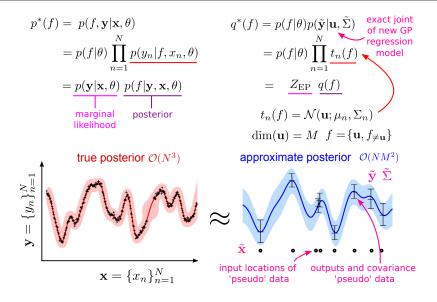












1. remove

 $\mathbf{r}^{\backslash n}(f) = \frac{q^*(f)}{t_n(\mathbf{u})}$

cavity

take out one pseudo-observation likelihood

1. remove

$$q^{\backslash n}(f) = \frac{q^*(f)}{t_n(\mathbf{u})}$$
 cavity

take out one pseudo-observation likelihood

2. include

$$p_n^{\text{tilt}}(f) = q^{\backslash n}(f)p(y_n|f, x_n, \theta)$$

$$f$$
tilted

add in one true observation likelihood

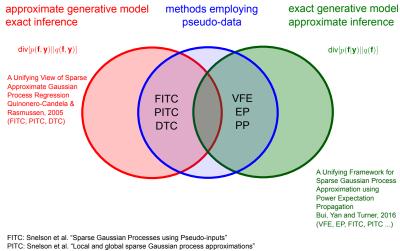
1. remove
$$q^{\setminus n}(f) = \frac{q^*(f)}{t_n(\mathbf{u})}$$
 take out one pseudo-observation likelihood
2. include $p_n^{\text{tilt}}(f) = q^{\setminus n}(f)p(y_n|f, x_n, \theta)$ add in one true observation likelihood
3. project $q^*(f) = \underset{q^*(f)}{\operatorname{argmin}} \operatorname{KL}\left[p_n^{\text{tilt}}(f)||q^*(f)\right]$ project onto approximating family

1. remove
$$q^{\setminus n}(f) = \frac{q^*(f)}{t_n(\mathbf{u})}$$
take out one
pseudo-observation
likelihood2. include $p_n^{\text{tilt}}(f) = q^{\setminus n}(f)p(y_n|f, x_n, \theta)$ add in one
true observation
likelihood3. project $q^*(f) = \underset{q^*(f)}{\operatorname{argmin}} \operatorname{KL}\left[p_n^{\operatorname{tilt}}(f)||q^*(f)\right]$ project onto
approximating
family4. update $t_n(\mathbf{u}) = \frac{q^*(f)}{q^{\setminus n}(f)}$ update
pseudo-observation
likelihood

1. remove
$$q^{\setminus n}(f) = \frac{q^*(f)}{t_n(\mathbf{u})}$$
take out one
pseudo-observation
likelihood2. include $p_n^{\text{tilt}}(f) = q^{\setminus n}(f)p(y_n|f, x_n, \theta)$ add in one
true observation
likelihood3. project $q^*(f) = \underset{q^*(f)}{\operatorname{argmin}} \operatorname{KL}\left[p_n^{\operatorname{tilt}}(f)||q^*(f)\right]$ project onto
approximating
family1. minimum: moments matched at pseudo-inputs $\mathcal{O}(NM^2)$ 2. Gaussian regression: matches moments everywhere4. update $t_n(\mathbf{u}) = \frac{q^*(f)}{q^{\setminus n}(f)}$ update
pseudo-observation
likelihood

1. remove
$$q^{\setminus n}(f) = \frac{q^*(f)}{t_n(\mathbf{u})}$$
take out one
pseudo-observation
likelihood2. include $p_n^{\text{tilt}}(f) = q^{\setminus n}(f)p(y_n|f, x_n, \theta)$ add in one
true observation
likelihood3. project $q^*(f) = \underset{q^*(f)}{\operatorname{argmin}} \operatorname{KL}\left[p_n^{\operatorname{tilt}}(f)||q^*(f)\right]$ project onto
approximating
family1. minimum: moments matched at pseudo-inputs
 $q^{\times}(f)$ $\mathcal{O}(NM^2)$ 2. Gaussian regression: matches moments everywhereupdate
 $z_n \mathcal{N}(K_{f_n\mathbf{u}}K_{\mathbf{uu}}^{-1}\mathbf{u};g_n,v_n)$ 4. update $t_n(\mathbf{u}) = \frac{q^*(f)}{q^{\setminus n}(f)}$ update
 $rank 1$

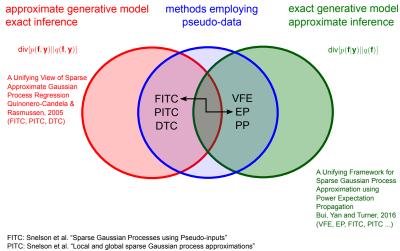
A Brief History of Gaussian Process Approximations



EP: Csato and Opper 2002 / Qi et al. "Sparse-posterior Gaussian Processes for general likelihoods."

VFE: Titsias "Variational Learning of Inducing Variables in Sparse Gaussian Processes"

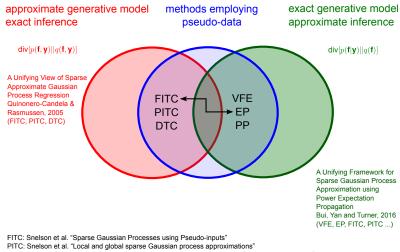
Fixed points of EP = FITC approximation



EP: Csato and Opper 2002 / Qi et al. "Sparse-posterior Gaussian Processes for general likelihoods."

VFE: Titsias "Variational Learning of Inducing Variables in Sparse Gaussian Processes"

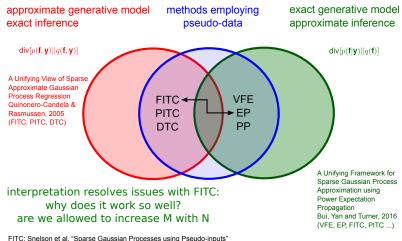
Fixed points of EP = FITC approximation



EP: Csato and Opper 2002 / Qi et al. "Sparse-posterior Gaussian Processes for general likelihoods."

VFE: Titsias "Variational Learning of Inducing Variables in Sparse Gaussian Processes"

Fixed points of EP = FITC approximation



PTIC: Snelson et al. "Local and global sparse Gaussian Processes using Pseudo-inputs PTIC: Snelson et al. "Local and global sparse Gaussian process approximations" EP: Csato and Opper 2002 / Qi et al. "Sparse-posterior Gaussian Processes for general likelihoods." VFE: Titsias "Variational Learning of Inducing Variables in Sparse Gaussian Processes" DTC / PP: Seeger et al. "Fast Forward Selection to Speed Up Sparse Gaussian Process Regression"

1. remove
$$q^{\setminus n}(f) = \frac{q^*(f)}{t_n(\mathbf{u})}$$
 take out one pseudo-observation likelihood
2. include $p_n^{\text{tilt}}(f) = q^{\setminus n}(f)p(y_n|f, x_n, \theta)$ add in one true observation likelihood
3. project $q^*(f) = \underset{q^*(f)}{\operatorname{argmin}} \operatorname{KL}\left[p_n^{\text{tilt}}(f)||q^*(f)\right]$ project onto approximating family
1. minimum: moments matched at pseudo-inputs $\mathcal{O}(NM^2)$
2. Gaussian regression: matches moments everywhere
4. update $t_n(\mathbf{u}) = \frac{q^*(f)}{q^{\setminus n}(f)}$ update pseudo-observation likelihood interval in the second s

Power EP algorithm (as tractable as EP)

1. remove
$$q^{\setminus n}(f) = \frac{q^*(f)}{t_n(\mathbf{u})^{\alpha}}$$
 take out fraction of pseudo-observation likelihood
2. include $p_n^{\text{tilt}}(f) = q^{\setminus n}(f)p(y_n|f, x_n, \theta)^{\alpha}$ add in fraction of true observation likelihood
3. project $q^*(f) = \underset{q^*(f)}{\operatorname{argmin}} \operatorname{KL}\left[p_n^{\text{tilt}}(f)||q^*(f)\right]$ project onto approximating family
1. minimum: moments matched at pseudo-inputs $\mathcal{O}(NM^2)$
2. Gaussian regression: matches moments everywhere
4. update $t_n(\mathbf{u})^{\alpha} = \frac{q^*(f)}{q^{\setminus n}(f)}$ update pseudo-observation likelihood $t_n(\mathbf{u}) = z_n \mathcal{N}(\operatorname{K}_{f_n\mathbf{u}}\operatorname{K}_{\mathbf{uu}}^{-1}\mathbf{u}; g_n, v_n)$ rank 1



[4] Quiñonero-Candela et al. 2005

- [5] Snelson et al., 2005
- [6] Snelson, 2006
- [7] Schwaighofer, 2002

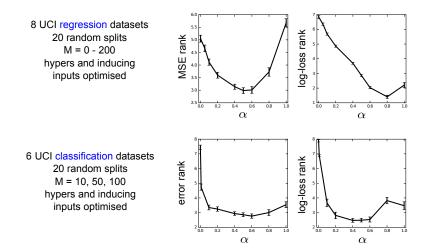
* = optimised pseudo-inputs

** = structured versions of VFE recover VFE

[8] Titsias, 2009
[9] Csató, 2002
[10] Csató et al., 2002
[11] Seeger et al., 2003

[12] Naish-Guzman et al, 2007

- [13] Qi et al., 2010
- [14] Hensman et al., 2015
- [15] Hernández-Lobato et al., 2016
- [16] Matthews et al., 2016
- [17] Figueiras-Vidal et al., 2009



 α = 0.5 does well on average

Approximate inference in GPs:

• A Unifying Framework for Sparse Gaussian Process Approximation using Power Expectation Propagation, arXiv preprint 2016

Scalable Approximate inference:

- Stochastic Expectation Propagation, NIPS 2015
- Black-box α -divergence Minimization, ICML 2016

Deep Gaussian Processes (incl. comparisons to Bayesian Neural Networks and GPs):

• Deep Gaussian Processes for Regression using Approximate Expectation Propagation, ICML 2016

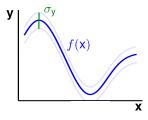
Q1. What's the formal justification for how we were using GPs for regression?

Q1. What's the formal justification for how we were using GPs for regression?

generative model (like non-linear regression)

$$\mathbf{y}(\mathbf{x}) = f(\mathbf{x}) + \epsilon \sigma_{\mathbf{y}}$$

 $p(\epsilon) = \mathcal{N}(0,1)$



Q1. What's the formal justification for how we were using GPs for regression?

generative model (like non-linear regression)

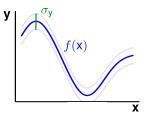
$$\mathbf{y}(\mathbf{x}) = f(\mathbf{x}) + \epsilon \sigma_{\mathbf{y}}$$

 $p(\epsilon) = \mathcal{N}(0, 1)$

place GP prior over the non-linear function

$$p(f(\mathbf{x})|\theta) = \mathcal{GP}(0, \mathbf{K}(\mathbf{x}, \mathbf{x}'))$$

 $K(\mathbf{x}, \mathbf{x}') = \sigma^2 \exp\left(-\frac{1}{2l^2}(\mathbf{x} - \mathbf{x}')^2\right)$ (smoothly wiggling functions expected)



Q1. What's the formal justification for how we were using GPs for regression?

generative model (like non-linear regression)

$$\mathbf{y}(\mathbf{x}) = f(\mathbf{x}) + \epsilon \sigma_{\mathbf{y}}$$

 $p(\epsilon) = \mathcal{N}(0, 1)$

place GP prior over the non-linear function

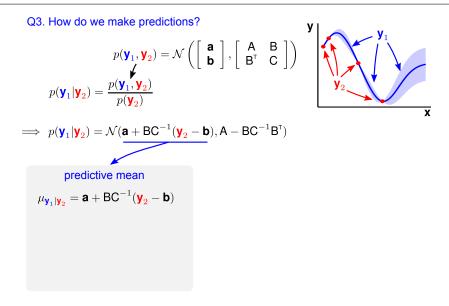
$$p(f(\mathbf{x})|\theta) = \mathcal{GP}(0, \mathsf{K}(\mathbf{x}, \mathbf{x}'))$$
$$\mathsf{K}(\mathbf{x}, \mathbf{x}') = \sigma^2 \exp\left(-\frac{1}{2l^2}(\mathbf{x} - \mathbf{x}')^2\right) \qquad 0$$

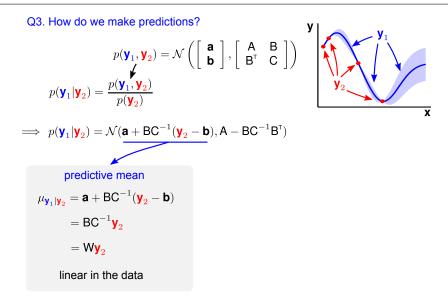
f(x)

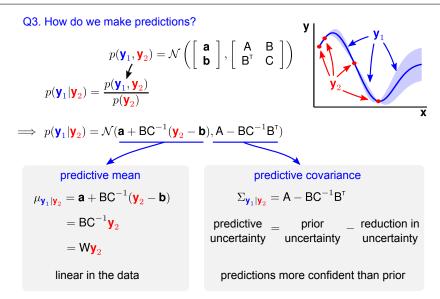
(smoothly wiggling functions expected)

sum of Gaussian variables = Gaussian: induces a GP over y(x)

$$p(\mathbf{y}(\mathbf{x})|\theta) = \mathcal{GP}(0, \mathbf{K}(\mathbf{x}, \mathbf{x}') + \mathbf{I}\sigma_{\mathbf{y}}^2)$$







$$\mathcal{KL}(p_1(z)||p_2(z)) = \sum_z p_1(z) \log \frac{p_1(z)}{p_2(z)}$$

Important properties:

- Gibb's inequality: $\mathcal{KL}(p_1(z)||p_2(z)) \ge 0$, equality at $p_1(z) = p_2(z)$
 - ▶ proof via Jensen's inequality or differentiation (see MacKay pg. 35)
- Non-symmetric: $\mathcal{KL}(p_1(z)||p_2(z)) \neq \mathcal{KL}(p_2(z)||p_1(z))$
 - hence named divergence and not distance

Example:

• binary variables
$$z \in \{0,1\}$$

•
$$p(z=1)=0.8$$
 and $q(z=1)=\rho$

