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Motivation & Research Goal

Motivation

Many social processes can be seen as point processes.

Cases of bovine tuberculosis
(BTB) over the years 1989–2002
in Cornwall, UK.

Four different strains of the
disease.

”Nonparametric estimation of
spatial segregation in a
multivariate point process:
bovine tuberculosis in Cornwall,
UK.” by Diggle P. et al. (2005).

V.Aglietti GP Summer School, September 2020 3 / 44



Motivation & Research Goal

Motivation

Many social processes can be seen as point processes.

Cases of bovine tuberculosis
(BTB) over the years 1989–2002
in Cornwall, UK.

Four different strains of the
disease.

”Nonparametric estimation of
spatial segregation in a
multivariate point process:
bovine tuberculosis in Cornwall,
UK.” by Diggle P. et al. (2005).

V.Aglietti GP Summer School, September 2020 3 / 44



Motivation & Research Goal

Motivation

Many social processes can be seen as point processes.

Counts of Covid19 events in UK

Covid19 events in Tuscany
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Motivation & Research Goal

Motivation

Many social processes can be seen as point processes.

Cases of ”assaults” over the year
2004-2013 in Chicago, USA.

”Fast Kronecker Inference in
Gaussian Processes with
non-Gaussian Likelihoods” by
Flaxman S. et al. (2015).
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Motivation & Research Goal

Motivation

Many social processes can be seen as point processes.

Figure 1: Event counts for seven different crimes reported in 2016 in New York City, USA.
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Motivation & Research Goal

Motivation

These social processes are characterized by:

Spatial and temporal correlation;

Correlation structure that changes in time and space (non-stationary) in a
dependent manner (non-separable);

Cross-correlation

Goal: Develop a scalable algorithm capable of jointly modelling social processes
accounting for their complexities.
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Modelling point processes with GPs

Cox processes

Estimating the intensity rate of events over a continuous space is a common problem
for real-world applications.

Doubly stochastic Poisson process or Cox process [Cox 1955]:

observed events are assumed to be generated from a Poisson process

intensity function is modelled as another random process with a given prior
probability measure
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Modelling point processes with GPs

The lgcp model

The Log-Gaussian Cox Process (lgcp) [Møller et al., 1998] is an inhomogeneous
Poisson process with a stochastic intensity function:

yA|λ(x) ∼ Poisson

(∫
x∈A

λ(x)dx

)
,

where:

λ(x) = exp{f (x)}
f (x) ∼ GP(m(x), κ(x, x′;θ))
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Modelling point processes with GPs

The lgcp model

The Log-Gaussian Cox Process (lgcp) [Møller et al., 1998] is an inhomogeneous
Poisson process with a stochastic intensity function:

yA|λ(x) ∼ Poisson

(∫
x∈A

λ(x)dx

)
Computational grid for tractable inference:

yn|λ(x) ∼ Poisson (λ(xn))
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Modelling point processes with GPs

Limitations of the lgcp model

1 Computational grid

2 Single-task model

3 High computational cost due to the use of expensive MCMC schemes
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Modelling point processes with GPs

Limitations of the lgcp model

1 Computational grid → ”Structured variational inference in continuous cox
process models.” by Aglietti et al. (2019)

2 Single-task model

3 High computational cost when using expensive MCMC schemes
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Modelling point processes with GPs

The lgcp model

1 Computational grid

2 Single-task model → Multi-task model

3 High computational cost → Variational Inference scheme
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Crash course in multi-task GPs

Motivation

Event counts for different types of crime are highly correlated.

Figure 2: Event counts for seven different crimes reported in 2016 in New York City, USA.

→ Learn a model that capture the dependencies between these processes
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Crash course in multi-task GPs

Single-task GP regression

GP regression:

f (x) ∼ GP(0, k(x, x′))

yi = f (xi ) + εi εi ∼ N(0, σ2)

D = {(xi , yi )}Ni=1 N = 3

y1

y2

y3

 ∼ N
0

0
0

 ,
k11 k12 k13

k21 k22 k23

k31 k32 k33

+ σ2I


with kij = k(xi , xj).
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Crash course in multi-task GPs

Single-task GP regression

f (x) ∼ GP(0, k(x, x′))

yi = f (xi ) + εi εi ∼ N(0, σ2)

D = {(xi , yi )}Ni=1 N = 3

y1

y2

y3

 ∼ N

0

0
0

 ,
k11 k12 k13

k21 k22 k23

k31 k32 k33


︸ ︷︷ ︸

K

+ σ2I


We can get the prediction for a new test point x∗ by computing p(f (x∗)|y) in closed
form.
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Crash course in multi-task GPs

Multi-task GP regression

f1(x) ∼ GP(0, k1(x, x′))

f2(x) ∼ GP(0, k2(x, x′))

D1 = {(x1
i , y

1
i )}N1

i=1 N1 = 3

D2 = {(x2
i , y

2
i )}N2

i=1 N2 = 2

y1
i = f1(x1

i ) + εi εi ∼ N(0, σ2
1)

y2
i = f2(x2

i ) + εi εi ∼ N(0, σ2
2)

[
y1

y2

]
∼ N

([
0
0

]
,

[
K1 0
0 K2

]
+

[
σ2

1I 0
0 σ2

2I

])
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Crash course in multi-task GPs

Intrinsic coregionalization model (ICM)

We assume the two functions to be generated from latent process:

u(x) ∼ GP(0, k(x, x′))

f1(x) = w1u(x)

f2(x) = w2u(x)

[
y1

y2

]
∼ N

([
0
0

]
,K +

[
σ2

1I 0
0 σ2

2I

])

K = Bk(x, x′) = wwTk(x, x′) w =
[
w1 w2

]T
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Crash course in multi-task GPs

Intrinsic coregionalization model (ICM)

In general we have a set of functions {fp(x)}Pp=1 and we assume

fp(x) =
R∑
i=1

w i
pu

i (x)

with {ui (x)}Ri=1 are independent GPs with the same k(x, x′).

Define f(x) = [f1(x), ..., fP(x)]T then we have:

cov(f(x), f(x′)) = Bk(x, x′)
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Crash course in multi-task GPs

Other multi-task GP models

Semiparametric Latent factor model (SLFM)

Linear Coregionalization model (LCM)

Process convolutions

...
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Crash course in multi-task GPs

A multi-task lgcp model

The multivariate lgcp (mlgcp) [Diggle et al., 2013] considers P types of points
with an intensity given by:

λp(x) = exp(β + f0(x) + fp(x))

where f0(x) indicates a gp common to all tasks while fp(x) denotes a gp specific to
the point process of type p. Inference proceeds via a mala algorithm.
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Crash course in multi-task GPs

Coregionalisation models for point processes

The intensity function is a linear combination of Q independent Gaussian processes:

λp(x) = exp(
Q∑

q=1

wpq︸︷︷︸
deterministic

uq(x)).

The covariance Cov[fp(x), fp′(x′)] is given by K (x, x′) =
∑Q

q=1 Bqkq(x, x′) where Bq

is known as a coregionalisation matrix.

A Bayesian treatment has been proposed by Schmidt & Gelfand (2003). The weight
parameters have an inverse Wishart prior and inference proceeds with mcmc.
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Crash course in multi-task GPs The mcpm model

Modelling goals

increase modelling flexibility with respect to mlgcp and icm

develop a full Bayesian model that propagates uncertainty in the mixing
weights
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Crash course in multi-task GPs The mcpm model

Multi-task Cox process model (MCPM)

Latent functions:

Q uncorrelated GP:

p(F|θ) =
Q∏

q=1

p(F•q|θq)

=
Q∏

q=1

N (F•q|0,Kq
xx),

where θq are the hyper-parameters
for the q-th latent function.

Mixing weights:

Coupled weights, independent
across latent processes:

p(W|θw ) =
Q∏

q=1

N (W•q; 0,Kq
w ),

where θw denotes the
hyper-parameters.
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Crash course in multi-task GPs The mcpm model

Graphical model representation

Figure 3: mcpm- Plate diagram. X ′
pd′ represents the inputs for the gp prior on W. When placing a Normal prior on each wpq ,

we introduce the additional factorization across P (dashed plate).
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Crash course in multi-task GPs The mcpm model

Other models

Sigmoidal transformation: Adams et al. (2009), Gunter et al. (2014), Lian
et al. (2015), Donner and Opper (2018).

Square transformation: Walder and Bishop (2017), Lloyd et al. (2015), Lian
et al. (2015), Lloyd et al (2016), John and Hensman (2018).
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Crash course in variational inference for GPs

Inference in GP modulated point process models

GP regression:

Gaussian prior :
f (x) ∼ N (0, k(x, x′)) = p(f )

Gaussian likelihood: y ∼ N (f , σ2I )

Gaussian posterior:
p(f |y) ∝ N (y |f , σ2I )N (f |0, σ2I )

PP model:

Gaussian prior :
f (x) ∼ N (0, k(x, x′)) = p(f )

Non Gaussian likelihood:
y ∼ Poisson(exp(f ))

Non Gaussian posterior:

p(f |y) = p(f )(y |f )∫
p(f )(y |f )df

Sampling methods to obtain samples from the posterior

Approximation of the posterior with something of known form → Variational
inference
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Crash course in variational inference for GPs

Variational inference

Idea: Minimize a divergence between the true posterior distribution p(f |y) and an
approximate posterior q(f ) of known form e.g. q(f ) = N (µ,C)

KL(q(f )||p(f |y)) =

∫
q(f )log

q(f )

p(f |y)
df

Adjust the variational parameters of q(f ) to minimize the KL divergence.
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Crash course in variational inference for GPs

Variational inference

KL(q(f )||p(f |y)) = − (Eq(f )[log(f , y)]− Eq(f )[log(q(f ))])︸ ︷︷ ︸
ELBO

+logp(y)

Minimizing the KL divergence is equivalent to maximizing the ELBO which is a
lower bound on the log-evidence.

V.Aglietti GP Summer School, September 2020 30 / 44



Crash course in variational inference for GPs

Inference goals for the mcpm model

Use a VI algorithm

Reduce the computational cost, especially when P is large

Avoid mixing issues of mcmc methods

Get rid of further Monte Carlo approximations in the optimisation procedure
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Crash course in variational inference for GPs Inference for the mcpm model

Scalable Variational Inference

We introduce an augmented prior over the latent functions [Titsias, 2009 and
Bonilla et al., 2016] defined by:

p(U|θ) =
Q∏

q=1

N (U•q; 0,Kq
zz) and p(F|U,θ) =

Q∏
q=1

N (F•q; µ̃q, K̃
q
),

where µ̃q = Kq
xz(Kq

zz)−1U•q and K̃
q

= Kq
xx −Kq

xz(Kq
zz)−1Kq

zx .

U•q denotes the inducing process for F•q computed in the M × D matrix Zq of
inducing inputs (M � N).
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Crash course in variational inference for GPs Inference for the mcpm model

Scalable Variational Inference

Idea: Minimise the distance between the true posterior distribution and the approx-
imate posterior distribution, the variational distribution.

p(F,U,W|D)︸ ︷︷ ︸
True posterior distribution

→ q(F,U,W|ννν)︸ ︷︷ ︸
Variational distribution

= p(F|U) q(U|νννu)︸ ︷︷ ︸
(1)

q(W|νννw )︸ ︷︷ ︸
(2)

(1) q(U|νu) =
∏Q

q=1N (U•q;mq,Sq)

(2) q(W|νw ) =
∏Q

q=1N (W•q;ωq,Ωq)

where νu = {mq,Sq} are the variational parameters.
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Crash course in variational inference for GPs Inference for the mcpm model

Scalable Variational Inference

Minimization of the KL divergence→ Maximisation of the evidence lower bound
(ELBO):

Lelbo(ν) = Lkl(ν) + Lell(ν), (1)

Lkl(ν) = −KL(q(F,U,W|ν)‖p(F,U,W)) (2)

= −KL(q(U|νu)‖p(U))−KL(q(W|νw )‖p(W)), (3)

Lell(ν) = Eq(F,U,W|ν)[log p(Y|F,W)]︸ ︷︷ ︸
Can we compute this expectation in closed form?

(4)

= −
N∑

n=1

P∑
p=1

exp(φp)Eq(Fn•)q(Wp•) (exp (Wp•Fn•)) (5)

+
N∑

n=1

P∑
p=1

Q∑
q=1

[ynp(ωpqµnq + φp)− log(ynp!)] (6)
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Crash course in variational inference for GPs Inference for the mcpm model

Scalable Variational Inference

E [exp (tWp•Fn•)] = mgfWp•Fn•(t) (7)

where mgfWp•Fn•(t) denotes the moment generating function of Wp•Fn• in t. The
random variable Wp•Fn• is the sum of products of independent Gaussians and its
mgf is thus given by:

MGFWp•Fn•(t) =
Q∏

q=1

exp

[
tγpqµ̃nq+ 1

2 (µ̃2
nqK

qp
w +γ2

pqK̃
qn)t2

1−t2K qp
w K̃ qn

]
√

1− t2K qp
w K̃ qn

, (8)

where the expectation is computed with respect to the prior distribution of Wp• and

Fn•; γpq is the prior mean of wpq; K̃ qn denotes the variance of fnq; and K qp
w is the

variance of wpq.

V.Aglietti GP Summer School, September 2020 35 / 44



Crash course in variational inference for GPs Inference for the mcpm model

Computational complexity

The time complexity of the algorithm is of order O(M3).

The kl-divergence includes distributions over M-dimensional variables and
P-dimensional variables (M � P). Its computational complexity is thus
independent of N.

The ell term decomposes as a sum of expectations over N. This enables the
use of stochastic optimization techniques thus also making this term
independent of N.
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Experiments

Experimental comparison

Baselines:

Variational lgcp
model

Variational
formulation of icm
with Poisson likelihood
implemented in
GPflow

Performance measures:

Root mean square
error (rmse)

Negative log predicted
likelihood (nlpl)

Empirical coverage of
the posterior counts
distribution (ec)

Setting:

We show transfer by
partitioning the spatial
extent in subregions
and create missing
data folds for each
task.
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Experiments

Synthetic data experiment

Figure 4: Four related tasks evaluated at 200 evenly spaced
points in [−1.5, 1.5]. The red intervals denote the 50
contiguous observations removed from the training set of each
task.

rmse nlpl
cpu

1 2 3 4 1 2 3 4 time

mcpm-n 38.61 7.86 5.71 4.68 20.99 3.75 3.31 3.02 0.18
mcpm-gp 38.58 7.69 5.70 4.71 20.95 3.70 3.31 3.03 0.25
lgcp 48.17 14.32 11.83 5.38 43.40 8.78 8.98 3.27 0.32
icm 39.07 7.96 7.88 6.03 21.81 3.76 3.77 3.38 0.52

Empirical Coverage (ec)

1 2 3 4

mcpm-n 0.80/0.12 0.99/0.58 0.92/0.57 0.94/0.83
mcpm-gp 0.95/0.19 0.72/0.67 1.00/0.78 0.92/0.75
icm 0.75/0.03 0.66/0.60 0.62/0.50 0.93/0.42

Table 1: Above: Performance on the missing intervals.
mcpm-n and mcpm-gp denote independent and correlated
prior respectively. Time in seconds per epoch. Lower values of
nlpl are better. Below: In-sample/Out-of-sample 90% ci
coverage for the predicted event counts distributions. Higher
values of ec are better.
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Experiments

Transfer experiment - crime dataset

Figure 5: Estimated intensity surface when introducing missing data regions.

Standardized nlpl (per cell)
cpu

1 2 3 4 5 6 7 time

mcpm-n
0.56 0.91 0.66 1.09 0.85 10.29 0.42

2.85
(0.10) (0.27) (0.30) (0.27) (0.52) (2.51) (0.05)

mcpm-gp
0.72 0.75 0.94 1.53 0.57 18.76 0.58

3.11
(0.18) (0.18) (0.55) (0.52) (0.19) (8.25) (0.12)

lgcp
9.90 9.32 19.34 5.30 18.18 36.73 9.68

2.87
(3.66) (2.41) (11.45) (1.02) (8.65) (4.02) (2.67)

icm
0.87 1.36 0.91 1.19 0.69 12.30 0.93

44.13
(0.27) (0.35) (0.45) (0.40) (0.11) (3.02) (0.17)

Empirical Coverage (ec)

1 2 3 4 5 6 7

mcpm-n 0.99/0.80 1.00/0.73 0.97/0.71 1.00/0.73 0.98/0.61 1.00/1.00 0.99/0.87
mcpm-gp 1.00/0.87 1.00/0.74 1.00/0.71 1.00/0.95 1.00/0.88 0.80/1.00 1.00/0.85
lgcp 0.86/0.29 0.76/0.20 0.86/0.29 0.82/0.37 0.68/0.25 0.94/0.00 0.83/0.21
icm 0.68/0.73 0.75/0.50 0.64/0.52 0.79/0.65 0.59/0.78 0.93/0.86 0.841/0.64

Table 2: Right: crime dataset. Performance on the missing
regions. Time in seconds per epoch. Lower values of nlpl are
better. Left: In-sample/Out-of-sample 90% ci coverage for
the predicted event counts distributions. Higher values of ec
are better.
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Experiments

Transfer experiment - Bovine tuberculosis (btb) dataset

Figure 6: First row: Counts of the btb incidents on a 64×64
grid. Shaded areas represent missing data regions. Estimated
conditional probabilities by mcpm (second row) and by icm
(third row).

Table 3: Upper: rmse and nlpl on btb with missing data.
Time in seconds per epoch. Lower values of nlpl are better.
Lower: In-sample/Out-of-sample 90% ci coverage for the
predicted event counts distributions. Higher values of ec are
better.

rmse nlpl (per cell)
cpu

gt 9 gt 12 gt 15 gt 20 gt 9 gt 12 gt 15 gt 20 time

mcpm-n
0.83 0.24 0.28 0.29 1.23 0.20 0.33 0.35

7.73
(0.15) (0.07) (0.07) (0.10) (0.40) (0.07) (0.11) (0.16)

mcpm-gp
0.81 0.22 0.27 0.27 1.42 0.27 0.41 0.58

7.63
(0.14) (0.08) (0.07) (0.09) (0.42) (0.09) (0.14) (0.24)

lgcp
1.37 0.61 0.63 1.24 1.70 0.48 0.72 0.86

8.76
(0.33) (0.13) (0.12) (0.56) (0.39) (0.11) (0.17) (0.36)

icm
0.91 0.21 0.32 7.24 1.44 0.18 0.34 0.37

67.06
(0.15) (0.07) (0.08) (5.48) (0.40) (0.06) (0.10) (0.14)

Empirical Coverage (ec)

gt 9 gt 12 gt 15 gt 20

mcpm-n 0.87/0.92 0.97/0.99 0.93/0.96 0.95/1.00
mcpm-gp 0.93/0.91 0.98/0.98 0.97/0.98 0.97/0.99
lgcp 0.91/0.79 0.97/0.98 0.97/0.97 0.96/0.98
icm 0.90/0.84 0.96/0.98 0.95/0.96 0.96/0.96
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Conclusions

Contributions:

Multi-task GP models capture the complexity of different social processes

Different multi-task GP models can be used to model the intensity function of
a point process

mcpm increases modeling flexibility wrt mlgcp and icm by introducing
stochastic mixing weights

mcpm offers a fully Bayesian model that propagates uncertainty

Posterior inference requires approximation when the likelihood is Poisson

Scalable inference framework (O(M3)) considering prior and posterior
distributions for F and W separately.
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Conclusions

Efficient Inference in Multi-task Cox Process Models
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Conclusions

What about more difficult correlation structure?

How can we write a multi-task GP model that incorporates the correlation structure
existing in a causal graph?
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Conclusions

Thanks for your attention!
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