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Learning on Aggregates
Supervised learning: obtaining inputs has a lower cost than obtaining
outputs/labels, hence we build a (predictive) functional relationship or a
conditional probabilistic model of outputs given inputs.
Semisupervised learning: because of the lower cost, there is much more
unlabelled than labelled inputs.
Weakly supervised learning on aggregates: because of the lower cost, inputs
are at a much higher resolution than outputs.

Figure: left: Malaria incidences reported per administrative unit; centre: land surface
temperature at night; centre: topographic wetness index
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Reproducing Kernel Hilbert Space (RKHS)

Definition ([Aronszajn, 1950; Berlinet & Thomas-Agnan, 2004])
Let X be a non-empty set and H be a Hilbert space of real-valued functions
defined on X . A function k : X × X → R is called a reproducing kernel of H if:

1 ∀x ∈ X , k(·, x) ∈ H, and
2 ∀x ∈ X , ∀f ∈ H, 〈f, k(·, x)〉H = f(x).

If H has a reproducing kernel, it is said to be a reproducing kernel Hilbert space.

Equivalent to the notion of kernel as an inner product of features: any function
k : X × X → R for which there exists a Hilbert space H and a map ϕ : X → H
s.t. k(x, x′) = 〈ϕ(x), ϕ(x′)〉H for all x, x′ ∈ X .
In particular, for any x, y ∈ X , k(x, y) = 〈k (·, y) , k (·, x)〉H = 〈k (·, x) , k (·, y)〉H.
Thus H servers as a canonical feature space with feature map x 7→ k(·, x).

Equivalently, all evaluation functionals f 7→ f(x) are continuous (norm
convergence implies pointwise convergence).
Moore-Aronszajn Theorem: every positive semidefinite k : X × X → R is a
reproducing kernel and has a unique RKHS Hk.
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Gaussian RBF kernel k(x, x′) = exp
(
− 1

2γ2 ‖x− x′‖2
)
has an infinite-dimensional

H with elements h(x) =
∑n
i=1 αik(xi, x) and their limits which give completion

with respect to the inner product〈
n∑
i=1

αik(xi, ·),
m∑
j=1

βjk(yj , ·)
〉

=

n∑
i=1

m∑
j=1

αiβjk(xi, yj).
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Kernel Trick and Kernel Mean Trick

implicit feature map x 7→ k(·, x) ∈ Hk
replaces x 7→ [φ1(x), . . . , φs(x)] ∈ Rs

〈k(·, x), k(·, y)〉Hk = k(x, y)
inner products readily available

• nonlinear decision boundaries, nonlinear regression
functions, learning on non-Euclidean/structured
data

[Cortes & Vapnik, 1995; Schölkopf &

Smola, 2001]

RKHS embedding: implicit feature mean
[Smola et al, 2007; Sriperumbudur et al, 2010; Muandet et al,

2017]

P 7→ µk(P ) = EX∼P k(·, X) ∈ Hk
replaces P 7→ [Eφ1(X), . . . ,Eφs(X)] ∈ Rs

〈µk(P ), µk(Q)〉Hk = EX∼P,Y∼Qk(X,Y )
inner products easy to estimate

• nonparametric two-sample, independence,
conditional independence, interaction testing,
learning on distributions

[Gretton et al, 2005; Gretton et al,

2006; Fukumizu et al, 2007; DS et

al, 2013; Muandet et al, 2012;

Szabo et al, 2015]
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Maximum Mean Discrepancy

Maximum Mean Discrepancy (MMD) [Borgwardt et al, 2006; Gretton et al, 2007]

between P and Q:
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MMDk(P ,Q) = ‖µk(P )− µk(Q)‖Hk = sup
f∈Hk: ‖f‖Hk≤1

|Ef(X)− Ef(Y )|

Characteristic kernels: MMDk(P ,Q) = 0 iff
P = Q (also metrizes weak*
[Sriperumbudur,2010]).

• Gaussian RBF exp(− 1
2σ2 ‖x− x′‖

2
2),

Matérn family, inverse multiquadrics.

Can encode structural properties in the
data: kernels on non-Euclidean domains,
networks, images, text...
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GPs and RKHSs: shared mathematical foundations
The same notion of a (positive definite) kernel, but conceptual gaps between
communities.
Orthogonal projection in RKHS ⇔ Conditioning in GPs.
Beware! 0/1 laws: GP sample paths with (infinite-dimensional) covariance
kernel k almost surely fall outside of Hk.

• But the space of sample paths is only slightly larger than Hk (outer shell).
• It is typically also an RKHS (with another kernel).

Worst-case in RKHS ⇔ Average-case in GPs.

MMD2(P,Q;Hk) =

(
sup

‖f‖Hk≤1
(Pf −Qf)

)2

= Ef∼GP(0,k)

[
(P f −Qf)2

]
.

Radford Neal, 1998: “prior beliefs regarding the true function being modeled and
expectations regarding the properties of the best predictor for this function [...]
need not be at all similar.”
Gaussian Processes and Kernel Methods: A Review on Connections and
Equivalences
M. Kanagawa, P. Hennig, DS, and B. K. Sriperumbudur
ArXiv e-prints:1807.02582
https://arxiv.org/abs/1807.02582
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Some uses of MMD

within-sample average similarity
–

between-sample average similarity

k(dogi, fishj)

k(fishi, fishj)

k(dogi, dogj)

k(fishj , dogi)

Figure by Arthur Gretton

MMD has been applied to:

two-sample tests and independence tests
(on graphs, text, audio...) [Gretton et al,

2009, Gretton et al, 2012]

model criticism and interpretability [Lloyd &

Ghahramani, 2015; Kim, Khanna & Koyejo, 2016]

analysis of Bayesian quadrature [Briol et al,

2018]

ABC summary statistics [Park, Jitkrittum &

DS, 2015; Mitrovic, DS & Teh, 2016]

summarising streaming data [Paige, DS &

Wood, 2016]

traversal of manifolds learned by
convolutional nets [Gardner et al, 2015]

MMD-GAN: training deep generative
models [Dziugaite, Roy & Ghahramani, 2015;

Sutherland et al, 2017; Li et al, 2017]

MMD2
k (P ,Q) = E

X,X′i.i.d.∼ P
k(X,X ′) + E

Y ,Y ′i.i.d.∼ Q
k(Y , Y ′)− 2EX∼P,Y∼Qk(X,Y ).
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M̂MD2
k (P ,Q) =

1

nx(nx − 1)

∑
i 6=j

k(Xi, Xj)+
1

ny(ny − 1)

∑
i6=j

k(Y i, Y j)−
2

nxny

∑
i,j

k(Xi, Y j).
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Kernel Embeddings for Distribution Regression

-0.856 0.562 1.39

Labels yi = f(Pi) but observe only {xji}Nij=1 ∼ Pi.
The goal: build a predictive model ŷ? = f({xj?}N?j=1) for a new sample
{xj?}N?j=1 ∼ P?.
Represent each sample with the empirical mean embedding
µ̂i = 1

Ni

∑Ni
j=1 k(·, xji ) ∈ Hk.

Now can use the induced inner product structure on empirical measures to
build a regression model:

• Linear kernel on the RKHS: K (µ̂i, µ̂j) = 〈µ̂i, µ̂j〉Hk = 1
NiNj

∑
r,s k(xri , x

s
j)

• Gaussian kernel on the RKHS:
K (µ̂i, µ̂j) = exp(−γ‖µ̂i − µ̂j‖2Hk ) = exp

(
−γM̂MD2

k (Pi, Pj)
)
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Kernel Embeddings for Distribution Regression

supervised learning where labels are available at the group, rather than at the
individual level.

If we wish to make a prediction at a new location s∗, the
standard predictive equations for GP regression [26], derived
by conditioning a multivariate Gaussian distribution, tell us:

y∗ | s∗, X,y ∼ N (k∗(K+σ2I)−1y, k∗∗−k∗(K+σ2I)−1k∗>)
(11)

where Kij = k(si, sj) and k∗ = [k(s1, s
∗) . . . k(sn, s

∗)] and
k∗∗ = k(s∗, s∗). Thus we have a way of combining a prior
over f , parametrized by k(s, s′), with observed data to ob-
tain a posterior distribution over a new prediction y∗ at a
new location s∗. This is a very powerful method, as it en-
ables a fully Bayesian treatment of regression, a coherent
approach to kernel learning through the marginal likelihood
(for details see [26]), and posterior uncertainty intervals.

We can immediately see the connection between the ker-
nel ridge regression estimator in Eq. (7) and the posterior
mean of the GP in Eq. (11). (A superficial difference is that
in Eq. (7) our predictors are µ̂i while in Eq. (11) they are
generic locations si, but this difference will go away in Sec-
tion 5 when we propose using GP regression for distribution
regression.) The predictive mean of GP regression is ex-
actly equal to the kernel ridge regression estimator, with σ2

corresponding to λ. In ridge regression, a larger penalty λ
leads to a smoother fit (equivalently, less overfitting), while
in GP regression a larger σ2 favors a smoother GP poste-
rior because it implies more measurement error. For a full
discussion of the connections see [2, Sections 6.2.2-6.2.3].

4. ECOLOGICAL INFERENCE
In this section we state the ecological inference problem

that we intend to solve. We use the motivating example of
inferring Barack Obama’s vote share by demographic sub-
group (e.g. men versus women) in the 2012 US presidential
election, without access to any individual-level labels. Vote
totals by electoral precinct are publicly available, and these
provide the labels in our problem. Predictors are in the
form of demographic covariates about individuals (e.g. from
a survey with individual level data like the census). The
challenge is that the labels are aggregate, so it is impossi-
ble to know which candidate was selected by any particular
individual. This explains the terminology: “ecological cor-
relations” are correlations between variables which are only
available as aggregates at the group level [28]

We use the same notation as in Section 3.2. Let xji ∈ Rd
be a vector of covariates for individual i in region j. Let
wji be survey weights2. Let yi be labels in the form of two-
dimensional vectors (ki, ni) where ki is the number of votes
received by Obama out of ni total votes in region i. Then
our dataset is:(

{xj1}
N1
j=1, y1

)
,
(
{xj2}

N2
j=1, y2

)
, . . . ,

(
{xjn}Nn

j=1, yn
)

(12)

We will typically have a rich set of covariates available, in
addition to the demographic variables we are interested in
stratifying on, so the xji will be high-dimensional vectors
denoting gender, age, income, education, etc.

Our task is to learn a function f from a demographic sub-
group (which could be everyone) within region i to the prob-
ability that this demographic subgroup supported Obama,

2Covariates usually come from a survey based on a random
sample of individuals. Typically, surveys are reported with
survey weights wji for each individual to correct for oversam-
pling and non-response, which must be taken into account
for any valid inference (e.g. summary statistics, regression
coefficients, standard errors, etc.).

i.e. the number of votes this group gave Obama divided by
the total number of votes in this group.

5. OUR METHOD
In this section we propose our new ecological inference

method. Our approach is illustrated in a schematic in Figure
1 and formally stated in Algorithm 1.
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Figure 1: Illustration of our approach. Labels
y1, y2 and y3 are available at the group level giving
Obama’s vote share in regions 1, 2, and 3. Co-
variates are available at the individual level giv-
ing the demographic characteristics of a sample of
individuals in regions 1, 2, and 3. We project
the individuals from each group into feature space
using a feature map φ(x) and take the mean by
group to find high-dimensional vectors µ1, µ2 and µ3,
e.g. µ1 = 1

3
(φ(x11) + φ(x21) + φ(x31)). Now our prob-

lem is reduced to supervised learning, where we
want to learn a function f : µ → y. Once we have
learned f we make subgroup predictions for men
and women in region 3 by calculating mean embed-
dings for the men µm3 = 1

2
(φ(x33) + φ(x43)) and women

µw3 = 1
3
(φ(x13) + φ(x23) + φ(x53)) and then calculating

f(µm3 ) and f(µw3 ). For a more rigorous description
of our algorithm see Algorithm 1.

Recall the two-stage distribution regression approach in-
troduced in Section 3.2. Our method has a similar approach.
To begin, we use FastFood as introduced in Section 3.3 with
an RBF kernel to produce an explicit feature map φ and
calculate the mean embeddings3, one for each region i, of
Eq. (4) with survey weights:

µ̂1 =

∑
j w

j
1φ(xj1)∑
j w

j
1

, . . . , µ̂n =

∑
j w

j
nφ(xjn)∑
j w

j
n

(13)

3 Distribution regression with explicit random features was
previously considered in Oliva et al. [19] using Rahimi and
Recht [25] to speed up an earlier distribution regression
method based on kernel density estimation [22]. This ap-
proach has comparable statistical guarantees to distribution
regression using RKHS-mean embeddings but inferior em-
pirical performance [33]. As far as we are aware, using Fast-
Food kernel mean embeddings for distribution regression is
a novel approach.

Mooij, Peters, Janzing, Zscheischler and Schölkopf

Figure 6: Scatter plots of the cause-effect pairs in the CauseEffectPairs benchmark data.
We only show the pairs for which both variables are one-dimensional.

the performance of methods on simulated data where we can control the data-generating
process, and therefore can be certain about the ground truth.

Simulating data can be done in many ways. It is not straightforward to simulate data
in a “realistic” way, e.g., in such a way that scatter plots of simulated data look similar to
those of the real-world data (see Figure 6). For reproducibility, we describe in Appendix C
in detail how the simulations were done. Here, we will just sketch the main ideas.

We sample data from the following structural equation models. If we do not want to
model a confounder, we use:

EX ∼ pEX , EY ∼ pEY
X = fX(EX)

Y = fY (X,EY ),

and if we do want to include a confounder Z, we use:

EX ∼ pEX , EY ∼ pEY , EZ ∼ pEZ
Z = fZ(EZ)

X = fX(EX , EZ)

Y = fY (X,EY , EZ).

Here, the noise distributions pEX , pEY , pEZ are randomly generated distributions, and the
causal mechanisms fZ , fX , fY are randomly generated functions. Sampling the random

28

Figure from Flaxman et al, 2015 Figure from Mooij et al, 2014

• classifying text based on word features [Yoshikawa et al, 2014; Kusner et al, 2015]
• aggregate voting behaviour of demographic groups [Flaxman et al, 2015; 2016]
• image labels based on a distribution of small patches [Szabo et al, 2016]
• “traditional” parametric statistical inference by learning a function from sets of

samples to parameters: ABC [Mitrovic et al, 2016], EP [Jitkrittum et al, 2015]
• identify the cause-effect direction between a pair of variables from a joint

sample [Lopez-Paz et al,2015]
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Next:

How to model uncertainty of kernel embeddings when learning on
aggregates?

• A simple Bayesian (GP) model for kernel mean embeddings leads to shrinkage
estimators with better predictive performance in high noise regimes.

How to predict on individual inputs when only aggregate count data is
available?

• Variational bounds leading to improved prediction accuracy and scalability to
large datasets, while explicitly taking uncertainty into account.
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Uncertainty in Bag Sizes

-0.856 0.562 1.39
Recall: we represent each sample with the empirical mean embedding
µ̂i = 1

Ni

∑Ni
j=1 k(·, xji ) ∈ Hk.

Empirical mean in infinite-dimensional space? Stein’s phenomenon?
Shrinkage estimators can be better behaved [Muandet et al, 2013]

These inputs (with or without shrinkage) are noisy - we do not observe the
true embedding µi. Moreover, bags with small Ni are noisier - can this
uncertainty be included in the predictive model?

Bayesian Approaches to Distribution Regression
Ho Chung Leon Law, Dougal Sutherland, DS, and Seth Flaxman
AISTATS 2018
http://proceedings.mlr.press/v84/law18a.html
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Uncertainty in Mean Embeddings

The empirical mean embedding is µ̂i = 1
Ni

∑Ni
j=1 k(·, xji ) ∈ Hk

Bayesian model for kernel mean embeddings [Flaxman,DS,Cunningham & Filippi, UAI

2016]:
• Place prior on the RKHS µi ∼ GP (m0(·), r(·, ·)) (requires care due to 0/1

laws [Kallianpur, 1970; Wahba, 1990; Steinwart, 2014+])
• Posit normal likelihood for the evaluations of the embedding at a set of points

u:
µ̂i(u)|µi(u) ∼ N (µi(u),Σi/Ni)

• Leads to a closed-form GP posterior µi|{xji}:

µi(z)|{xji} ∼ N
(
Rzu(Ruu + Σi/Ni)

−1(µ̂i −m0) +m0,

Rzz −Rzu(Ruu + Σi/Ni)
−1Ruz

)

• Recovers frequentist shrinkage estimator of mean embeddings [Muandet et al,

2013] (but with r instead of k), similar to James-Stein estimator.
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Distribution Regression Model
Model label as a function of the “true” kernel mean embedding:

yi = f(µi) + ε, µi = EX∼Pik(·, X)

Linear model on the evaluation of kernel mean embedding at a set of
“landmark points” z:

f(µi) = β>µi(z)

Can model uncertainty in β (BLR) or in µi (shrinkage) or in both (BDR,
which requires MCMC due to non-conjugacy).
Shrinkage: Integrate likelihood yi ∼ N (f(µi), σ

2) through the posterior
µi|{xji} to obtain

yi | {xji}, β ∼ N (ξβi , ν
β
i )

ξβi = β>Rzxi

(
Rxixi +

Σi
Ni

)
−1(µ̂i −m0) + β>m0

νβi = β>

(
Rzz −Rzxi

(
Rxixi +

Σi
Ni

)−1
R>xiz

)
β + σ2.

Can be optimized to find MAP of β, σ2, kernel parameters, locations of
landmark points, ...
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Age prediction from images

{
, ,

}
→

0 25 50 75
age

IMDb-Wiki database of images with age labels
• Very noisy labels in the dataset

Distribution regression: group pictures of actors, predict mean age
Image features: last hidden layer from a convolutional neural network by
[Rothe et al, IJCV 2016]

Lots of variation in Ni:
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Jennifer Aniston
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Angelina Jolie

Ni = 1: 23% of bags

Figure: Histogram of Ni.
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Age prediction from images
Propagating uncertainty using shrinkage helps!

Figure: Results across 10 data splits (means and standard deviations). RBF net is tuned
for RMSE, other methods for NLL. CNN takes the mean of the predictive distributions of
[Rothe, 2016] for each point in the bag.

Tensorflow implementation: https://github.com/hcllaw/bdr
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Disaggregating Aggregate Outputs

Variational Learning on Aggregate Outputs with Gaussian Processes
H. C. L. Law, DS, E. Cameron, T. C. D. Lucas, S. Flaxman, K. Battle, and
K. Fukumizu
to appear in NIPS 2018
https://arxiv.org/abs/1805.08463
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Distribution regression: train on bags, predict on bags

xa
1

xa
2

xa
3

xa
Na

...

bag xa is a sample drawn iid from P a

aggregate output ya

Individual labels need not exist - the label is a function of the whole
population.
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Output disaggregation: train on bags, predict on individuals

xa
1

xa
2

xa
3

xa
Na

...

bag xa

ya1
ya2
ya3

yaNa

...
...

aggregate output ya

Weakly supervised ML problem. Classification instance widely studied in ML
(learning with label proportions) [Quadrianto et al, 2009; Yu et al, 2013], but little work
on regression / other observation likelihoods.
Spatial statistics: ‘down-scaling’, ‘fine-scale modelling’ or ‘spatial disaggregation’ in
the analysis of disease mapping, agricultural data, and species distribution
modelling, but mostly simple linear models.
This work: scalable variational GP machinery + general aggregation model.
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Bag Observation Model: Aggregation in Mean Parameters

An exponential family model p(y|η) for output y ∈ Y, with mean parameter
η = η(x) depending on the individual input x ∈ X .
Given a fixed set of points xai ∈ X such that xa = {xa1 , . . . , xaNa}, i.e. a bag
of points with Na individuals
Observe the aggregate outputs for each of the bags: training data
({x1i }N1

i=1, y
1), . . . ({xni }Nni=1, y

n).
However, we wish to estimate the regression value η(xai ) for each individual
(in-sample or out-of-sample), not for new bags.
No restrictions on the collection of the individuals, with the bagging process
possibly dependent on covariates xai .

To relate the aggregate ya and the bag xa = (xai )Nai=1, we use the following bag
observation model:

ya|xa ∼ p(y|ηa), ηa =

Na∑
i=1

pai η(xai ), (1)

where pai is an optional fixed non-negative weight used to adjust the scales. .
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Poisson Bag Model

ya|xa ∼ Poisson

(
Na∑
i=1

pai λ
a
i

)
, λai = Ψ(f(xai )), f ∼ GP (µ, k)

Nonnegative link functions: Ψ(f) = f2 and Ψ(f) = ef .
Standard variational bound using inducing points u = [f(w1), . . . , f(wm)]> and a
multivariate normal variational posterior q(u)

log p(y|Θ) = log

ˆ ˆ
p(y, f, u|X,W,Θ)dfdu

≥
ˆ ˆ

log
{
p(y|f,Θ)

p(u)

q(u)

}
p(f |u,Θ)q(u)dfdu (Jensen’s inequality)

=
∑
a

ya
ˆ

log
(Na∑
i=1

pai Ψ(f(xai )
)
q(f)df −

∑
a

Na∑
i=1

ˆ
pai Ψ(f(xai ))q(f)df

−
∑
a

log(ya!)−KL(q(u)||p(u)) =: L(q,Θ),

is still intractable due to aggregation. Needs a further lower bound or an
approximation.
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Log-sum Lemma

Lemma

Let v = [v1, . . . , vN ]> be a random vector with probability density q(v), and let
wi ≥ 0, i = 1, . . . , N . Then, for any non-negative valued function Ψ(v),

ˆ
log
( N∑
i=1

wiΨ(vi)
)
q(v)dv ≥ log

( N∑
i=1

wie
ξi
)
,

where
ξi :=

ˆ
log Ψ(vi)qi(vi)dvi.

Additionally, a Taylor approximation can be used for Ψ(f) = f2 (where intractable
term essentially becomes E log ‖V ‖2 where V is a multivariate normal) – note
that log-sum lemma still gives a lower bound in terms of special functions in that
case (problematic for backpropagation!)
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Results

Tensorflow implementation: https://github.com/hcllaw/VBAgg
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Summary

Both contributions study learning on aggregates, i.e. where the responses are
available at the group level, and demonstrate how statistical modelling can
be brought to bear.
Increasing confluence between statistical modelling and machine learning –
making use of the well engineered deep learning (black-box) infrastructure,
while carefully considering appropriate statistical models.
Flexibility of the RKHS framework and Gaussian processes as a common
ground between deep learning and statistical inference.

D.Sejdinovic (University of Oxford) Approximate Kernel Embeddings Sheffield, 06/09/2018 23 / 24



References

Ho Chung Leon Law, Dougal J. Sutherland, DS, and Seth Flaxman, Bayesian
Approaches to Distribution Regression, in International Conference on Artificial
Intelligence and Statistics (AISTATS), 2018, PMLR 84:1167-1176.

Ho Chung Leon Law, DS, Ewan Cameron, Tim Lucas, Seth Flaxman, Katherine
Battle, and Kenji Fukumizu, Variational Learning on Aggregate Outputs with
Gaussian Processes, in Advances in Neural Information Processing Systems (NIPS),
2018, to appear. ArXiv e-prints:1805.08463, 2018.

D.Sejdinovic (University of Oxford) Approximate Kernel Embeddings Sheffield, 06/09/2018 24 / 24


