Uncertainty in compositional models of alignment

Ieva Kazlauskaite, University of Bath

Neill D.F. Campbell, University of Bath
Carl Henrik Ek, University of Bristol
Ivan Ustyuzhaninov, University of Tübingen
Tom Waterson, Electronic Arts

September, 2019
Motivation

Data:

- Motion capture sequences, e.g. a jump or a golf swing.
- Each motion corresponds to a different style or mood.

Goal: Generate new motions by interpolating between the captured clips.

Pre-processing: The clips need to be temporally aligned.
Assume we are given some time-series data with inputs $\mathbf{x} \in \mathbb{R}^N$ and J output sequences $\{\mathbf{y}_j \in \mathbb{R}^N\}$.

We know that there are multiple underlying function that generated this data, say K such functions, $f_k(\cdot)$, and the observed data was generated by warping the inputs to the true functions using some warping function $g_j(x)$ such that:

$$\mathbf{y}_j = f_k(g_j(x)) + \text{noise}.$$ \hfill (1)
Motivation

Unknowns:

- Number of underlying functions K
- Underlying functions $f_k(\cdot)$
- Warps $g_j(\cdot)$ for each sequence
Let’s try to find K using K-means clustering:
Motivation

K-means clustering vs. correct labels:

K-means initialisation with 2 clusters

K-means initialisation with 3 clusters

Correct clustering of inputs

2 clusters
Motivation

A PCA scatter plot of the data:

PCA initialisation with correct labels
Alignment model

Three constituent parts:

- Model of transformations (warps), g_j
- Model of sequences, f_k
- Alignment objective
Model of transformations (warsps)

- Parametric warps.
 \[\sum_{i \in I} w_i = 1, \quad w_i \geq 0 \quad \forall \ i \in I \]

- Nonparametric warps.
 For example, monotonic GPs

In general, we prefer warps that are close to an identity

Riihimäki & Vehtari. Gaussian processes with monotonicity information (2010)
Model of sequences

Option 1: interpolate sequences using linear interpolation or splines.

Option 2: fit GPs to the sequences.
 - principled way to handle observational noise
 - can impose priors of f_k

Observed sequences

GP regression
Assume that the observed data was generated as:

\[y_j = f_k(g_j(x)) + \epsilon_j, \quad \epsilon_j \sim \mathcal{N}(0, \beta_j^{-1}) \tag{2} \]

where \(x \) are fixed linearly spaced input locations (or evenly sampled time).

Then the corresponding aligned sequences are:

\[s_j := f_k(x) \tag{3} \]

The joint conditional likelihood is:

\[
p \left(\begin{bmatrix} s_j \\ y_j \end{bmatrix} \mid G_j, X_j, \theta_j \right) \sim \mathcal{N} \left(0, \begin{bmatrix} k_{\theta_j}(X, X) & k_{\theta_j}(X, G_j) \\ k_{\theta_j}(G_j, X) & k_{\theta_j}(G_j, G_j) + \beta_j^{-1} \end{bmatrix} \right) \tag{4} \]
Then the goal is to:

- Fit GPs to observations and pseudo-observations
 \{[g(X), X], [Y, S]\} for each sequence

- Impose alignment constraint on pseudo-observations \{X, S\}
Alignment objective

We want an alignment objective that:

- infers the number of clusters (underlying functions) K
- aligns sequences within these clusters

We aim to design a clustering or dim. reduction objective that is invariant to the transformation (warps) of the inputs
Minimise the pairwise distance between all sequences (irrespective of the underlying clusters of functions):

\[
\mathcal{L} = \sum_{n=1}^{J} \sum_{m=n+1}^{J} \left\| s_n(x) - s_m(x) \right\|^2
\]

(5)
Traditional GP-LVM

- Observe high-dimensional data S.
- Find low-dim representation Z that captures the structure of S.
- Find a mapping f from Z to S.

$$s_j = h(z_j, \theta) + \text{noise},$$

where θ are parameters of h.
In a GP-LVM, GPs are taken to be independent across the features and the likelihood function is:

\[p(S \mid x) = \prod_{d=1}^{D} p(s_d \mid x) = \prod_{d=1}^{D} N(s_d \mid 0, K + \gamma^{-1} I) \] (6)
GP-LVM as alignment objective

We impose the alignment objective by learning a low-dimensional representation \mathbf{Z} of the pseudo-observations \mathbf{S}.

\[
\mathcal{L}_{\text{GP-LVM}} = \log p(\mathbf{S} | \mathbf{Z}, \theta_h, \theta_z, \beta) \\
= \frac{N}{2} \log |K_{zz}| - \frac{1}{2} \text{Tr}(K_{zz}^{-1}\mathbf{SS}^T) \tag{7}
\]

- complexity terms
- data fitting terms

\[
+ \log(p(\mathbf{Z} | \theta_z)) + \log(p(\theta_h)) + \text{const}
\]

- prior over latent variables
- prior over GP mappings

As an alignment objective, it is controlled by:

1. prior over the latent variables \mathbf{Z}, $p(\mathbf{Z}) \sim \mathcal{N}(\mathbf{0}, \theta_z \mathbf{I})$
2. lengthscale in the GP-LVM mapping (part of θ_h)
Aside: Pairwise distance alignment objective

\[y_{\text{transformed}}^i = y^i_{\text{input}} + w^i, \quad y^i, w^i \in \mathbb{R}^8 \text{ with } \gamma \| w \|^2, \quad i = 1, 2, 3, 4 \]
Aside: GP-LVM as alignment objective

\[y_{\text{transformed}}^i = y_{\text{input}}^i + w^i, \quad y^i, w^i \in \mathbb{R}^8 \text{ with } \gamma \| w \|^2, \quad i = 1, 2, 3, 4 \]
Aside: Bayesian Mixture Model as alignment objective

\[\mathbf{y}^i_{transformed} = \mathbf{y}^i_{input} + \mathbf{w}^i, \quad \mathbf{y}^i, \mathbf{w}^i \in \mathbb{R}^8 \text{ with } \gamma \| \mathbf{w} \|^2, \quad i = 1, 2, 3, 4 \]
Full objective for sequence alignment

1. For each of the J sequences we perform standard GP regression on the observed data y_j and the pseudo-observations s_j by learning the hyperparameters of the GPs and the parameters of the warpings.

2. Impose the alignment objective on the pseudo-observations S

The sum of the log-likelihoods is:

\[
\mathcal{L} = \sum_{j=1}^{J} \mathcal{L}_{GP_i} + \mathcal{L}_{GP-LVM} + \sum_{j=1}^{J} \log p(g_j) \\
= \sum_{j=1}^{J} \log p([s_j, y_j]^T | x, g_j, \theta_j, \beta_j) + \mathcal{L}_{GP-LVM}(Z, \psi_h, \psi_z, \gamma) + \sum_{j=1}^{J} \log p(g_j)
\]

(8)
Results on ECG data

Input data:

Alignment with GP-LVM objective:
Competing objectives and joint model
Likelihood $p(S \mid H, F^X)$ as an equal mixture (where S_j and S_n refer to rows and columns of S):

$$p(S \mid H, F^X) = \frac{1}{2} \left(\prod_n \mathcal{N}(S_n \mid H_n, \gamma^{-1} I_J) + \prod_j \mathcal{N}(S_j \mid F_j^X, \beta_j^{-1} I_N) \right)$$
Multi-task learning and Matrix distributions

Given data $Y \in \mathbb{R}^{J \times N}$:

1. each sequence (row) has a GP prior and there’s a free-form matrix C that models the covariances between the sequences1.

2. learn sparse inverse covariance between features while accounting for a low-rank confounding covariance between samples using GP-LVM2:

$$p(Y \mid R, C^{-1}) = \mathcal{N}(vec(Y) \mid 0_{N \times D}, C \otimes R + \sigma^2 I_{N \times D}) \quad (9)$$

2 Stegle et al. Efficient inference in matrix-variate Gaussian models with iid observation noise (2011)
These types of constructions are useful when:

1. The data has a hierarchical structure with additional constraints:

 \[y_j = f_k(g_j(x)) + \epsilon_j, \quad \epsilon_j \sim \mathcal{N}(0, \beta_j^{-1}) \]

2. We want to perform dim. reduction or clustering that is invariant to a specific transformation
Uncertainty in alignment model
While the alignment model is probabilistic, so far we only considered point estimates and ignored the uncertainties associated with warpings and group assignments.

Uncertainty in the alignment model contains:
1. Observed sequences are often noisy
2. Warping uncertainty
3. Assignment of sequences to groups is ambiguous
Uncertainty in alignment model

![Graphs showing true warps, warps, and aligned functions.](image)
Going beyond the point estimates of the warps

- So far we have been computing point estimates of the warps (by optimising G_j directly).
- To model warping uncertainty we developed a nonparametric model\(^1\) of monotonic warps based on the Gaussian process differential flow model\(^2\).

\(^1\) Hegde et al. Deep learning with differential Gaussian process flows (2019)
The composition of a warp (g-function) and a GP (f-function) is similar to a two-layer DGP.

Exact inference is also intractable, so we augment both layers with inducing points $\{U_g\}$ and $\{U_f\}$.

Inducing points effectively define mappings in each layer. If they are independent, the mappings do not match each other to fit the observations.

Beyond mean-field variational distribution

Use optimal distribution of inducing points\(^1\)

Two components of a variational distribution:

1. Free-form variational distribution \(q(\{U^g\})\) for the inducing points of the warp
2. For a given output \(G\) of the warp, we define \(q(\{U^f\})\) to be the optimal variational distribution\(^1\) of inducing points in a GP mapping \(G\) to the observations

\(^1\)M. Titsias. Variational Learning of Inducing Variables in Sparse Gaussian Processes, 2009
Beyond mean-field variational distribution

Use optimal distribution of inducing points

Fitting the model:

1. Sample $\{U^g\} \sim q(\{U^g\})$
2. Conditioned on this sample, sample (again) the output the warps $G \sim p(G \mid \{U^g\})$
3. Conditioned on G, compute the optimal distribution of inducing points $q(\{U^f\})$ and the likelihood

$$p(Y \mid G) = \int p(Y \mid G, \{U^f\})q(\{U^f\})dU^f$$

The only variational parameters to optimise are those of $q(\{U^g\})$, which we can do by maximising $p(Y \mid G)$ (using the reparametrisation trick)

Consider 2-layer DGP where first layer is monotonic:

Overall fit

Warpings

Fit in warped coordinates

