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Motivation

Many social processes can be seen as point processes.
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Motivation

Many social processes can be seen as point processes.
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@ "Nonparametric estimation of
spatial segregation in a
multivariate point process:
bovine tuberculosis in Cornwall,
UK." by Diggle P. et al. (2005).
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Motivation

Many social processes can be seen as point processes.
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Motivation

Many social processes can be seen as point processes.
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Motivation

Many social processes can be seen as point processes.

Burglary Felony Assault Grand Larceny Grand Larceny of MV Petit Larceny Petit Larceny of MV Robbery
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Figure 1: Event counts for seven different crimes reported in 2016 in New York City, USA.
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Motivation

These social processes are characterized by:
@ Spatial and temporal correlation;

o Correlation structure that changes in time and space (non-stationary) in a
dependent manner (non-separable);

@ Cross-correlation

Goal: Develop a scalable algorithm capable of jointly modelling social processes
accounting for their complexities.
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Modelling point processes with GPs

Cox processes

Estimating the intensity rate of events over a continuous space is a common problem
for real-world applications.

Doubly stochastic Poisson process or Cox process [Cox 1955]:
@ observed events are assumed to be generated from a Poisson process

@ intensity function is modelled as another random process with a given prior
probability measure
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Modelling point processes with GPs

The LGCP model

The Log-Gaussian Cox Process (LGCP) [Mgller et al., 1998] is an inhomogeneous
Poisson process with a stochastic intensity function:

yalA(x) ~ Poisson ( )\(x)dx) |

XEA
where:

A() = exp{£(x)}
f(x) ~ GP(m(x), k(x,x’; 9))
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The LcCP model

The Log-Gaussian Cox Process (LGCP) [Mgller et al., 1998] is an inhomogeneous
Poisson process with a stochastic intensity function:

ya|A(x) ~ Poisson ( /X L A(x)dx>
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The LcCP model

The Log-Gaussian Cox Process (LGCP) [Mgller et al., 1998] is an inhomogeneous
Poisson process with a stochastic intensity function:

ya|A(x) ~ Poisson ( /X L A(x)dx>

Computational grid for tractable inference:
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The LcCP model

The Log-Gaussian Cox Process (LGCP) [Mgller et al., 1998] is an inhomogeneous
Poisson process with a stochastic intensity function:

yalA(x) ~ Poisson ( /\(x)dx>

xEA

Computational grid for tractable inference:

Yl A(X) ~ Poisson (A(x,))
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Limitations of the LGCP model

Q@ Computational grid
@ Single-task model
© High computational cost due to the use of expensive MCMC schemes
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Limitations of the LGCP model

© Computational grid — "Structured variational inference in continuous cox
process models.” by Aglietti et al. (2019)

@ Single-task model
© High computational cost when using expensive MCMC schemes
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The LcCP model

Q@ Computational grid
@ Single-task model — Multi-task model

© High computational cost — Variational Inference scheme

V.Aglietti
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Crash course in multi-task GPs

Motivation

Event counts for different types of crime are highly correlated.

Burglary Felony Assault Grand Larceny Grand Larceny of MV Petit Larceny Petit Larceny of MV Robbery
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Figure 2: Event counts for seven different crimes reported in 2016 in New York City, USA.

— Learn a model that capture the dependencies between these processes
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Single-task GP regression

GP regression:

f(X) ~ gP(Ov k(X,X/))

10 S vi=f(x;) +e € ~ N(0,0%)

os D={(x,y)}t, N=3

o %1 0 kit ko ki3

o 0.0 02 04 06 08 10 y2 ~ N O ’ k21 k22 k23 + 02/
x y3 0 k31 ksp ka3

with k,J = k(X,‘,XJ').
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Single-task GP regression

— fix)
e D

i
Y2
¥3

f(x) ~ GP(0, k(x,x"))
yi=f(x;) +e €~ N0, %)

D= {(Xh}/i)}lNzl

0 ki1
~N 1 10|, |ka
0 ka1

N=3
ki ki3
koy ko | +o?l
ks ka3
K

We can get the prediction for a new test point x* by computing p(f(x*)|y) in closed

form.
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Multi-task GP regression

(0,
f(x) ~ gP(o kz(x x'))
w0 Dy ={(x},y" )y M=3
Dy = {(x},y7)}i2, No=2
> o yi =f(x})+e e~ N(O,07)
yi=h6(xF) +e e~ N(,03)
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Intrinsic coregionalization model (ICM)

We assume the two functions to be generated from latent process:

u(x) ~ GP(0, k(x,x"))
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Crash course in multi-task GPs

Intrinsic coregionalization model (ICM)

In general we have a set of functions {,(x)}F_; and we assume

with {u/(x)}R; are independent GPs with the same k(x,x’).
Define f(x) = [f1(x), ..., fp(x)] T then we have:

cov(f(x), f(x")) = Bk(x,x")
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Other multi-task GP models

Semiparametric Latent factor model (SLFM)
Linear Coregionalization model (LCM)

°
°
@ Process convolutions
°
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A multi-task LGCP model

The multivariate Lccp (MLGCP) [Diggle et al., 2013] considers P types of points
with an intensity given by:

Ap(x) = exp(5 + fo(x) + f5(x))

where fy(x) indicates a GP common to all tasks while f,(x) denotes a GP specific to
the point process of type p. Inference proceeds via a MALA algorithm.
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Crash course in multi-task GPs

Coregionalisation models for point processes

The intensity function is a linear combination of Q independent Gaussian processes:

Q

/\p(x):exp(z @ ug(x)).

=1 .
q deterministic

The covariance Cov[f,(x), f(x')] is given by K(x,x’) = 23:1 Bgkq(x,x") where B,
is known as a coregionalisation matrix.

A Bayesian treatment has been proposed by Schmidt & Gelfand (2003). The weight
parameters have an inverse Wishart prior and inference proceeds with MCMC.
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Modelling goals

@ increase modelling flexibility with respect to MLGCP and ICM

@ develop a full Bayesian model that propagates uncertainty in the mixing
weights
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Multi-task Cox process model (MCPM)

Latent functions: Mixing weights:

@ Q@ uncorrelated GP: o Coupled weights, independent
across latent processes:

F‘e HP 0q|0 Q
p(W[6,) = [[ NV(W.q; 0, K,
g=1

= HN(F-q\OaKﬁx)v

a1 where 6,, denotes the

hyper-parameters.
where 8, are the hyper-parameters
for the g-th latent function.
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Crash course in mu

e e Sl The MCPM model

Graphical model representation

‘

0

Y

()

Figure 3: MCcPM- Plate diagram. X;;d/ represents the inputs for the GP prior on W. When placing a Normal prior on each wpq,

we introduce the additional factorization across P (dashed plate).
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Other models

e Sigmoidal transformation: Adams et al. (2009), Gunter et al. (2014), Lian
et al. (2015), Donner and Opper (2018).

@ Square transformation: Walder and Bishop (2017), Lloyd et al. (2015), Lian
et al. (2015), Lloyd et al (2016), John and Hensman (2018).
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Crash course in variational inference for GPs

Inference in GP modulated point process models

GP regression: PP model:
@ Gaussian prior : @ Gaussian prior :
F(x) ~ N(0, k(x,x)) = p(f) f(x) ~ N(0, k(x,x)) = p(f)
o Gaussian likelihood: y ~ N (f,02l) @ Non Gaussian likelihood:
@ Gaussian posterior: y ~ Poisson(exp(f))
p(fly) o< N(y|f,a?)N(f|0,o21) o Non Gaussian posterior:
p(fly) = p(F)(yIf)
I p(F)(yIF)df
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Crash course in variational inference for GPs

Inference in GP modulated point process models

GP regression:
@ Gaussian prior :
F(x) ~ N(0, k(x,x)) = p(f)
e Gaussian likelihood: y ~ N (f,c21)
@ Gaussian posterior:

p(fly) < N(ylf, a® )N (f]0,021)

PP model:
@ Gaussian prior :
f(x) ~ N(0, k(x,x)) = p(f)
@ Non Gaussian likelihood:
y ~ Poisson(exp(f))

@ Non Gaussian posterior:

_ p(NIf)
P(FlY) = TaAiinar

@ Sampling methods to obtain samples from the posterior

@ Approximation of the posterior with something of known form — Variational

inference

V.Aglietti
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Crash course in variational inference for GPs

Variational inference

Idea: Minimize a divergence between the true posterior distribution p(f|y) and an
approximate posterior g(f) of known form e.g. g(f) = NM(p, C)

KLLa(r) (1) = [ atFog T of

Adjust the variational parameters of g(f) to minimize the KL divergence.
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Crash course in variational inference for GPs

Variational inference

KL(q(F)lIp(fly)) = — (Eq(s)[log(f, ¥)] — Eq(r) [log(q(F))]) +logp(y)

ELBO

Minimizing the KL divergence is equivalent to maximizing the ELBO which is a
lower bound on the log-evidence.
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Inference goals for the MCPM model

Use a VI algorithm
Reduce the computational cost, especially when P is large
Avoid mixing issues of MCMC methods

Get rid of further Monte Carlo approximations in the optimisation procedure
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Crash course in variational inference for GPs EEIIEELICRITRLTES (@ R Tete Nl

Scalable Variational Inference

We introduce an augmented prior over the latent functions [Titsias, 2009 and
Bonilla et al., 2016] defined by:

Q
U|0 HN 'CI' gz) and p(F|U70) = HN(Foq;ﬁqv Rq),

q=1

where fig = KZ,(KZ,)"*Uuq and K = Kg, — K%, (K%,) 1KY,

U., denotes the inducing process for F,, computed in the M x D matrix Z, of
inducing inputs (M < N).
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Crash course in variational inference for GPs EEIIEELICRITRLTES (@ R Tete Nl

Scalable Variational Inference

Idea: Minimise the distance between the true posterior distribution and the approx-
imate posterior distribution, the variational distribution.

p(F,UW|D) — q(F,UW[v) =p(F|U)q(Ur.)q(Wvw)
—_——— —_——— —_———— ———
True posterior distribution Variational distribution (1) 2)

(1) q(Ulv) = TTE; N (Uegi mg. S)
(2) (W) = [T, N (Wagi wg, )

where v, = {mg,S,} are the variational parameters.
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Crash course in variational inference for GPs EEIIEELICRITRLTES (@ R Tete Nl

Scalable Variational Inference

Minimization of the KL divergence — Maximisation of the evidence lower bound
(ELBO):

Leibo (V) = L(v) + Len(v), (1)
L(v) = —KL(q(F, U, W|v)|p(F, U, W)) (2)
= —KL(q(U|vu)|[p(U)) — KL(q(W|vw)[[p(W)), ®3)
La(v) = Eq(r,u,ww)[log p(Y|F, W)] (4)
Can we compute this expectation in closed form?
N P
= - Z Z eXP(¢p)Eq(Fn-)q(Wp.) (eXp (WP° Fn')) (5)
n=1 p=1
N P Q
+ Z Z Z [np(wWpghing + ¢p) — log(ynp!)] (6)
n=1 p=1 g=1
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Crash course in variational inference for GPs EEIIEELICRITRLTES (@ R Tete Nl

Scalable Variational Inference

E [exp (tWpeF e )] = MGFw,,F,, (1) ()

where MGFw,,F,, (t) denotes the moment generating function of W, F, in t. The
random variable W,F,, is the sum of products of independent Gaussians and its
MGF is thus given by:

ex t’quﬁnq"‘%(ﬁiq Kjxp""’qu an)t2
P 1—t2KIP Kan

— ; (8)
V1 - 2KPKan

where the expectation is computed with respect to the prior distribution of W, and

Fre; Ypg is the prior mean of wy,; K97 denotes the variance of f,4; and K is the
variance of wp,.

Q
MGFw,.r..(t) = ] [
g=1
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Crash course in variational inference for GPs EEIIEELICRITRLTES (@ R Tete Nl

Computational complexity

The time complexity of the algorithm is of order O(M?3).

@ The KL-divergence includes distributions over M-dimensional variables and
P-dimensional variables (M > P). Its computational complexity is thus
independent of N.

@ The ELL term decomposes as a sum of expectations over N. This enables the

use of stochastic optimization techniques thus also making this term
independent of N.
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Experimental comparison

Baselines: Performance measures: Setting;:
@ Variational LGCP @ Root mean square @ We show transfer by
model error (RMSE) partitioning the spatial
@ Variational o Negative log predicted extent in subregions
formulation of 1CcM likelihood (NLPL) and create missing
with Poisson likelihood o Empirical coverage of ?:Sts folds for each

implemented in the posterior counts
GPflow distribution (EC)
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Synthetic data experiment

[Task # 1)

Task # 2

o Training points.

(Task # 4] — True intensity

MCPM-Normal

Figure 4: Four related tasks evaluated at 200 evenly spaced

points in [—1.5, 1.5]. The red intervals denote the 50

contiguous observations removed from the training set of each

task.

V.Aglietti

RMSE NLPL
cru

1 2 3 4 1 2 3 4 time

MCPM-N 3861 7.86 571 4.68 2099 375 331 3.02 0.18
McpM-GP 38.58  7.69 570 471 20.95 3.70 331 3.03 025
Locp 4817 1432 1183 538 4340 878 898 327 0.32
1eM 3007 796 7.88 603 2181 376 377 338 052

Empirical Coverage (EC)
1 2 3 4

MCPM-N 0.80/0.12 0.99/0.58 0.92/0.57 0.94/0.83
Mcpm-Gp - 0.95/0.19 0.72/0.67 1.00/0.78 0.92/0.75
1CM 0.75/0.03  0.66/0.60 0.62/0.50  0.93/0.42

Table 1: Above: Performance on the missing intervals.
MCPM-N and MCPM-GP denote independent and correlated
prior respectively. Time in seconds per epoch. Lower values of
NLPL are better. Below: In-sample/Out-of-sample 90% cI1
coverage for the predicted event counts distributions. Higher
values of EC are better.
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Transfer experiment - CRIME dataset

Burglary Felony Assault

Grand Larceny  Grand Larceny of MV Petit Larceny _Petit Larceny of MV Robbery

Training obs

=

LecP
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¢ t"' e e
. Bk - .
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o~ F # =
- : .
- - -
- ‘ ‘ : ‘ ; :
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Figure 5: Estimated intensity surface when introducing missing data regions.

Standardized NLPL (per cell)

CPU

1 2 3 4 5 6 7 time
0.56 0.91 0.66 1.09 0.85 10.29 0.42

MOPMENT 010y (027)  (0.30) (027) (052) (251) (005) 288

MCPM-GP 0.72 0.75 0.94 1.53 0.57 18.76 0.58 311
) (018) (018) (055) (052) (019) (825) (0.12)

Lacr 9.90 9.32 19.34 5.30 18.18  36.73 9.68 287
(366) (241) (11.45) (1.02) (8.65) (4.02) (2.67)

om 0.87 1.36 0.91 1.19 0.69 12.30 0.93 44.13
g (027) (0.35) (045) (040) (0.11) (3.02) (0.17)

V.Aglietti

Empirical Coverage (k)
1 2 3 4 5 6 7
MePM-N - 0.99/0.80  1,00/0.73  097/0.71  1.00/0.73  0.98/0.61 1.00/1.00 0.99/0.87
Mepy-GP - 1.00/0.87 1.00/0.74 1.00/0.71 1.00/0.95 1.00/0.88 080/1.00 1.00/0.85
Lace 086/029 076/020 086/029 082/037 068/025 094/000 0.83/0.21
1om 068/0.73  075/0.50 064/0.52 079/0.65 059/0.78  093/0.86 0.841/0.64

Table 2: Right: CRIME dataset. Performance on the missing
regions. Time in seconds per epoch. Lower values of NLPL are
better. Left: In-sample/Out-of-sample 90% CI coverage for
the predicted event counts distributions. Higher values of EC
are better.
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Transfer experiment - Bovine tuberculosis (BTB) dataset

GT9 GT 12 GT 15 GT 20

Training obs.
.
=)
o

L m

b | 10

H ‘ 05
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* Ll 4 L
10
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"; * ‘ 1

Figure 6: First row: Counts of the BTB incidents on a 64X 64
grid. Shaded areas represent missing data regions. Estimated
conditional probabilities by McPM (second row) and by 1cM
(third row).
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Table 3: Upper: RMSE and NLPL on BTB with missing data.
Time in seconds per epoch. Lower values of NLPL are better.
Lower: In-sample/Out-of-sample 90% CI coverage for the
predicted event counts distributions. Higher values of EC are

better.
RMSE ~LPL (per cell) .
gt9 gt12 gt15 gt20 gt9 gtl12 gt15 gt20 time
N 0.83 0.24 0.28 0.29 1.23 0.20 0.33 0.35 773
MOPMNT(015) (0.07) (0.07) (0.10) (0.40) (0.07) (0.11) (0.16)
MCPM-GP 0.81 0.22 0.27 0.27 1.42 0.27 0.41 0.58 7.63
MEPMEEE T (0.14)  (0.08) (0.07) (0.09) (0.42) (0.09) (0.14) (0.24) *
o 137 0.61 0.63 124 170 0.48 0.72 0.86 876
Laer (0.33) (0.13) (0.12) (056) (0.39) (0.11) (0.17) (0.36)
. 0.91 0.21 0.32 7.24 1.44 0.18 0.34 0.37 67.06
1o (015) (0.07) (0.08) (5.48) (0.40) (0.06) (0.10) (0.14)
Empirical Coverage (EC)
gt9 gt 12 gt 15 gt 20
MCPM-N  0.87/0.92 0.97/0.99 0.93/0.96 0.95/1.00
McPM-GP  0.93/0.91 0.98/0.98 0.97/0.98 0.97/0.99
LGCP 0.91/0.79 0.97/0.98 0.97/0.97 0.96/0.98
oM 0.90/0.84 0.96/0.98 0.95/0.96 0.96/0.96
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Conclusions

Contributions:

@ Multi-task GP models capture the complexity of different social processes

o Different multi-task GP models can be used to model the intensity function of
a point process

@ MCPM increases modeling flexibility wrt MLGCP and ICM by introducing
stochastic mixing weights

o MCPM offers a fully Bayesian model that propagates uncertainty
@ Posterior inference requires approximation when the likelihood is Poisson

@ Scalable inference framework (O(M?3)) considering prior and posterior
distributions for F and W separately.
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Conclusions

Efficient Inference in Multi-task Cox Process Models

Efficient Inference in Multi-task Cox Process Models

Virginia Aglietti Theodoros Damoulas Edwin V. Bonilla
University of Warwick University of Warwick CSIRO’s Data61
The Alan Turing Institute The Alan Turing Institute UNSW

Abstract intensity determines event occurrences. Among these

modeling approaches, the log Gaussian Cox process

We generalize the log Gaussian Cox process (Laep, Moller et al., 1998) is one of the most well-
(LGeP) framework to model multiple corre- established frameworks, where the intensity is driven
lated point data jointly. The observations by a Gaussian process prior (GP, Williams and Ras-
are treated as realizations of multiple LGCPs, mussen, 2006). The flexibility of LGCP comes at the
whose log intensities are given by linear combi- cost of incredibly hard inference challenges due to its
nations of latent functions drawn from Gaus- doubly-stochastic nature and the notorious scalability
sian process priors. The combination coef- issues of GP models. The computational problems are
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What about more difficult correlation structure?

How can we write a multi-task GP model that incorporates the correlation structure
existing in a causal graph?

Multi-task Causal Learning with Gaussian Processes

Virginia Aglietti Theodoros Damoulas
University of Warwick University of Warwick
The Alan Turing Institute The Alan Turing Institute
V.Aglietti@warwick.ac.uk T.Damoulas@warwick.ac.uk
Mauricio Alvarez Javier Gonzilez
University of Sheffield Microsoft Research Cambridge
Mauricio.Alvarez@sheffield.ac.uk Gonzalez.Javier@microsoft.com
Abstract

This paper studies the problem of learning the correlation structure of a set of
intervention functions defined on the directed acyclic graph (DAG) of a causal
model. This is useful when we are interested in jointly learning the causal effects of
interventions on different subsets of variables in a DAG, which is common in field
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Conclusions

Thanks for your attention!
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