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Big picture

“Civilization advances by extending the
number of important operations which

we can perform without thinking of them.”
(Alfred North Whitehead)

We are interested on automation:

I Automatic model configuration.

I Automate the design of physical experiments.
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Global optimization

Consider a ‘well behaved’ function f : X → R where X ⊆ RD is
a bounded domain.

xM = arg min
x∈X

f(x).

I f is explicitly unknown and multimodal.

I Evaluations of f may be perturbed.

I Evaluations of f are expensive.



Expensive functions, who doesn’t have one?

Parameter tuning in ML algorithms.

I Number of layers/units per layer

I Weight penalties, learning rates, etc.



Expensive functions, who doesn’t have one?

Active Path Finding

Optimise the location of a sequence of waypoints in a map to
navigate from a location to a destination.



Expensive functions, who doesn’t have one?

Many other problems:

I Robotics, control, reinforcement learning.

I Scheduling, planning.

I Compilers, hardware, software.

I Industrial design.

I Intractable likelihoods.



What to do?

Option 1: Use previous knowledge

Option 2: Grid search? f is L-Lipschitz continuous and we are
in a noise-free domain. To propose xM,n such that

f(xM )− f(xM,n) ≤ ε

we need to evaluate f on a D-dimensional unit hypercube:
(L/ε)Devaluations!

Example: (10/0.01)5 = 10e14...
... but function evaluations are very expensive!

Option 3: We can sample the space uniformly [Bergstra and
Bengio 2012]

Can we do better?
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Problem for the audience of this tutorial!

You know that:

I Find the optimum of some function f in the interval [0,1].

I f is (L-Lipchitz) continuous and differentiable.

I Evaluations of f are exact and we have 4 of them!



Situation
We have a few function evaluations

Where is the minimum of f?
Where should the take the next evaluation?



Intuitive solution
One curve
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Three curves
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Ten curves



Intuitive solution
Hundred curves



Intuitive solution
Many curves



Intuitive solution
Infinite curves



General idea: surrogate modelling

1. Use a surrogate model of f to carry out the optimization.

2. Define an utility function to collect new data points
satisfying some optimality criterion: optimization as
decision.

3. Study decision problems as inference using the surrogate
model: use a probabilistic model able to calibrate both,
epistemic and aleatoric uncertainty.

Uncertainty Quantification: Making informed decisions



Utility functions

The utility should represent our design goal:.

1. Active Learning and experimental design: reduce the
uncertainty in the model (prediction or hyper-parameters).

2. Optimization: Minimize the loss in a sequence x1, . . . , xn

rN =

N∑
n=1

f(xn)−Nf(xM )

(1) does to a lot exploration whereas (2) encourages
exploitation about the minimum of f .



Bayesian Optimisation
[Mockus, 1978]

Methodology to perform global optimisation of multimodal
black-box functions.

1. Choose some prior measure over the space of possible
objectives f .

2. Combine prior and the likelihood to get a posterior
measure over the objective given some observations.

3. Use the posterior to decide where to take the next
evaluation according to some acquisition/loss function.

4. Augment the data.

Iterate between 2 and 4 until the evaluation budget is over.



Surrogate model: Gaussian process
Default Choice: Gaussian processes [Rasmunsen and Williams, 2006]

Infinite-dimensional probability density, such that each linear
finite-dimensional restriction is multivariate Gaussian.

I Model f(x) ∼ GP(µ(x), k(x, x′)) is determined by the mean
function m(x) and covariance function k(x, x′; θ).
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Exploration vs. exploitation
[Borji and Itti, 2013]

Bayesian optimization explains human active search



GP Upper (lower) Confidence Band
[Srinivas et al., 2010]

Direct balance between exploration and exploitation:

αLCB(x; θ,D) = −µ(x; θ,D) + βtσ(x; θ,D)



GP Upper (lower) Confidence Band
[Srinivas et al., 2010]

I In noiseless cases, it is a lower bound of the function to
minimize.

I This allows to computer a bound on how close we are to
the minimum.

I Optimal choices available for the ’regularization parameter’.



Expected Improvement
[Jones et al., 1998]

αEI(x; θ,D) =

∫
y

max(0, ybest − y)p(y|x; θ,D)dy



Expected Improvement
[Jones et al., 1998]

I Perhaps the most used acquisition.

I Explicit for available for Gaussian posteriors.

I It is too greedy in some problems. It is possible to make
more explorative adding a ‘explorative’ parameter

αEI(x; θ,D) = σ(x; θ,D)(γ(x)Φ(γ(x))) +N (γ(x); 0, 1).

where

γ(x) =
f(xbest)− µ(x; θ,D) + ψ

σ(x; θ,D)
.



Thompson sampling
Probability matching [Rahimi and B. Recht, 2007]

αTHOMPSON (x; θ,D) = g(x)

g(x) is sampled form GP(µ(x), k(x, x′))



Thompson sampling
Probability matching [Rahimi and B. Recht, 2007]

I It is easy to generate posterior samples of a GP at a finite
set of locations.

I More difficult is to generate ‘continuous’ samples.

Possible using the Bochner’s lemma: existence of the Fourier
dual of k, s(ω)which is equal to the spectral density of k

k(x, x′) = νEω
[
e−iω

T (x−x′)
]

= 2νEω,b
[
cos(ωxT + b) cos(ωxT + b)

]
With sampling and this lemma (taking p(w) = s(ω)/ν and
b ∼ U [0, 2π]) we can construct a feature based approximation
for sample paths of the GP.

k(x, x′) ≈ ν

m

m∑
i=1

e−iω
(i)T xe−iω

(i)T x′



Information-theoretic approaches
[Hennig and Schuler, 2013; Hernández-Lobato et al., 2014]

αES(x; θ,D) = H[p(xmin|D)]− Ep(y|D,x)[H[p(xmin|D ∪ {x, y})]]



Information-theoretic approaches
[Hennig and Schuler, 2013; Hernández-Lobato et al., 2014]

Uses the distribution of the minimum

pmin(x) ≡ p[x = arg min f(x)] =

∫
f :I→<

p(f)
∏
x̃∈I
x̃ 6=x

θ[f(x̃)−f(x)]df

where θ is the Heaviside’s step function. No closed form!

Use Thompson sampling to approximate the distribution.
Generate many sample paths from the GP, optimize them to

take samples from pmin(x).



The choice of utility matters
[Hoffman, Shahriari and de Freitas, 2013]

The choice of the utility may change a lot the result of the
optimisation.



The choice of utility in practice
[Hoffman, Shahriari and de Freitas, 2013]

The best utility depends on the problem and the level of
exploration/exploitation required.



Illustration of BO
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Bayesian Optimization
As a ‘mapping’ between two problems

BO is an strategy to transform the problem

xM = arg min
x∈X

f(x)

unsolvable!

into a series of problems:

xn+1 = arg max
x∈X

α(x;Dn,Mn)

solvable!

where now:

I α(x) is inexpensive to evaluate.
I The gradients of α(x) are typically available.
I Still need to find xn+1.



Secrets of Bayesian optimization...

Be aware that:

I The model matters a lot! Be sure that you have it right
(sample hyper-parameters, prior knowledge, etc.)

I Optimizing the acquisition can be hard (multimodal) but
you can use standard techniques.

I Be aware of the input dimension. Up to 10 dimensions is
OK, If you have more probably you’ll need to impose some
structure in the problem.



Main issues

I What to do with the hyper-parameters of the model?

I How to select points to initialize the model?

I How to optimize the acquisition function?



BO independent of the parameters of the GP.
[Snoek et al. 2012]

Integrate out across parameter values or location outputs.



How to initialise the model?

I One point in the centre of the domain.

I Uniformly selected random locations.

I Latin design.

I Halton sequences.

I Determinantal point processes.



Determinantal point processes
Kulesza and Taskar, [2012]

We say that X is a ‘determinantal point process’ on Λ with
kernel K if it is a simple point process on Λ with a joint
intensity or ‘correlation function’ given by

ρn(x1, . . . , xn) = det(K(xi, xj)1≤i,j≤n)

I Probability measures over subsets.

I Possible to characterise the samples in terms of quality and
diversity.



Determinantal point processes
Kulesza and Taskar, [2012]

Key idea:



Determinantal point processes
Kulesza and Taskar, [2012]



Methods to optimise the acquisition function

This may not be easy.

I Gradient descent methods: Conjugate gradient, BFGS, etc.

I Lipschitz based heuristics: DIRECT.

I Evolutionary algorithms: CMA.

Some of these methods can also be used to directly optimize f .



Some advanced topics

I Multi-task Bayesian optimization

I Early stopping

I Parallel Bayesian optimization.

I Non myopic menthods

I Conditional dependencies.

I Preferential optimization.



Multi-task Bayesian Optimization
[Wersky et al., 2013]

Two types of problems:

1. Multiple, and conflicting objectives: design an engine more
powerful but more efficient.

2. The objective is very expensive, but we have access to
another cheaper and correlated one.



Multi-task Bayesian Optimization
[Wersky et al., 2013]

I We want to optimise an objective that it is very expensive
to evaluate but we have access to another function,
correlated with objective, that is cheaper to evaluate.

I The idea is to use the correlation among the function to
improve the optimization.

Multi-output Gaussian process

k̃(x, x′) = B⊗ k(x, x′)



Multi-task Bayesian Optimization
[Wersky et al., 2013]

I Correlation among tasks reduces global uncertainty.

I The choice (acquisition) changes.



Multi-task Bayesian Optimization
[Wersky et al., 2013]

I In other cases we want to optimize several tasks at the
same time.

I We need to use a combination of them (the mean, for
instance) or have a look to the Pareto frontiers of the
problem.

Averaged expected improvement.



Multi-task Bayesian Optimization
[Wersky et al., 2013]



Early-stopping Bayesian optimization
Swersky et al. [2014]

Considerations:

I When looking for a good parameters set for a model, in
many cases each evaluation requires of a inner loop
optimization.

I Learning curves have a similar (monotonically decreasing)
shape.

I Fit a meta-model to the learning curves to predict the
expected performance of sets of parameters

Main benefit: allows for early-stopping



Early-stopping Bayesian optimization
Swersky et al. [2014]

Kernel for learning curves

k(t, t′) =

∫ ∞
0

e−λte−λtϕ(dλ)

where ϕ is a Gamma distribution.



Early-stopping Bayesian optimization
Swersky et al. [2014]

I Non-stationary kernel as an infinite mixture of
exponentially decaying basis function.

I A hierarchical model is used to model the learning curves.

I Early-stopping is possible for bad parameter sets.



Early-stopping Bayesian optimization
Swersky et al. [2014]

I Good results compared to standard approaches.

I What to do if exponential decay assumption does not hold?



Scalable BO: Parallel/batch BO
Avoiding the bottleneck of evaluating f

I Cost of f(xn) = cost of {f(xn,1), . . . , f(xn,nb)}.
I Many cores available, simultaneous lab experiments, etc.



Considerations when designing a batch

I Available pairs {(xj , yi)}ni=1 are augmented with the
evaluations of f on Bnb

t = {xt,1, . . . ,xt,nb}.

I Goal: design Bnb
1 , . . . ,Bnb

m .

Notation:

I In: represents the available data set Dn and the GP
structure when n data points are available (It,k in the
batch context).

I α(x; In): generic acquisition function given In.



Available approaches
[Azimi et al., 2010; Desautels et al., 2012; Chevalier et al., 2013; Contal et al. 2013]

I Exploratory approaches, reduction in system uncertainty.

I Generate ‘fake’ observations of f using p(yt,j |xj , It,j−1).
I Simultaneously optimize elements on the batch using the

joint distribution of yt1 , . . . yt,nb.

Bottleneck: All these methods require to iteratively update
p(yt,j |xj , It,j−1) to model the iteration between the elements in
the batch: O(n3)

How to design batches reducing this cost? Local penalization



Local penalization strategy
[González, Dai, Hennig, Lawrence, 2016]
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The maximization-penalization strategy selects xt,k as

xt,k = arg max
x∈X

g(α(x; It,0))
k−1∏
j=1

ϕ(x; xt,j)

 ,

g is a transformation of α(x; It,0) to make it always positive.



Local penalization strategy
[González, Dai, Hennig, Lawrence, 2016]
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2D experiment with ‘large domain’

Comparison in terms of the wall clock time
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Myopia of optimisation techniques
[Gonzalez et al., 2016]

I Most global optimisation techniques are myopic, in
considering no more than a single step into the future.

I Relieving this myopia requires solving the multi-step
lookahead problem.

Figure: Two evaluations, if the first evaluation is made myopically,
the second must be sub-optimal.



Non-myopic thinking
[Gonzalez et al., 2016]

To think non-myopically is important: it is a way of integrating
in our decisions the information about our available (limited)

resources to solve a given problem.



Relieving the myopia of Bayesian optimisation
[Gonzalez et al., 2016]

GLASSES!

Global optimisation with Look-Ahead through Stochastic
Simulation and Expected-loss Search

Idea: jointly model the epistemic uncertainty about the steps
ahead using some defining some point process.



Results in a benchmark of objectives
[Gonzalez et al., 2016]

GLASSES is overall the best method.



Structured input space
[Jenatton et al., 2017]

Conditional relationships: X = X0 ×X1 × · · · × Xd

Definition: Depending on some values in Xi, parameters in Xj
become irrelevant

Examples:

I Feedforward neural nets:

X = X0︸︷︷︸
# hidden layers

×
hyperpar. for layer 1︷︸︸︷

X1 × X2︸︷︷︸
hyperpar.for layer 2

× · · · × Xd

I Data analytic pipeline:

X = X0︸︷︷︸
classifier choice

×
logistic-reg. hyperpar.︷︸︸︷

X1 × X2︸︷︷︸
random-forests hyperpar.

× · · · × Xd



Tree GPs based approach
[Jenatton et al., 2017]

Optimization the topology of a multilayer perceptron for
classification over 45 datasets.
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Preferential Bayesian optimization
Javier González et al., 2017

I In some experiments we only have access to preferential
outputs.

I These can be modeled by a GP an optimize a latent
preference function.

I State-of-the-art method for learning preferences.



A couple of applications

I Robotics

I Gene design



Robotics Video



Optimizing gene designs for drug production
[González et, 2015]

I Use mammalian cells to make protein products.

I Control the ability of the cell-factory to use synthetic DNA.

I Optimize genes (ATTGGTUGA...) to best enable the
cell-factory to operate most efficiently.



Take home messages

I Bayesian optimization is a way of encoding our beliefs
about a property of a function (the minimum) and
sequentially making decisions to know more about it.

I Two key elements: the model and the acquisition function.

I The key is to find a good balance between exploration and
exploitation of the minimum in the search.



Want to join the BayesOpt community?

I 2017: NIPS workshop in Bayesian optimization for Science
and Engineering (Deadline: End of October 2017).

I 2018: JMLR Special Issue in Bayesian optimization
(Deadline: 31 March 2018).
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