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Introduction to Sequential Uncertainty Reduction

Towards conservative excursion set estimation

Preamble

Set up: estimate a deterministic function f : x ∈ E 7→ f (x) ∈ F and/or

quantities relying on it based on a limited number of evaluations of f .
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quantities relying on it based on a limited number of evaluations of f .

Two typical examples where f stems from numerical simulations

Safety engineering: x is a vector parametrizing some system and f

returns an indicator of dangerousness. It is then crucial to understand

which x’s lead to “high” values of f (x).
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Set up: estimate a deterministic function f : x ∈ E 7→ f (x) ∈ F and/or

quantities relying on it based on a limited number of evaluations of f .

Two typical examples where f stems from numerical simulations

Safety engineering: x is a vector parametrizing some system and f

returns an indicator of dangerousness. It is then crucial to understand

which x’s lead to “high” values of f (x).

Flow simulation: x stands e.g. for the medium, boundary conditions,

etc. and f returns the evolution of a fluid and/or a measure of

discrepancy between simulation results and given observation results.
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Introduction to Sequential Uncertainty Reduction

Towards conservative excursion set estimation

Preamble: Bayesian approach with GP models

Typical situation : f was evaluated at a set of “points” x1, . . . , xn ∈ D ⊂ E and

one wishes to estimate a quantity relying on f and/or run new evaluations in

order to improve this estimation.
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one wishes to estimate a quantity relying on f and/or run new evaluations in
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⇒ legitimate to rely on some approximation(s) of f knowing

f (xi) + ǫi (1 ≤ i ≤ n). A number of approaches do exist. . .
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Typical situation : f was evaluated at a set of “points” x1, . . . , xn ∈ D ⊂ E and

one wishes to estimate a quantity relying on f and/or run new evaluations in

order to improve this estimation.

⇒ legitimate to rely on some approximation(s) of f knowing

f (xi) + ǫi (1 ≤ i ≤ n). A number of approaches do exist. . .

Principles of the Gaussian Process approach (GP): suppose that, a priori, f is

a realization of a GP (Zx)x∈D and approximate f and/or the quantities of

interest via the conditional distribution of Z knowing Zxi
+ εi = f (xi) + ǫi .
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Preamble: Bayesian approach with GP models

Typical situation : f was evaluated at a set of “points” x1, . . . , xn ∈ D ⊂ E and

one wishes to estimate a quantity relying on f and/or run new evaluations in

order to improve this estimation.

⇒ legitimate to rely on some approximation(s) of f knowing

f (xi) + ǫi (1 ≤ i ≤ n). A number of approaches do exist. . .

Principles of the Gaussian Process approach (GP): suppose that, a priori, f is

a realization of a GP (Zx)x∈D and approximate f and/or the quantities of

interest via the conditional distribution of Z knowing Zxi
+ εi = f (xi) + ǫi .

⇒ very practical for sequential design of experiments.
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Introduction to Sequential Uncertainty Reduction

Towards conservative excursion set estimation

Preamble: example inverse problem in hydrogeology
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Introduction to Sequential Uncertainty Reduction

Towards conservative excursion set estimation

Preamble: a costly full factorial experimental design!
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Towards conservative excursion set estimation

Preamble: a costly full factorial experimental design!
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Introduction to Sequential Uncertainty Reduction

Towards conservative excursion set estimation

Preamble: an application of Bayesian optimization
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Introduction to Sequential Uncertainty Reduction

Towards conservative excursion set estimation

The previous example was produced in the framework of an ongoing

collaboration with G. Pirot (University of Lausanne), T. Krityakierne (now at

Mahidol University, Bangkok) and P. Renard (University of Neuchâtel).

⇒ See ongoing Hydrol. Earth Syst. Sci. Discuss. paper (2017+).
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Main focus today

In a related set-up, how to estimate excursion sets of f using such models

and dedicated sequential design strategies?
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Introduction to Sequential Uncertainty Reduction

Towards conservative excursion set estimation

The previous example was produced in the framework of an ongoing

collaboration with G. Pirot (University of Lausanne), T. Krityakierne (now at

Mahidol University, Bangkok) and P. Renard (University of Neuchâtel).

⇒ See ongoing Hydrol. Earth Syst. Sci. Discuss. paper (2017+).

Main focus today

In a related set-up, how to estimate excursion sets of f using such models

and dedicated sequential design strategies?

As a transition, let us review a few selected seminal references about GP

modelling and GP-based “Bayesian” optimization.
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Introduction to Sequential Uncertainty Reduction

Towards conservative excursion set estimation

A few references on GP modelling . . .

A. O’Hagan (1978).

Curve fitting and optimal design for prediction.

Journal of the Royal Statistical Society, Series B, 40(1):1-42.

J. Sacks, W.J. Welch, T.J. Mitchell, and H. P. Wynn (1989).

Design and Analysis of Computer Experiments

Statist. Sci. 4(4), 409-423.

H. Omre and K. Halvorsen (1989).

The bayesian bridge between simple and universal kriging.

Mathematical Geology, 22 (7):767-786.

M. S. Handcock and M. L. Stein (1993).

A bayesian analysis of kriging.

Technometrics, 35(4):403-410.

A.W. Van der Vaart and J. H. Van Zanten (2008).

Rates of contraction of posterior distributions based on Gaussian process priors.

Annals of Statistics, 36:1435-1463.
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Introduction to Sequential Uncertainty Reduction

Towards conservative excursion set estimation

. . . and on GP-based Optimization

H.J. Kushner (1964).

A new method of locating the maximum of an arbitrary multi-peak curve in the presence of noise.

Journal of Basic Engineering, 86:97-106.

J. Mockus (1972).

On Bayesian methods for seeking the extremum.

Automatics and Computers (Avtomatika i Vychislitel’naya Tekhnika), 4(1):53-62.

J. Mockus, V. Tiesis, and A. Zilinskas (1978).

The application of Bayesian methods for seeking the extremum.

In Dixon, L. C. W. and Szegö, G. P., editors, Towards Global Optimisation, volume 2, pages 117-129. Elsevier
Science Ltd., North Holland, Amsterdam.

J.M. Calvin (1997).

Average performance of a class of adaptive algorithms for global optimization.

The Annals of Applied Probability, 7(3):711-730.

M. Schonlau, W.J. Welch and D.R. Jones (1998).

Efficient Global Optimization of Expensive Black-box Functions.

Journal of Global Optimization.
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Introduction to Sequential Uncertainty Reduction

Towards conservative excursion set estimation

Our main topic today: background and motivations

A number of practical problems boil down to determining sets of the form

Γ ⋆ = {x ∈ D : f (x) ∈ T} = f
−1(T )

where f : D −→ R
k (k ≥ 1), D ⊂ R

d (d ≥ 1), and T ⊂ R
k .
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Our main topic today: background and motivations

A number of practical problems boil down to determining sets of the form

Γ ⋆ = {x ∈ D : f (x) ∈ T} = f
−1(T )

where f : D −→ R
k (k ≥ 1), D ⊂ R

d (d ≥ 1), and T ⊂ R
k .

Examples

Contour lines

Excursion/sojourn sets above/below thresholds

Admissible regions in constrained optimization

High gradient/high curvature regions, etc.

(Pareto sets in multi-objective optimization. . . but then T depends on f !)
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Introduction to Sequential Uncertainty Reduction

Towards conservative excursion set estimation

Background and motivations

We essentially focus today on the case where k = 1, D is compact, f is

continuous, and T = [t ,+∞) or (−∞, t ] for some prescribed t ∈ R.

Γ ⋆ = {x ∈ D : f (x) ≥ t} is then referred to as the excursion set of f above t .
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Towards conservative excursion set estimation

Background and motivations

We essentially focus today on the case where k = 1, D is compact, f is

continuous, and T = [t ,+∞) or (−∞, t ] for some prescribed t ∈ R.

Γ ⋆ = {x ∈ D : f (x) ≥ t} is then referred to as the excursion set of f above t .

Our aim is to estimate Γ ⋆ and quantify uncertainty on it when f can solely be

evaluated at a few points, both in static and sequential cases.
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Introduction to Sequential Uncertainty Reduction

Towards conservative excursion set estimation

Test case from safety engineering

Figure: Excursion set (light gray) of a nuclear criticality safety coefficient

depending on two design parameters. Blue triangles: initial experiments.

C. Chevalier (2013).

Fast uncertainty reduction strategies relying on Gaussian process models.

Ph.D. thesis, University of Bern.
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Introduction to Sequential Uncertainty Reduction

Towards conservative excursion set estimation

Making a sensible estimation of Γ ⋆ based on a drastically limited number of

evaluations f (Xn) = (f (x1), . . . , f (xn))
′ calls for additional assumptions on f .
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Making a sensible estimation of Γ ⋆ based on a drastically limited number of

evaluations f (Xn) = (f (x1), . . . , f (xn))
′ calls for additional assumptions on f .

As before, we consider the Bayesian framework where a Gaussian Process

(GP) prior is put on f , i.e. f is seen as one realization of a GP (Z (x))x∈D

(characterized in distribution by a mean m and a covariance kernel k ).
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Towards conservative excursion set estimation

Making a sensible estimation of Γ ⋆ based on a drastically limited number of

evaluations f (Xn) = (f (x1), . . . , f (xn))
′ calls for additional assumptions on f .

As before, we consider the Bayesian framework where a Gaussian Process

(GP) prior is put on f , i.e. f is seen as one realization of a GP (Z (x))x∈D

(characterized in distribution by a mean m and a covariance kernel k ).

In the GP set-up, the main object of interest is represented by

Γ = {x ∈ D : Z (x) ∈ T} = Z
−1(T )

Under our previous assumptions on T and assuming that is chosen Z with

continuous paths, Γ is a Random Closed Set (See thesis below for detail).

D. Azzimonti (2016).

Contributions to Bayesian set estimation relying on random field priors.

Ph.D. thesis, University of Bern.
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Introduction to Sequential Uncertainty Reduction

Towards conservative excursion set estimation

How to quantify the uncertainty on Γ?

There are many ways to quantify uncertainties on sets!
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Introduction to Sequential Uncertainty Reduction

Towards conservative excursion set estimation

How to quantify the uncertainty on Γ?

There are many ways to quantify uncertainties on sets!

This will be one of the recurring questions throughout the talk, but we will not

be exhaustive by far. For more detail see, e.g.,

I. Molchanov (2005)

Theory of Random Sets.

Springer.

D. Azzimonti, J. Bect, C. Chevalier and D. Ginsbourger (2016).

Quantifying uncertainties on excursion sets under a Gaussian random field prior.

SIAM/ASA Journal on Uncertainty Quantification.
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Introduction to Sequential Uncertainty Reduction

Towards conservative excursion set estimation

How to quantify the uncertainty on Γ?

There are many ways to quantify uncertainties on sets!

This will be one of the recurring questions throughout the talk, but we will not

be exhaustive by far. For more detail see, e.g.,

I. Molchanov (2005)

Theory of Random Sets.

Springer.

D. Azzimonti, J. Bect, C. Chevalier and D. Ginsbourger (2016).

Quantifying uncertainties on excursion sets under a Gaussian random field prior.

SIAM/ASA Journal on Uncertainty Quantification.

Before moving to random set-related concepts, a first spontaneous idea is to

“scalarize” the problem, for instance by looking at Γ’s volume. Let us make a

detour through some GP basics in order to do so.
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Introduction to Sequential Uncertainty Reduction

Towards conservative excursion set estimation

From Ln(Zx) = N (mn(x), s
2
n(x)), the “coverage probability” of Γ (or

conditional/posterior probability of excursion, here) can be expanded as

pn(x) = Pn(x ∈ Γ ) = Pn(Z (x) ≥ t) = Φ
(

mn(x)−t

sn(x)

)
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Introduction to Sequential Uncertainty Reduction

Towards conservative excursion set estimation

From pn to moments of Γ’s volume

Denote by µ a finite measure on (D,B(D)) and set α∗ = µ(Γ∗), i.e. the

“volume of excursion” in the considered case.

The GP model leads to a random analogue α = µ(Γ), and by Robbins’

theorem, the posterior expectation of α can be written in terms of pn:

En[µ(Γ)] = En

[∫

D

1Γ(u)dµ(u)

]
=

∫

D

pn(u)dµ(u)
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From pn to moments of Γ’s volume

Denote by µ a finite measure on (D,B(D)) and set α∗ = µ(Γ∗), i.e. the

“volume of excursion” in the considered case.

The GP model leads to a random analogue α = µ(Γ), and by Robbins’

theorem, the posterior expectation of α can be written in terms of pn:

En[µ(Γ)] = En

[∫

D

1Γ(u)dµ(u)

]
=

∫

D

pn(u)dµ(u)

However, the (posterior) distribution of α has been considered analytically

intractable.

R.J. Adler (2000)

On excursion sets, tube formulas and maxima of random fields.

Annals of Applied Probability, 10(1):1-74.

E. Vazquez and M. Piera Martinez (2006).

Estimation of the volume of an excursion set of a Gaussian process using
intrinsic Kriging.

arXiv:math/0611273 [math.ST].
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Towards conservative excursion set estimation

About conditional moments of α

Fortunately, as already pointed out in Molchanov 2005 in more general

settings, En[α
r ] can also be worked out for r ≥ 2), at the price of calculating

integrals. In our framework, we have indeed:

En[α
r ] = En

[(∫

D

1Γ(u)dµ(u)

)r]

= En

[(∫

D

1Γ(u1)dµ(u1)

)
. . .

(∫

D

1Γ(ur )dµ(ur )

)]

=

∫

D

· · ·

∫

D

En [1Γ(u1) . . . 1Γ(ur )] dµ(u1) . . . dµ(ur )

=

∫

D

· · ·

∫

D

Pn(Zu1
≥ t , . . . ,Zur ≥ t)dµ(u1) . . . dµ(ur )

Hence, recalling the GP assumption, En[α
r ] writes as an r -dimensional

integral which integrand involves a r -dimensional Gaussian CDF.
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Towards conservative excursion set estimation

A useful bound for the case r = 2

In what follows, the case r = 2 will be of special importance as we will

consider sequential design strategies aiming at reducing Varn[α].

The following underlined quantity, that is easier to compute and also comes

with a nice interpretation, has been used as well:

Varn[α] = En

[(∫

D

(1Γ(u)− pn(u))dµ(u)

)2
]

≤ µ(D)2
En

[∫

D

(1Γ(u)− pn(u))
2
dµ(u)

]

= µ(D)2

∫

D

pn(u)(1 − pn(u))dµ(u)

︸ ︷︷ ︸
Integrated indicator variance
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A useful bound for the case r = 2

In what follows, the case r = 2 will be of special importance as we will

consider sequential design strategies aiming at reducing Varn[α].

The following underlined quantity, that is easier to compute and also comes

with a nice interpretation, has been used as well:

Varn[α] = En

[(∫

D

(1Γ(u)− pn(u))dµ(u)

)2
]

≤ µ(D)2
En

[∫

D

(1Γ(u)− pn(u))
2
dµ(u)

]

= µ(D)2

∫

D

pn(u)(1 − pn(u))dµ(u)

︸ ︷︷ ︸
Integrated indicator variance

The excursion volume’s variance and the integrated indicator variance are

used as two particular “measures of uncertainty” in what follows.
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Towards conservative excursion set estimation

Towards Stepwise Uncertainty Reduction strategies

Let us informally consider the following 1-step-lookahead scheme:

For some chosen (say, non-negative) functional defined on GP

distributions, define the uncertainty at time n ≥ 0, Hn, as this functional

applied to the current posterior GP (E.g., Hn = varn(α)).

Starting from some intial design {x1, . . . , xn0
}, at each iteration n ≥ n0,

evaluate f at a point x⋆
n+1 minimizing the so-called SUR criterion

associated with the chosen notion of uncertainty:

Jn(xn+1) := En(Hn+1(xn+1))
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Towards Stepwise Uncertainty Reduction strategies

Let us informally consider the following 1-step-lookahead scheme:

For some chosen (say, non-negative) functional defined on GP

distributions, define the uncertainty at time n ≥ 0, Hn, as this functional

applied to the current posterior GP (E.g., Hn = varn(α)).

Starting from some intial design {x1, . . . , xn0
}, at each iteration n ≥ n0,

evaluate f at a point x⋆
n+1 minimizing the so-called SUR criterion

associated with the chosen notion of uncertainty:

Jn(xn+1) := En(Hn+1(xn+1))

See notably the following paper and seminal references therein:

J. Bect, D. Ginsbourger, L. Li, V. Picheny and E. Vazquez.

Sequential design of computer experiments for the estimation of a probability of
failure.

Statistics and Computing, 22(3):773-793, 2012.
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Introduction to Sequential Uncertainty Reduction

Towards conservative excursion set estimation

SUR strategies: Two candidate uncertainties

Two possible definitions for the uncertainty Hn are considered below:

Hn :=V arn(α)

H̃n :=

∫

D

pn(1 − pn)dµ
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SUR strategies: Two candidate uncertainties

Two possible definitions for the uncertainty Hn are considered below:

Hn :=V arn(α)

H̃n :=

∫

D

pn(1 − pn)dµ

Uncertainties:

Hn :=V arn(α)

H̃n :=

∫

X

pn(1 − pn)dµ

SUR criteria:

Jn(x) :=En(V arn+1(α))

J̃n(x) :=En

(∫

D

pn+1(1 − pn+1)dµ

)

Main challenge to calculate J̃n(x) (similar for Jn(x)): Obtain a closed form

expression for En (pn+1(1 − pn+1)) and integrate it.
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Introduction to Sequential Uncertainty Reduction

Towards conservative excursion set estimation

Deriving SUR criteria

Proposition

En(pn+1(x)(1 − pn+1(x))) = Φ2

((
a(x)
−a(x)

)
,

(
c(x) 1 − c(x)

1 − c(x) c(x)

))

• Φ2(·,M): c.d.f. of centred bivariate Gaussian with covariance matrix M

• a(x) := (mn(x)− t)/sn+1(x),

• c(x) := s2
n(x)/s2

n+1(x)

C. Chevalier, J. Bect, D. Ginsbourger, V. Picheny, E. Vazquez and Y. Richet.

Fast parallel kriging-based stepwise uncertainty reduction with application to the
identification of an excursion set.

Technometrics, 56(4):455-465, 2014.
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Proposition

En(pn+1(x)(1 − pn+1(x))) = Φ2

((
a(x)
−a(x)

)
,

(
c(x) 1 − c(x)

1 − c(x) c(x)

))

• Φ2(·,M): c.d.f. of centred bivariate Gaussian with covariance matrix M

• a(x) := (mn(x)− t)/sn+1(x),

• c(x) := s2
n(x)/s2

n+1(x)

C. Chevalier, J. Bect, D. Ginsbourger, V. Picheny, E. Vazquez and Y. Richet.

Fast parallel kriging-based stepwise uncertainty reduction with application to the
identification of an excursion set.

Technometrics, 56(4):455-465, 2014.

C. Chevalier, V. Picheny and D. Ginsbourger.

The KrigInv package: An efficient and user-friendly R implementation of
Kriging-based inversion algorithms.

Computational Statistics & Data Analysis, 71:1021-1034, 2014

david@idiap.ch; ginsbourger@stat.unibe.ch Quantif. & reducing uncertainty on sets with GPs 24 / 35



Introduction to Sequential Uncertainty Reduction

Towards conservative excursion set estimation

Back to the test case with SUR
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Towards conservative excursion set estimation

Batch-sequential SUR strategies

Figure: 3 SUR iterations (J̃n criterion with q = 4)
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Introduction to Sequential Uncertainty Reduction

Towards conservative excursion set estimation

Further questions about SUR and UQ on sets

About the consistency:

J. Bect, F. Bachoc and D. Ginsbourger (2018+).

A supermartingale approach to Gaussian process based sequential design of
experiments.

HAL/Arxiv paper (hal-01351088, Arxiv: 1608.01118).
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Further questions about SUR and UQ on sets

About the consistency:

J. Bect, F. Bachoc and D. Ginsbourger (2018+).

A supermartingale approach to Gaussian process based sequential design of
experiments.

HAL/Arxiv paper (hal-01351088, Arxiv: 1608.01118).

Of course, in operational conditions, asymptotic results are worthwhile.

However, concrete finite-sample outputs such as estimates of Γ⋆ and

quantifications of the associated uncertainty are required as well.
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Towards conservative excursion set estimation

Further questions about SUR and UQ on sets

About the consistency:

J. Bect, F. Bachoc and D. Ginsbourger (2018+).

A supermartingale approach to Gaussian process based sequential design of
experiments.

HAL/Arxiv paper (hal-01351088, Arxiv: 1608.01118).

Of course, in operational conditions, asymptotic results are worthwhile.

However, concrete finite-sample outputs such as estimates of Γ⋆ and

quantifications of the associated uncertainty are required as well.

Now, n being fixed, how to estimate Γ⋆ and to assess/represent the variability

of the corresponding estimate(s)?
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Introduction to Sequential Uncertainty Reduction

Towards conservative excursion set estimation

Conservative Estimates of Γ ⋆

We denote by conservative estimate for Γ | (Zx1
= f (x1), . . . ,Zxn = f (xn)) at

level β the largest Qρ such that Pn(Qρ ⊂ Γ) ≥ β:

Et,α = argmax
Qρ

{µ(Qρ) : Pn(Qρ ⊂ Γ) ≥ β}

D. Bolin, F. Lindgren.

Excursion and contour uncertainty regions for latent Gaussian models.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2014.
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Towards conservative excursion set estimation

Conservative Estimates of Γ ⋆

We denote by conservative estimate for Γ | (Zx1
= f (x1), . . . ,Zxn = f (xn)) at

level β the largest Qρ such that Pn(Qρ ⊂ Γ) ≥ β:

Et,α = argmax
Qρ

{µ(Qρ) : Pn(Qρ ⊂ Γ) ≥ β}

D. Bolin, F. Lindgren.

Excursion and contour uncertainty regions for latent Gaussian models.

Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2014.

Such conservative estimate Et,β is hence

the largest quantile such that, with probability β, the response is below

the threshold simultaneously at each of its locations.

based on a confidence statement on the whole set

david@idiap.ch; ginsbourger@stat.unibe.ch Quantif. & reducing uncertainty on sets with GPs 30 / 35



Introduction to Sequential Uncertainty Reduction

Towards conservative excursion set estimation

Computing conservative estimates

The computation of a conservative estimate

Et,β = argmax
Qρ

{µ(Qρ) : Pn(Qρ ⊂ Γ) ≥ β}

presents two (nested) computational bottlenecks:

1 find the set with the maximum volume;

2 compute Pn(Qρ ⊂ Γ).
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Computing conservative estimates

The computation of a conservative estimate

Et,β = argmax
Qρ

{µ(Qρ) : Pn(Qρ ⊂ Γ) ≥ β}

presents two (nested) computational bottlenecks:

1 find the set with the maximum volume;

2 compute Pn(Qρ ⊂ Γ).

For recent work on computing the last term, see for instance

D. Azzimonti and D. Ginsbourger (2018).

Estimating orthant probabilities of high dimensional Gaussian vectors with an
application to set estimation.

Journal of Computational and Graphical Statistics, 27:2, 255-267
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Introduction to Sequential Uncertainty Reduction

Towards conservative excursion set estimation

Computing Pn(Qρ ⊂ Γ)

If Qρ is discretized over a grid W = {w1, . . . ,wm}, then

Pn(Qρ ⊂ Γ) = Pn(Zw1
≤ t , . . . ,Zwm ≤ t) = 1 − Pn

(
max

i=1,...,m
Zwi

> t

)
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Computing Pn(Qρ ⊂ Γ)

If Qρ is discretized over a grid W = {w1, . . . ,wm}, then

Pn(Qρ ⊂ Γ) = Pn(Zw1
≤ t , . . . ,Zwm ≤ t) = 1 − Pn

(
max

i=1,...,m
Zwi

> t

)

There exists a number of algorithms to estimate Pn(Zw1
≤ t , . . . ,Zwm ≤ t):

1 quasi-MC integration techniques

very fast and reliable in small dimensions;

hardly usable for dimensions higher than 1000.

2 pure MC techniques:

dimension independent;

high number of simulations for small variance.
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Towards conservative excursion set estimation

Computing Pn(Qρ ⊂ Γ)

If Qρ is discretized over a grid W = {w1, . . . ,wm}, then

Pn(Qρ ⊂ Γ) = Pn(Zw1
≤ t , . . . ,Zwm ≤ t) = 1 − Pn

(
max

i=1,...,m
Zwi

> t

)

There exists a number of algorithms to estimate Pn(Zw1
≤ t , . . . ,Zwm ≤ t):

1 quasi-MC integration techniques

very fast and reliable in small dimensions;

hardly usable for dimensions higher than 1000.

2 pure MC techniques:

dimension independent;

high number of simulations for small variance.

IRSN test case

an estimate with a good resolution requires an 100 × 100 grid for D;

W consists of +1000 grid points for some Qρ.
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Introduction to Sequential Uncertainty Reduction

Towards conservative excursion set estimation

Pn(maxw∈W Zw > T ): proposed hybrid algorithm

Algorithm:

1 select q grid points, denoted Wq ⊂ W ;

2 compute p′ = P(maxw∈Wq Zw > t) with qMC quadrature;

3 estimate Pn(maxw∈W Zw > t) with

p̂ = p
′ + (1 − p

′)R̂q

where R̂q is a MC estimator of

Rq = Pn

(
max

w∈W\Wq

Zw > t
∣∣∣ max

w∈Wq

Zw ≤ t

)
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Towards conservative excursion set estimation

Pn(maxw∈W Zw > T ): proposed hybrid algorithm

Algorithm:

1 select q grid points, denoted Wq ⊂ W ;

2 compute p′ = P(maxw∈Wq Zw > t) with qMC quadrature;

3 estimate Pn(maxw∈W Zw > t) with

p̂ = p
′ + (1 − p

′)R̂q

where R̂q is a MC estimator of

Rq = Pn

(
max

w∈W\Wq

Zw > t
∣∣∣ max

w∈Wq

Zw ≤ t

)

An asymmetric nested Monte Carlo scheme was developed for improved

efficiency in Rq ’s estimation. (See ”orthant” paper and anMC R package).
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Towards conservative excursion set estimation

Back to the test case with a conservative estimate. . .
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Towards conservative excursion set estimation

Back to the test case with a conservative estimate. . .

NB: here, ρ = 99.88829% for a confidence of 99.12178%.
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Towards conservative excursion set estimation

. . . and associated sequential strategies
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Towards conservative excursion set estimation

For more on sequential conservative estimation

D. Azzimonti, D. Ginsbourger, C. Chevalier, J. Bect, Y. Richet (2018+).

Adaptive Design of Experiments for Conservative Estimation of Excursion Sets.

arXiv:1611.07256v2 [stat.ME]
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Towards conservative excursion set estimation

For more on sequential conservative estimation

D. Azzimonti, D. Ginsbourger, C. Chevalier, J. Bect, Y. Richet (2018+).

Adaptive Design of Experiments for Conservative Estimation of Excursion Sets.

arXiv:1611.07256v2 [stat.ME]

Some open questions and perspectives

Asymptotic results in the conservative case?

Study the effect of threshold plug-in in the criteria.

Investigating options closer to ”Full Bayesian” for this problem.
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Towards conservative excursion set estimation

Overall perspectives on GP-based set estimation

Transpose work to other families of implicitly defined regions.

Consider families of set estimates beyond quantiles.

Investigate rates of convergence for SUR strategies (?).
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Overall perspectives on GP-based set estimation

Transpose work to other families of implicitly defined regions.

Consider families of set estimates beyond quantiles.

Investigate rates of convergence for SUR strategies (?).
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Bonuses

Miscellaneous

Around profile extrema for excursion set visualization

Motivations for future investigations

Simulation of coastal flooding at “Les Boucholeurs”

Study site location (left) and computational domain limits (right, in white) with

location of the forcing conditions (right, in blue).
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Bonuses

Miscellaneous

Around profile extrema for excursion set visualization

Motivations for future investigations

Test case input and output parametrization

(a) Schematic representation of the tide and surge temporal signals and the

different parameters describing them. (b) Maps of inland water height for

given values of the parameters, and deduced value of flood surface.
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Bonuses

Miscellaneous

Around profile extrema for excursion set visualization

Motivations for future investigations

Key underlying result

Theorem

Consider (Zx)x∈D ∼ GP(µ,K) and an approximating process of Z , Z̃ , defined

by Z̃x = a(x) + bT (x)ZG where the a,b functions and G = {g1, . . . ,gℓ} ⊂ D

(ℓ ≥ 1) are given. Then, for T ⊂ D and any u > µ∆̃
T ,

P

(
|sup
x∈T

Zx − sup
x∈T

Z̃x| > u

)
≤ 2 exp

(
−
(u − µ∆̃

T )
2

2(σ∆̃
T )2

)
, (1)

where

µ∆̃
T = sup

x∈T

|µ∆̃(x)| and (σ∆̃
T )2 = sup

x∈T

K
∆̃(x, x) with (2)

µ∆̃(x) = E[Zx − Z̃x] = µ(x)− a(x)− bT (x)µ(G)

K
∆̃(x, x′) = K(x, x′)− K(x′,G)b(x)− K(x,G)b(x′) + bT (x)K(G,G)b(x′),

If Z̃ − Z is centred then (1) is valid for any u > 0.
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Bonuses

Miscellaneous

Around profile extrema for excursion set visualization

Motivations for future investigations

For more detail

More on the profile maxima approach and its application to the BRGM data

can be found in

D. Azzimonti, D. Ginsbourger, J. Rohmer, D. Idier (2017+)

Profile extrema for visualizing and quantifying uncertainties on excursion regions.
Application to coastal flooding.

https://arxiv.org/abs/1710.00688
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Bonuses

Miscellaneous

Around profile extrema for excursion set visualization

Motivations for future investigations

For more detail

More on the profile maxima approach and its application to the BRGM data

can be found in

D. Azzimonti, D. Ginsbourger, J. Rohmer, D. Idier (2017+)

Profile extrema for visualizing and quantifying uncertainties on excursion regions.
Application to coastal flooding.

https://arxiv.org/abs/1710.00688

For more on random fields and geometry, see in particular

R. J. Adler and J. E. Taylor (2007)

Random Fields and Geometry.

Springer

and references therein.

david@idiap.ch; ginsbourger@stat.unibe.ch Quantif. & reducing uncertainty on sets with GPs

https://arxiv.org/abs/1710.00688
https://arxiv.org/abs/1710.00688




Bonuses

Miscellaneous

Around profile extrema for excursion set visualization

Motivations for future investigations

Sequential design to locate past volcano activity

(a-b) Vertical sections of the inferred 3-D density of Stromboli. (c) Aerial view

of the shallow density distribution with superimposed topography and

geological interpretation. Modified from Linde et al 2014.
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Bonuses

Miscellaneous

Generalized optimality property for Vorob’ev quantiles

Proposition

For any ρ ∈ [0, 1], the Vorob’ev quantile

Qρ = {x ∈ D : pn(x) ≥ ρ}

minimizes the expected distance in measure with Γ among measurable sets

M such that µ(M) = µ(Qρ), i.e.,

En [µ(Qρ∆Γ)] ≤ En [µ(M∆Γ)] ,

for any measurable set M such that µ(M) = µ(Qρ).
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Miscellaneous

Generalized optimality property for Vorob’ev quantiles

Proposition

For any ρ ∈ [0, 1], the Vorob’ev quantile

Qρ = {x ∈ D : pn(x) ≥ ρ}

minimizes the expected distance in measure with Γ among measurable sets

M such that µ(M) = µ(Qρ), i.e.,

En [µ(Qρ∆Γ)] ≤ En [µ(M∆Γ)] ,

for any measurable set M such that µ(M) = µ(Qρ).

A proof of this property is presented in Dario Azzimonti’s PhD thesis (2016).

david@idiap.ch; ginsbourger@stat.unibe.ch Quantif. & reducing uncertainty on sets with GPs


	Introduction to Sequential Uncertainty Reduction strategies
	Towards conservative excursion set estimation
	Appendix
	Bonuses
	Around profile extrema for excursion set visualization
	Two motivating problems towards forthcoming investigations

	Miscellaneous


