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Learning on Aggregates

@ Supervised learning: obtaining inputs has a lower cost than obtaining
outputs/labels, hence we build a (predictive) functional relationship or a
conditional probabilistic model of outputs given inputs.

@ Semisupervised learning: because of the lower cost, there is much more
unlabelled than labelled inputs.

o Weakly supervised learning on aggregates: because of the lower cost, inputs
are at a much higher resolution than outputs.

Figure: left: Malaria incidences reported per administrative unit; centre: land surface
temperature at night; centre: topographic wetness index
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@ Preliminaries on Kernels and GPs
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Reproducing Kernel Hilbert Space (RKHS)

Deﬁnition ([Aronsza_}n, 1950; Berlinet & Thomas-Agnan, 2004])

Let X be a non-empty set and A be a Hilbert space of real-valued functions
defined on X. A function k: X x X — R is called a reproducing kernel of H if:

Q@ Vze X, k(,z) e H, and
(= Vo € Xa vf € H7 <f7k(733)>7-[ = f(l’)
If H has a reproducing kernel, it is said to be a reproducing kernel Hilbert space.

4

Equivalent to the notion of kernel as an inner product of features: any function
k: X x X — R for which there exists a Hilbert space H and a map ¢ : X — H
st. k(z,2") = (p(z), p(a’))y for all z,2" € X.
In particular, for any x,y € X! k(.’L‘, y) = <k (71/) ) k (',LL‘)>H = <k (,LL‘) ) k ('a y)>7—£
Thus H servers as a canonical feature space with feature map = — k(-, x).
e Equivalently, all evaluation functionals f — f(z) are continuous (norm
convergence implies pointwise convergence).
@ Moore-Aronszajn Theorem: every positive semidefinite £ : X x X - R is a
reproducing kernel and has a unique RKHS #H.
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Reproducing Kernel Hilbert Space (RKHS)

Deflnition ([Aronszajn, 1950; Berlinet & Thomas-Agnan, 2004])

Let X be a non-empty set and H be a Hilbert space of real-valued functions
defined on X. A function k: X x X — R is called a reproducing kernel of H if:

Q@ Vxe X, k(,x) e H, and
Q@ Vze X, VfeH, (fk(,z))y = f(z).
If H has a reproducing kernel, it is said to be a reproducing kernel Hilbert space.

v

Gaussian RBF kernel k(z, ") = exp (7# |z — :z:’||2) has an infinite-dimensional

H with elements h(z) = Y"1 | a;k(z;,x) and their limits which give completion

with respect to the inner product 1
n m 0.8
<Z alk(xla)726]k(yj7)> = 0.6
i=1 Jj=1 0.4
n m 0.2
DD cibik(iy;). ;
i=1 j=1
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Kernel Trick and Kernel Mean Trick

o implicit feature map = +— k(-,x) € Hy,
replaces = +— [¢1(x), ..., ¢s(x)] € R®
° <k(,l‘),k(,y>>7_¢k = k’(ﬂl‘,y)

inner products readily available

hyperplane

e nonlinear decision boundaries, nonlinear regression
functions, learning on non-Euclidean/structured
data

[Cortes & Vapnik, 1995; Schdlkopf &
Smola, 2001]
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Kernel Trick and Kernel Mean Trick

o implicit feature map x — k(-,z) € Hy, o e l N\ |
replaces = +— [¢1(x), ..., ¢s(x)] € R® * _ See
° <k(,l‘),k(,y)>7_¢k = k’(ﬂl‘,y) o B ° ./

inner products readily available

hyperplane

o . .. . . .
nonlinear decision boundaries, nonlinear regression [Cortes & Vapnik, 1995; Schalkopf &

functions, learning on non-Euclidean/structured

data Smola, 2001]
@ RKHS embedding: implicit feature mean ) B0
[Smola et al, 2007; Sriperumbudur et al, 2010; Muandet et al, X”P.
2017] 14(Q) = Ey k(. V)]
P pp(P)=Ex.pk(-,X) € Hy, ﬂ‘ (P @l
replaces P — [E¢y(X),...,E¢s(X)] € R®
o <,Uk(P)7 'u“k(Q»’Hk = EXNP,YNQK(X, Y) [Gretton et al, 2005; Gretton et al,
inner products easy to estimate 2006; Fukumizu et al, 2007; DS et
e nonparametric two-sample, independence, al, 2013; Muandet et al, 2012;
conditional independence, interaction testing, Szabo et al, 2015]

learning on distributions
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Maximum Mean Discrepancy

e Maximum Mean Discrepancy (MMD) [Borgwardt et al, 2006; Gretton et al, 2007]
between P and Q:

e(P) = Ex[k(-, X)]

X ~
. 04

m(Q) =Ev[k(-, V)]
Y~Q o——m o

‘. . (1124 (P) = 1 (Q) 14 o

MMDy. (P, Q) = [lps (P) = i (Q)lyy,, = sup [Ef(X) —E/(Y)
FEMk: 111, <1
o Characteristic kernels: MMDy (P, Q) = 0 iff
P = @ (also metrizes weak*
[Sriperumbudur,2010]).

o Gaussian RBF exp(— 15 ||z — 2'|3),

Matérn family, inverse multiquadrics.

@ Can encode structural properties in the
data: kernels on non-Euclidean domains,
networks, images, text... %
Approximate Kernel Embeddings




GPs and RKHSs: shared mathematical foundations

@ The same notion of a (positive definite) kernel, but conceptual gaps between
communities.
@ Orthogonal projection in RKHS < Conditioning in GPs.
@ Beware! 0/1 laws: GP sample paths with (infinite-dimensional) covariance
kernel k almost surely fall outside of Hj.
e But the space of sample paths is only slightly larger than H; (outer shell).
e It is typically also an RKHS (with another kernel).
@ Worst-case in RKHS < Average-case in GPs.

2
MMD?*(P, Q; H) = ( sup (Pf — Qf)) = Etgp(o,k) [(Pf - Qf)z} .

£, <1

Radford Neal, 1998: “prior beliefs regarding the true function being modeled and
expectations regarding the properties of the best predictor for this function [...]
need not be at all similar.”

Gaussian Processes and Kernel Methods: A Review on Connections and

Equivalences

M. Kanagawa, P. Hennig, DS, and B. K. Sriperumbudur

ArXiv e-prints:1807.02582

https://arxiv.org/abs/1807.02582
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Some uses of MMD

MMD has been applied to:

@ two-sample tests and independence tests

within-sample average similarity (On graphs, text, aUdlo---) [Gretton et al,
= 2009, Gretton et al, 2012]

betweef‘;saf‘"p'e average similarity @ model criticism and interpretability [Lioyd &
”“( - W Ghahramani, 2015; Kim, Khanna & Koyejo, 2016]

@ analysis of Bayesian quadrature [Briol et al,
2018]

Rt
- .
p dog;, dog;) k(dog;, fish;)
‘ E @ ABC summary statistics [Park, Jitkrittum &
- DS, 2015; Mitrovic, DS & Teh, 2016]
=),
i @ summarising streaming data [Paige, DS &

k(fish;, dog;) fish;, fish, ) % Wood, 2016]

ot @ traversal of manifolds learned by

@)&« convolutional nets [Gardner et al, 2015]

@ MMD-GAN: training deep generative
models [Dziugaite, Roy & Ghahramani, 2015;
Sutherland et al, 2017; Li et al, 2017]

Figure by Arthur Gretton

MMDE (P, Q) =E i k(X X)+E 0 k(YY) = 2Ex~py~ok(X,Y).
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Some uses of MMD

MMD has been applied to:

@ two-sample tests and independence tests

within-sample average similarity (On graphs, text, aUdlo---) [Gretton et al,
= 2009, Gretton et al, 2012]
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Rt

@ analysis of Bayesian quadrature [Briol et al,

- dog;, dog;) k(dog;, fish;) 2018]

@ ABC summary statistics [Park, Jitkrittum &
- DS, 2015; Mitrovic, DS & Teh, 2016]
=)

i @ summarising streaming data [Paige, DS &

k(fish;, dog;) fish;, fish, ) % Wood, 2016]

ot @ traversal of manifolds learned by

@)&« convolutional nets [Gardner et al, 2015]

@ MMD-GAN: training deep generative
models [Dziugaite, Roy & Ghahramani, 2015;
Sutherland et al, 2017; Li et al, 2017]

5 2k Y) —Zk(X“Y

Z#J ny (ny l#]

D.Sejdinovic (University of Oxford) Approximate Kernel Embeddings Sheffield, 06/09/2018 E

Figure by Arthur Gretton

MMD? (P, Q) = Zk Xi,X;)
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Kernel Embeddings for Distribution Regression

’ I -

-0.856 0.562 1.39
Labels y; = f(P;) but observe only {x{}jvzl ~ P;.
The goal: build a predictive model g, = f({:ri}jvz*l) for a new sample
{wl} ~
Represent each sample with the empirical mean embedding
fi = 5 X k(e xl) € Hae

@ Now can use the induced inner product structure on empirical measures to
build a regression model:

e Linear kernel on the RKHS: K (fis, i) = (fii; 1)), = w. x5 N Do k(i z5)
o Gaussian kernel on the RKHS: o
K (s, f15) = exp(=|is — 1513,) = exp (—YMMD} (P,, P,))
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Kernel Embeddings for Distribution Regression
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Labels y; = f(P;) but observe only {xz}j\’;l ~ P;.
The goal: build a predictive model g, = f({:ri}jvz*l) for a new sample
{wl} ~
Represent each sample with the empirical mean embedding
fii = 3 Xy k(o)) € Ha

@ Now can use the induced inner product structure on empirical measures to
build a regression model:

e Linear kernel on the RKHS: K (fis, i) = (fii; 1)), = w. x5 N Do k(i z5)
o Gaussian kernel on the RKHS: o
K (s, f15) = exp(=|is — 1513,) = exp (—YMMD} (P,, P,))
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Kernel Embeddings for Distribution Regression

@ supervised learning where labels are available at the group, rather than at the

individual level.
R R fﬂf',ﬁﬂﬁ
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Figure from Flaxman et al, 2015 Figure from Mooij et al, 2014
e classifying text based on word features [Yoshikawa et al, 2014; Kusner et al, 2015]
e aggregate voting behaviour of demographic groups [Flaxman et al, 2015; 2016]
e image labels based on a distribution of small patches [Szabo et al, 2016]
e “traditional” parametric statistical inference by learning a function from sets of
samples to parameters: ABC [Mitrovic et al, 2016], EP [Jitkrittum et al, 2015]
o identify the cause-effect direction between a pair of variables from a joint

sample [Lopez-Paz et al,2015]
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Next:

@ How to model uncertainty of kernel embeddings when learning on
aggregates?
o A simple Bayesian (GP) model for kernel mean embeddings leads to shrinkage
estimators with better predictive performance in high noise regimes.
@ How to predict on individual inputs when only aggregate count data is
available?
e Variational bounds leading to improved prediction accuracy and scalability to
large datasets, while explicitly taking uncertainty into account.
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© Bayesian Approaches to Distribution Regression
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Uncertainty in Bag Sizes

-
o o o
...Q‘..
o 2 o
o ® o0 0
° .

-0.856 0.562
@ Recall: we represent each sample with the empirical mean embedding
fli = N% Z;V:ll k(- 27) € Hi.
@ Empirical mean in infinite-dimensional space? Stein's phenomenon?
Shrinkage estimators can be better behaved [Muandet et al, 2013]
@ These inputs (with or without shrinkage) are noisy - we do not observe the
true embedding ;. Moreover, bags with small N; are noisier - can this
uncertainty be included in the predictive model?

Bayesian Approaches to Distribution Regression
Ho Chung Leon Law, Dougal Sutherland, DS, and Seth Flaxman

AISTATS 2018
http://proceedings.mlr.press/v84/lawl8a.html
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Uncertainty in Mean Embeddings

@ The empirical mean embedding is ji; = NL Z;V:ll k‘(,xf) € Hi
@ Bayesian model for kernel mean embeddings [Flaxman,DS,Cunningham & Filippi, UAI
2016]:
e Place prior on the RKHS p; ~ GP (mo(-),7(+,-)) (requires care due to 0/1
laws [Kallianpur, 1970; Wahba, 1990; Steinwart, 2014+])
e Posit normal likelihood for the evaluations of the embedding at a set of points
u:
fui (@) |pi(u) ~ N (pi(a), 3 /N:)

e Leads to a closed-form GP posterior ju;|{z}:
@)~ A (R (B4 50/ N0 s = o) + i,

Rzz - Rzu(Ruu + Zi/Ni)_lRUZ>

e Recovers frequentist shrinkage estimator of mean embeddings [Muandet et al,
2013] (but with r instead of k), similar to James-Stein estimator.
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Distribution Regression Model

@ Model label as a function of the “true” kernel mean embedding:
yi:f(,u/i>+65 /J/i:EXNPik("X)

@ Linear model on the evaluation of kernel mean embedding at a set of

“landmark points” z:

F(ui) = BT pi(=)

@ Can model uncertainty in 8 (BLR) or in u; (shrinkage) or in both (BDR,

which requires MCMC due to non-conjugacy).
o Shrinkage: Integrate likelihood y; ~ N (f(u;),0?) through the posterior

wil{z]} to obtain

vi [ {2}, 8~ N'(&],v))
Xi\ —1,n
6;6 = /BTRZXi (inxi + N) 1(/f('i - mO) + 6Tm0

2\ 7!
o =T (Rzz — Ry, <inx7., + N> RL) B+ o
o Can be optimized to find MAP of 3, 02, kernel parameters, locations of
landmark points, ...
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Age prediction from images

75

age

IMDb-Wiki database of images with age labels

e Very noisy labels in the dataset
Distribution regression: group pictures of actors, predict mean age
Image features: last hidden layer from a convolutional neural network by
[Rothe et al, [JCV 2016]
o Lots of variation in N;:

w104

§103 N; = 1: 23% of bags Jennifer Aniston
%5102 Brad Pitt

2101 Angelina Jolie \

IS

2 108 WWWM“ MII‘\” HH ‘HHH [ \I \| ‘IH [T |

o

100 200 300 400 600 700 800
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Age prediction from images

Propagating uncertainty using shrinkage helps!

10.5

BLR
95 ‘thrinkage RBF network

3.6 3.7 3.8
NLL

Figure: Results across 10 data splits (means and standard deviations). RBF net is tuned
for RMSE, other methods for NLL. CNN takes the mean of the predictive distributions of
[Rothe, 2016] for each point in the bag.

Tensorflow implementation: https://github.com/hcllaw/bdr
Approximate Kernel Embeddings


https://github.com/hcllaw/bdr

© Variational Learning on Aggregates with GPs

D.Sejdinovic (University of Oxford) Approximate Kernel Embeddings Sheffield, 06/09/2018 15 / 24



Disaggregating Aggregate Outputs

Variational Learning on Aggregate Outputs with Gaussian Processes

H. C. L. Law, DS, E. Cameron, T. C. D. Lucas, S. Flaxman, K. Battle, and
K. Fukumizu

to appear in NIPS 2018

https://arxiv.org/abs/1805.08463
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Distribution regression: train on bags, predict on bags

aggregate output y*

bag x* is a sample drawn iid from P*

@ Individual labels need not exist - the label is a function of the whole
population.
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Output disaggregation: train on bags, predict on individuals

aggregate output y*

bag x¢

@ Weakly supervised ML problem. Classification instance widely studied in ML
(learning with label proportions) [Quadrianto et al, 2009; Yu et al, 2013], but little work
on regression / other observation likelihoods.

@ Spatial statistics: ‘down-scaling’, ‘fine-scale modelling’ or ‘spatial disaggregation’ in
the analysis of disease mapping, agricultural data, and species distribution
modelling, but mostly simple linear models.

@ This work: scalable variational GP machinery + general aggregation model.
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Output disaggregation: train on bags, predict on individuals

aggregate parameter f¢

aggregate output y°|f*

bag x*

@ Weakly supervised ML problem. Classification instance widely studied in ML
(learning with label proportions) [Quadrianto et al, 2009; Yu et al, 2013], but little work
on regression / other observation likelihoods.

@ Spatial statistics: ‘down-scaling’, ‘fine-scale modelling’ or ‘spatial disaggregation’ in
the analysis of disease mapping, agricultural data, and species distribution
modelling, but mostly simple linear models.

@ This work: scalable variational GP machinery + general aggregation model.
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Bag Observation Model: Aggregation in Mean Parameters

@ An exponential family model p(y|n) for output y € Y, with mean parameter
7 = n(z) depending on the individual input z € X.

o Given a fixed set of points x € X' such that x* = {z{,..., 2% }, i.e. a bag
of points with N, individuals

o Observe the aggregate outputs for each of the bags: training data
({le}zNzllv yl)v ce ({x?}finh yn)

@ However, we wish to estimate the regression value n(z¢) for each individual
(in-sample or out-of-sample), not for new bags.

@ No restrictions on the collection of the individuals, with the bagging process
possibly dependent on covariates z¢.

To relate the aggregate y® and the bag x* = (xf)fvzal we use the following bag
observation model:

N,
ylxt ~plyln®), 0" = pin(ad), (1)
i=1

where p¢ is an optional fixed non-negative weight used to adjust the scales. .
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Poisson Bag Model

N,
y*|x® ~ Poisson <Zp“)\“> AL =T (f(x})), f~GP(uk)

i=1

Nonnegative link functions: W(f) = f2 and ¥(f) = ef.

Standard variational bound using inducing points u = [f(w1), ..., f(w,)]" and a
multivariate normal variational posterior g(u)

log p(y|©) = log//p(y, f,ul X, W, ©)dfdu

//log (y|f,© }p u)dfdu (Jensen's inequality)

fza:y /log<z F(@))alf)df - ;Z/pz f))q(f)df

— log(y™) — KL(q(u)lp(u)) =: £(g,0),

is still intractable due to aggregation. Needs a further lower bound or an
approximation.
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Log-sum Lemma

Lemma
Let v = [vy,...,un]" be a random vector with probability density q(v), and let
w; >0,i=1,...,N. Then, for any non-negative valued function ¥ (v),
/log Zu)l vl dv>log(Zwe )
where
&= /10g‘I’(Ui)qz‘(Uz‘)dUi-

v

Additionally, a Taylor approximation can be used for U(f) = f2 (where intractable
term essentially becomes E log ||V ||? where V' is a multivariate normal) — note
that log-sum lemma still gives a lower bound in terms of special functions in that
case (problematic for backpropagation!)
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Results

v —=— VBAgg-Exp —=— VBAgg-Sq AT
N 41y 222 o |
}”'lf"fl"! )i —— Nystrom-Exp —— Nystrom-Sq = 217 // —
Ha2} M2 a0 2 — NN-Exp —— NN-Sq @ £
}{a i=1 )5,2.20 ?215 /e VBAGER —— VBAGESQ
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Z218 gt / . i ?
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2 . 2216 2
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S— 3 —_— Number of Bags Nmean

Figure 1: Left: Random samples on the Swiss roll manifold. Middle, Right: Individual Average
NLL on train set for varying number of training bags n and increasing N, ..., Over 5 repetitions.
Constant prediction within bag gives a NLL of 2.22. bag-pixel model gives NLL above 2.4 for the
varying number of bags experiment.

Tensorflow implementation: https://github.com/hcllaw/VBAgg
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Results

Figure 2: Triangle denotes approximate start and end of river location, crosses denotes non-train set
bags. Malaria incidence rate A? is per 1000 people. Left, Middle: log(;\f), with constant model
(Left), and VBAgg-Obj-Sq (tuned on £3) (Middle). Right: Standard deviation of the posterior v in
IE' with VBAgg-Obj-Sq.

Tensorflow implementation: https://github.com/hcllaw/VBAgg
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Summary

@ Both contributions study learning on aggregates, i.e. where the responses are
available at the group level, and demonstrate how statistical modelling can
be brought to bear.

@ Increasing confluence between statistical modelling and machine learning —
making use of the well engineered deep learning (black-box) infrastructure,
while carefully considering appropriate statistical models.

o Flexibility of the RKHS framework and Gaussian processes as a common
ground between deep learning and statistical inference.
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