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Outline

I GP hyperparameter inference
I Priors on GP hyperparameters
I Benefits of integration vs. point estimate
I MCMC, CCD
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Gaussian processes and hyperparameters

I Gaussian processes are priors on function space
I GPs are usually constructed with a parametric covariance

function
I we need to think about priors on those parameters

I If we have “big data” and small number of hyperparameters

I priors and integration over the posterior is not so important
I even more so when sparse approximations, which limit the

complexity of the models, are used



Priors and integration for GP hyperparameters
Vehtari

Gaussian processes and hyperparameters

I Gaussian processes are priors on function space
I GPs are usually constructed with a parametric covariance

function
I we need to think about priors on those parameters

I If we have “big data” and small number of hyperparameters

I priors and integration over the posterior is not so important
I even more so when sparse approximations, which limit the

complexity of the models, are used



Priors and integration for GP hyperparameters
Vehtari

1D demo
I 1D demo originally by Michael Betancourt
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1D demo summary

I Likelihood for lengthscale beyond the data scale is flat and
non-identifiable because the functions looks all the same

I add prior making large lengthscale less likely
I If no repeated measurements non-identifiability between

signal magnitude and noise magnitude when lengthscale
short

I add prior making short lengthscale less likely
I add prior on measurement noise
I make repeated measurements

I Nonidentifiability between lengthscale and magnitude
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Non-Gaussian likelihoods

I Poisson
I variance is equal to mean, and thus can’t overfit

I except if data is not conditionally Poisson distributed
I Binary classification (logit/probit)

I unbounded likelihood if separable
I with short if enough lengthscale separable
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Sparse approximations

I Sparse approximations limit the complexity
I FITC type models work only with large lengthscale
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Higher dimensions

I Separate lengthscale for each dimension, aka ARD
I lengthscale is related to non-linearity
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Toy example
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Bayesian optimization

I GPs have been used too much as black boxes
I Bonus: use shape constrained GPs (see, e.g., Siivola

et al., 2017)
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Periodic covariance function

I If you know the period fix it
I If you don’t know, there can be serious identifiability

problems unless informative priors are used
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Parametric model plus GP

I For example, linear model plus GP
I with long lengthscale GP is like a linear model which

causes non-identifiability and problems in interpretation

I Same for other parametric model + GP
I need more informative priors
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GP plus GP
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GP plus GP

I Identifiability problems as different components are
explaining same features in the data

I priors which “encourage” specialization of the components
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Summary on priors and benefits of integration

I Specific prior recommendations for length scale
I inverse gamma has a sharp left tail that puts negligible

mass on small length-scales, but a generous right tail,
allowing for large length-scales (but still reducing
non-identifiability)

I generalized inverse Gaussian has an inverse gamma left
tail (if p ≤ 0) and a Gaussian right tail (avoids identifiability
issue when combined with linear model)

I Specific weakly informative prior recommendations for
signal and noise magnitude

I half-normals are often enough if length-scale has
informative prior

I if information about measurement accuracy is available,
informative prior such as gamma or scaled inverse Chi2 for
variance
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GPs in Stan

I Stan manual 2.16.0 (and later) chapter 16
http://mc-stan.org/users/documentation/index.html

I code and documentation by Rob Trangucci
I prior recommendations by Rob Trangucci, Michael

Betancourt, Aki Vehtari
I Code examples https://github.com/rtrangucci/gps in stan

I by Rob Trangucci

http://mc-stan.org/users/documentation/index.html
https://github.com/rtrangucci/gps_in_stan
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Hamiltonian Monte Carlo + NUTS
I Uses gradient information for more efficient sampling
I Alternating dynamic simulation and sampling of the energy

level
I Parameters

I step size, number of steps in each chain

I No U-Turn Sampling
I adaptively selects number of steps to improve robustness

and efficiency
I Adaptation in Stan

I Step size adjustment (mass matrix) is estimated during
initial adaptation phase

I Demo
I https://chi-feng.github.io/mcmc-demo/app.html#

RandomWalkMH,donut
I note that HMC/NUTS in this demo is not exactly same as in

Stan

https://chi-feng.github.io/mcmc-demo/app.html#RandomWalkMH,donut
https://chi-feng.github.io/mcmc-demo/app.html#RandomWalkMH,donut
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CCD

I Deterministic placement of integration points
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Estimation of the predictive performance of GP

I How to avoid naive k -fold-CV?
I leave-one-out (LOO) approximations

I Approximations depend on how the predictions are made
I analytically, Laplace, EP, VB, MCMC for latents?
I marginal posterior improvements?
I integration over the hyperparameters?
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Predictive distributions

I Posterior predictive distribution

p(ỹ |x̃ ,D) (1)

I LOO predictive distribution

p(yi |xi ,D−i) (2)
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Hierarchical LOO computation

I Possible to compute first

p(yi |xi ,D−i , θ, φ) (3)

and then

p(yi |xi ,D−i) =

∫
p(yi |xi ,D−i , θ, φ)p(θ, φ|D−i)dθdφ (4)
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Generic approach
I Consider the case where we have not yet seen the i th

observation. Then using the Bayes’ rule we can add
information from the i th observation

p(fi |D) =
p(yi |fi)p(fi |xi ,D−i)

p(yi |xi ,D−i)
(5)

I Correspondingly we can remove the effect of the i th
observation from the full posterior:

p(fi |xi ,D−i) =
p(fi |D)p(yi |xi ,D−i)

p(yi |fi)
(6)

If we now integrate both sides over fi and rearrange the
terms we get

p(yi |xi ,D−i) = 1/
∫

p(fi |D)

p(yi |fi)
dfi (7)
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Generic approach

I In some cases, we can compute p(fi |xi ,D−i) exactly or
approximate it efficiently and then we can compute the
LOO predictive density,

p(yi |xi ,D−i) =

∫
p(fi |xi ,D−i)p(yi |fi)dfi , (8)



Priors and integration for GP hyperparameters
Vehtari

Analytic
I With Gaussian likelihood and fixed hyperparameters

analytic LOO equations for

p(fi |xi ,D−i , θ, φ) ∝ p(fi |D, θ)

p(yi |fi , φ)

= N(fi |µ−i , v−i), (9)

where

µ−i = v−i(Σ−1
ii µi − σ−2yi)

v−i =
(

Σ−1
ii − σ−2

)−1
(10)

which removes the effect of observation yi from the
marginal p(fi |xi ,D, θ, φ)
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EP

I Opper & Winther (2000) showed that EP cavity distribution
is up to first order LOO consistent

I this means that if we are going to use EP approximated
predictive distribution of the latent q(f̃ |x̃ ,D, θ, φ) we can use
analytic equations given the Gaussian latent posterior
approximation by EP

I LOO distributions are cavity distributions, which are
obtained as a byproduct of the method



Priors and integration for GP hyperparameters
Vehtari

Laplace

I First order LOO consistency of the Laplace approximation
was shown by Vehtari, Mononen, Tolvanen, Winther (2014)

I this means that if we are going to use Laplace
approximated predictive distribution of the latent
q(f̃ |x̃ ,D, θ, φ) we can use analytic equations given the
Gaussian latent posterior approximation by Laplace
approximation

with site terms N(fi |µ̃i , Σ̃i )

Σ̃i = − 1
∇i∇i log p(yi |fi , φ)|fi=f̂i

(11)

µ̃i = f̂ + Σ̃i∇i log p(yi | fi , φ)|fi=f̂i
(12)

I computation of LOO takes same time as in case of
Gaussian likelihood
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VB

I Likely that same holds for VB
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Experimental results

I Small datasets, so that we can compute brute-force LOO
I Accuracy of the approximations improves for larger

datasets

Data set n d observation model
Ripley 250 2 probit
Australian 690 14 probit
Ionosphere 351 33 probit
Sonar 208 60 probit
Leukemia 1043 4 log-logistic with censoring

Table: Summary of datasets and models in our examples.
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LA results with fixed hyperparameters
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Figure: Bias when the target is brute-force-LOO with Laplace and
varying flexibility of the model. Model flexibility was varied by
rescaling the length scale(s) in the GP model. Model flexibility is
measured by the relative effective number of parameters peff/n. The
flexibility of the MAP model is shown with a vertical dashed line.
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EP results with fixed hyperparameters
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LA-CM2 results with fixed hyperparameters
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EP-FACT results with fixed hyperparameters
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Unknown hyperparameters

I If hyperparameters are unknown and optimised, the above
estimates are optimistic

I bias can be negligible, if big data and the number of
hyperparameters is small

I Better to integrate over the hyperparameters
I deterministic samples, e.g., CCD
I stochastic samples, e.g. importance sampling, MCMC
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Hierarchical approximation using IS
I Using above results for the conditional part

p(yi |xi ,D−i , θ, φ), the LOO predictive distribution can be
approximated using IS for hyperparameters

p(ỹi |xi ,D−i) ≈
∑S

s=1 p(ỹi |D−i , φ
s)ws

i∑S
s=1 ws

i

, (13)

where ws
i are importance weights and

ws
i ∝

1
p(yi |xi ,D−i , θs, φs)

, (14)

I The LOO predictive density simplifies to

p(yi |xi ,D−i) ≈
1

1
S
∑S

s=1
1

p(yi |xi ,D−i ,θs,φs)

(15)
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Improving IS

I Variance of IS can be reduced by using truncated
importance sampling

I “Very Good Importance Sampling” (work in progress)
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Hierarchical approximation using IS

I Importance weighting works also for deterministic CCD
method
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LA/EP results with unknown hyperparameters

Method Ripley Australian Ionosphere Sonar Leukemia
LA-LOO+CCD+IS 0.2 (0.1) 3.4 (0.4) -0.1 (0.1) -0.13 (0.06) 0.56 (0.05)
LA-LOO+CCD 0.8 (0.2) 7.2 (0.9) 0.6 (0.2) 0.5 (0.2) 4.8 (0.2)
LA-LOO+MAP 1.0 (0.2) 9.2 (1.8) 1.3 (0.2) 1.3 (0.3) 4.9 (0.6)

Table: Bias and standard deviation when the target is
brute-force-LOO with Laplace and CCD.

Method Ripley Australian Ionosphere Sonar Leukemia
EP-LOO+CCD+IS 0.42 (0.14) 7.3 (1.4) 0.8 (0.6) -0.24 (0.14) 0.49 (0.04)
EP-LOO+CCD 1.3 (0.4) 15 (2) 2.8 (1.3) 0.6 (0.3) 4.8 (0.2)
EP-LOO+MAP 1.4 (0.3) 17 (2) 2.8 (0.7) 0.9 (0.3) 4.9 (0.6)

Table: Bias and standard deviation when the target is
brute-force-LOO with EP and CCD.
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LA/EP results with unknown hyperparameters

Method Ripley Australian Ionosphere Sonar Leukemia
LA-LOO+CCD+IS 0.2 (0.1) 3.4 (0.4) -0.1 (0.1) -0.13 (0.06) 0.56 (0.05)
LA-LOO+CCD 0.8 (0.2) 7.2 (0.9) 0.6 (0.2) 0.5 (0.2) 4.8 (0.2)
LA-LOO+MAP 1.0 (0.2) 9.2 (1.8) 1.3 (0.2) 1.3 (0.3) 4.9 (0.6)

Table: Bias and standard deviation when the target is
brute-force-LOO with Laplace and CCD.

Method Ripley Australian Ionosphere Sonar Leukemia
EP-LOO+CCD+IS 0.42 (0.14) 7.3 (1.4) 0.8 (0.6) -0.24 (0.14) 0.49 (0.04)
EP-LOO+CCD 1.3 (0.4) 15 (2) 2.8 (1.3) 0.6 (0.3) 4.8 (0.2)
EP-LOO+MAP 1.4 (0.3) 17 (2) 2.8 (0.7) 0.9 (0.3) 4.9 (0.6)

Table: Bias and standard deviation when the target is
brute-force-LOO with EP and CCD.
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Non-log-concave likelihoods

I Above nice results are with log-concave likelihoods
I Does not work so well with non-log-concave likelihoods

I first order consistency proof assumes log-concave
likelihoods

I posterior can be multimodal→ unimodal approximation bad
I pseudo observations may have repulsive effect

I (current) marginal improvement methods don’t fix this
problem
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Summary

I LOO with LA or EP, log-concave likelihoods and fixed
hyperparameters is fast and reliable

I IS can be used to handle unknown hyperparameters
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Warning
I LOO-CV can be used to compare a small set of models
I For a large number of models

I the selection process will cause overfitting
I the inference conditional on the selected model is wrong

0 25 50
−3.5

−2.5

−1.5

−0.5

n = 20

0 25 50
−3.3

−2.4

−1.5

n = 50

0 25 50
−2.2

−1.8

−1.4

n = 100

I Use instead a projection predictive approach
Piironen, J., and Vehtari, A. (2016b). Projection predictive input variable
selection for Gaussian process models. In Machine Learning for Signal
Processing (MLSP), 2016 IEEE International Workshop on,
doi:10.1109/MLSP.2016.7738829. arXiv preprint arXiv:1510.04813.
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Selection induced bias in variable selection
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Warning
I LOO-CV can be used to compare a small set of models
I For a large number of models

I the selection process will cause overfitting
I the inference conditional on the selected model is wrong
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I Use instead a projection predictive approach
Piironen, J., and Vehtari, A. (2016b). Projection predictive input variable
selection for Gaussian process models. In Machine Learning for Signal
Processing (MLSP), 2016 IEEE International Workshop on,
doi:10.1109/MLSP.2016.7738829. arXiv preprint arXiv:1510.04813.
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