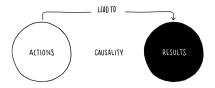
Causal decision-making meets Gaussian Processes

Virginia Aglietti

University of Warwick, The Alan Turing Institute

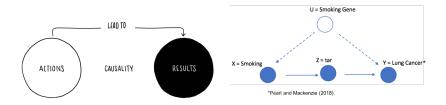
Integrate causal considerations into a choice process and take decisions based on causal knowledge [Hagmayer and Fernbach (2017)].

Why is this important?



Integrate causal considerations into a choice process and take decisions based on causal knowledge [Hagmayer and Fernbach (2017)].

Why is this important?



Systems/processes decompose in sets of interconnected nodes

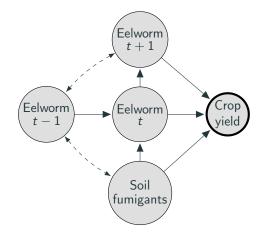


Figure 1: Causal Graph for Crop Yield. Nodes denote variables, arrows represent causal effects and dashed edges indicate unobserved confounders.

Systems/processes decompose in sets of interconnected nodes

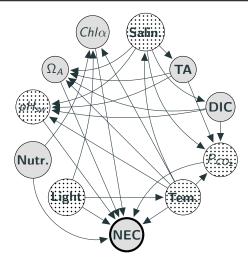


Figure 2: Causal Graph for Net Ecosystem Calcification (NEC). Dotted nodes represent non-manipulative variables.

Systems/processes decompose in sets of interconnected nodes

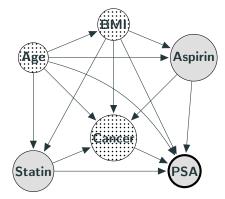


Figure 3: Causal Graph for Prostate Specific Antigen (PSA) level. Dotted nodes represent non-manipulative variables.

- A causal graph (Directed Acyclic Graph DAG).
- Observational data from all (non hidden) nodes.
- Ability of running experiments (in reality or in simulation).
- Cost of experiments depends on the number and type of nodes in which we intervene.

Research goal

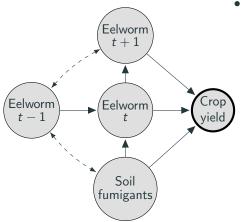
Efficiently find the system configuration that optimises the target node.

Research goal

Efficiently find the system configuration that optimises the target node.

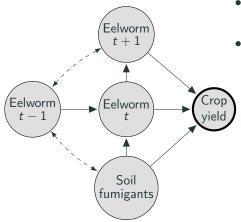
- System configuration \rightarrow manipulative variables to be intervened on and their intervention levels e.g. Soil fumigants, CO₂, Statin.
- Target node \rightarrow variable in the causal graph that we wish to optimize considering its causal relationships e.g. Crop yield, NEC, PSA.
- Efficiently \rightarrow exploit all information, observational and interventional, that we collect when exploring the system.

Questions to answer



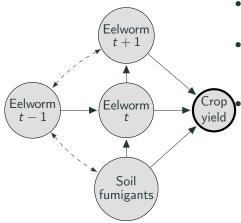
• How can I learn the expected crop yield given different interventions?

Questions to answer



- How can I learn the expected crop yield given different interventions?
- How can I learn the optimal intervention that is the intervention maximizing the the crop yield?

Questions to answer



- How can I learn the expected crop yield given different interventions?
- How can I learn the optimal intervention that is the intervention maximizing the the crop yield?

I have observed the crop yield over seasons and have previously intervened on soil fumigants. How can I integrate this information to infer the crop yield I would get by intervening on soil fumigants and eelworm t?

Research goal

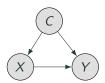
Efficiently find the system configuration that optimises the target node.

- 1. Perform experiments
- 2. Integrate interventional and observational data
- 3. Transfer interventional information.

Causal models and *do*-calculus

Causal model: DAG \mathcal{G} + four-tuple $\langle \mathbf{U}, \mathbf{V}, F, P(\mathbf{U}) \rangle$

- U: independent *exogenous* background variables.
- P(U) distribution of U.
- V: endogenous variables (non-manipulative, manipulative, target).
- $F = \{f_1, ..., f_{|\mathbf{V}|}\}$: functions $v_i = f_i(pa_i, u_i)$, pa_i are the parents of V_i .

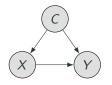


 $\begin{aligned} C &= f_c(U_c), \ U_c \sim \mathcal{N}(0, \sigma_c^2) \\ X &= f_x(C, U_x), \ U_x \sim \mathcal{N}(0, \sigma_x^2) \\ Y &= f_y(X, C, U_y), \ Y_c \sim \mathcal{N}(0, \sigma_y^2) \end{aligned}$

Causal models and *do*-calculus (2 of 3)

Intervention: Setting a manipulative variable X to a value x, do(X = x).

Observed universe



$$C = f_c(U_c)$$

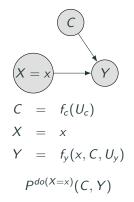
$$X = f_x(C, U_x)$$

$$Y = f_y(X, C, U_y)$$

P(X, C, Y)

$$P(Y|do(X = x)) := P^{do(X = x)}(Y|X = x)$$

Post-intervention universe

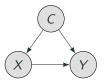


Causal models and *do*-calculus (3 of 3)

Key question: How to do inference in the post-intervention universe?

- Intervene \rightarrow Interventional data $\rightarrow P(Y|do(X = x))$
- Observe \rightarrow Observational data \rightarrow *do*-calculus \rightarrow $\hat{P}(Y|do(X = x))$

do-calculus: algebra to emulate the post-intervention universe in terms of conditionals P(Y|X = x) in the observed universe.



Back-door adjustment: $p(Y|do(X = x)) = \int P(Y|c, X = x)P(c)dc$.

$$\begin{split} \mathbf{X}^{\star}_{s}, \mathbf{x}^{\star}_{s} &= \mathop{\arg\min}\limits_{\substack{\mathbf{X}_{s} \in \mathcal{P}(\mathbf{X}) \\ \mathbf{x}_{s} \in \mathcal{D}(\mathbf{X}_{s})}} \mathbb{E}[Y | \text{do} \left(\mathbf{X}_{s} = \mathbf{x}_{s}\right)] \end{split}$$

(1)

- $\mathcal{P}(\mathbf{X})$ gives all possible interventions.
- $D(X_s)$ fixed interventional domain for each X_s .
- X_s , x_s one possible intervention set and value.
- \mathbf{X}_{s}^{\star} , \mathbf{x}_{s}^{\star} , optimal intervention set and value.

Gobal optimization vs. Causal optimization

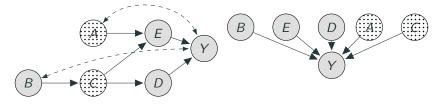
Causal optimization

Global optimization

$$\begin{array}{l} \mathbf{X}_{s}^{\star}, \mathbf{x}_{s}^{\star} = \mathop{\arg\min}_{\substack{\mathbf{X}_{s} \in \mathcal{P}(\mathbf{X}) \\ \mathbf{x}_{s} \in D(\mathbf{X}_{s})}} \mathbb{E}[Y | \mathrm{do} \left(\mathbf{X}_{s} = \mathbf{x}_{s}\right)] \end{array}$$

$$\mathbf{x}^{\star} = \argmin_{\mathbf{x} \in D(\mathbf{X})} \mathbb{E}[Y | \mathsf{do} \left(\mathbf{X} = \mathbf{x} \right)]$$

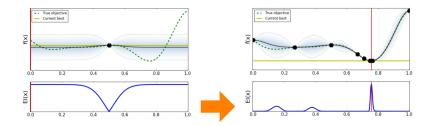
- Explore $\mathcal{P}(\mathbf{X})$
- Find the intervention set and the intervention level
- Set the intervention set to ${\boldsymbol{\mathsf{X}}}$
- Find the intervention level



- Target function *f* is explicitly unknown and multimodal.
- Evaluations of f are perturbed by noise.
- Evaluations of *f* are expensive.

Bayesian optimization

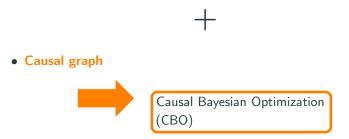
- **Goal**: Collect data x_1, \ldots, x_n to find the optimum as fast as possible.
- **Model**: Gaussian process $f(x) \sim \mathcal{GP}(\mu(x), k_{\theta}(x, x'))$.
- Acquisition: $\alpha_{El}(\mathbf{x}; \theta, D) = \int_{Y} \max(0, y_{best} y) p(y|\mathbf{x}; \theta, D) dy$



Each point x_{n+1} is collected as $x_{n+1} = \arg \max \alpha_{El}(\mathbf{x}; \theta, \mathcal{D}_n)$

Solving Causal Optimization

- Target function f is explicitly unknown and multimodal.
- Evaluations of f are perturbed by noise.
- Evaluations of *f* are expensive.



Idea: Run interventions $(X_{s_1}, x_{s_1}), \ldots, (X_{s_n}, x_{s_n})$ to find the optimum as fast as possible.

Do we need to explore all $2^{|X|}$ sets in $\mathcal{P}(X)$? NO!

$$\begin{split} \mathbf{X}^{\star}_{s}, \mathbf{x}^{\star}_{s} &= \mathop{\arg\min}\limits_{\substack{\mathbf{X}_{s} \in \mathcal{P}(\mathbf{X}) \\ \mathbf{x}_{s} \in \mathcal{D}(\mathbf{X}_{s})}} \mathbb{E}[Y | \mathrm{do} \left(\mathbf{X}_{s} = \mathbf{x}_{s}\right)] \end{split}$$

Do we need to explore all $2^{|X|}$ sets in $\mathcal{P}(X)$? NO!

$$\begin{aligned} \mathbf{X}_{s}^{\star}, \mathbf{x}_{s}^{\star} &= \mathop{\arg\min}\limits_{\substack{\mathbf{X}_{s} \in \mathcal{P}(\mathbf{X}) \\ \mathbf{x}_{s} \in D(\mathbf{X}_{s})}} \mathbb{E}[Y | \operatorname{do} \left(\mathbf{X}_{s} = \mathbf{x}_{s}\right)] \end{aligned}$$

Minimal Intervention Set (MIS, $\mathbb{M}_{\mathcal{G},Y}^{\mathsf{C}}$)

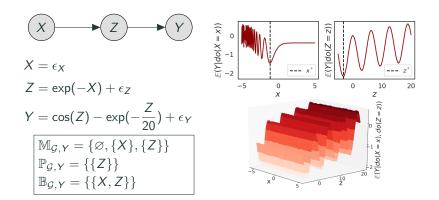
Given $\langle \mathcal{G}, \mathbf{Y}, \mathbf{X}, \mathbf{C} \rangle$, a set $\mathbf{X}_s \in \mathcal{P}(\mathbf{X})$ is said to be a MIS if there is no $\mathbf{X}'_s \subset \mathbf{X}_s$ such that $\mathbb{E}[Y | \text{do} (\mathbf{X}_s = \mathbf{x}_s), \mathbf{C}] = \mathbb{E}[Y | \text{do} (\mathbf{X}'_s = \mathbf{x}'_s), \mathbf{C}]$.

Possibly-Optimal Minimal Intervention set (POMIS, $\mathbb{P}_{G_{Y}}^{\mathsf{C}}$)

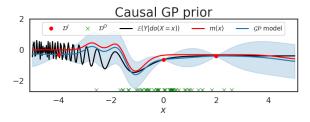
Let $\mathbf{X}_s \in \mathbb{M}_{\mathcal{G},Y}^{\mathsf{C}}$. \mathbf{X}_s is a POMIS if there exists a sem conforming to \mathcal{G} such that $\mathbb{E}[Y|\text{do}(\mathbf{X}_s = \mathbf{x}_s^*), \mathbf{C}] > \forall_{\mathbf{W} \in \mathbb{M}_{\mathcal{G},Y}^{\mathsf{C}} \setminus \mathbf{X}_s} \mathbb{E}[Y|\text{do}(\mathbf{W} = \mathbf{w}^*), \mathbf{C}]$ where \mathbf{x}^* and \mathbf{w}^* denote the optimal intervention values.

MIS and POMIS are sets of variables 'worth' intervening on.

Causal Bayesian Optimization



Modelling $\mathbb{E}[Y|do(X_s = x_s)]$ for each X_s with Causal GP prior



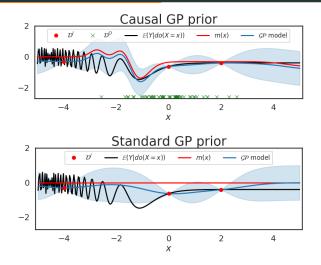
$$f(\mathbf{x}_{s}) \sim \mathcal{GP}(m(\mathbf{x}_{s}), k(\mathbf{x}_{s}, \mathbf{x}_{s}'))$$
$$m(\mathbf{x}_{s}) = \hat{\mathbb{E}}[Y | \text{do} (\mathbf{X}_{s} = \mathbf{x}_{s})]$$
$$k(\mathbf{x}_{s}, \mathbf{x}_{s}') = k_{RBF}(\mathbf{x}_{s}, \mathbf{x}_{s}') + \sigma(\mathbf{x}_{s})\sigma(\mathbf{x}_{s}')$$

where

•
$$k_{RBF}(\mathbf{x}_s, \mathbf{x}'_s) := \exp\left(-\frac{||\mathbf{x}_s - \mathbf{x}'_s||^2}{2l^2}\right)$$

• $\sigma(\mathbf{x}_s) = \sqrt{\hat{\mathbb{V}}(Y|\text{do}(\mathbf{X}_s = \mathbf{x}_s))}$ with $\hat{\mathbb{V}}$ is the variance of the causal effects estimated from observational data.

Modelling $\mathbb{E}[Y|do(X_s = x_s)]$ for each X_s with Causal GP prior



Standard GP prior: $f(\mathbf{x}_s) \sim \mathcal{GP}(m(\mathbf{x}_s), k(\mathbf{x}_s, \mathbf{x}'_s)), m(\mathbf{x}_s) = \mathbf{0}$ and $k(\mathbf{x}_s, \mathbf{x}'_s) = k_{RBF}(\mathbf{x}_s, \mathbf{x}'_s)$ with $k_{RBF}(\mathbf{x}_s, \mathbf{x}'_s) := \exp(-\frac{||\mathbf{x}_s - \mathbf{x}'_s||^2}{2l^2})$.

Solving the exploration-exploitation trade-off

Causal Expected Improvement

•
$$y_s = \mathbb{E}[Y | do(\mathbf{X}_s = \mathbf{x}_s)]$$

•
$$y^{\star} = \max_{\mathbf{X}_s \in \mathbf{es}, \mathbf{x} \in D(\mathbf{X}_s)} \mathbb{E}[Y | do(\mathbf{X}_s = \mathbf{x}_s)]$$

$$EI^{s}(\mathbf{x}) = \mathbb{E}_{p(y_{s})}[\max(y_{s} - y^{\star}, 0)]/Co(\mathbf{X}_{s}, \mathbf{x}_{s})$$

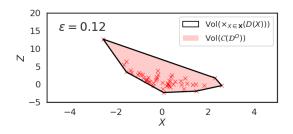
• $\alpha_1, \ldots, \alpha_{|\mathbf{es}|}$: solutions of optimizing $El^s(\mathbf{x})$ for each set in **es** and

New intervention set and value

$$\alpha^* := \max\{\alpha_1, \dots, \alpha_{|\mathsf{es}|}\}$$
$$s^* = \operatorname*{argmax}_{\mathsf{s} \in \{1 \cdots |\mathsf{es}|\}} \alpha_{\mathsf{s}}$$

Solving the intervention-observation trade-off

 $\epsilon\text{-}\mathsf{greedy}$ criteria



$$\epsilon = \frac{\operatorname{Vol}(\mathcal{C}(\mathcal{D}^O))}{\operatorname{Vol}(\times_{X \in \mathbf{X}}(D(X)))} \times \frac{N}{N_{\max}},$$

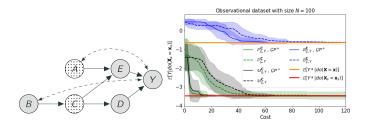
- Vol($\mathcal{C}(\mathcal{D}^{O})$): volume of the convex hull for observational data.
- $Vol(\times_{X \in \mathbf{X}}(D(X)))$: volume of the interventional domain.

Causal Bayesian Optimization - CBO

Algorithm: Causal Bayesian Optimization

```
Data: \mathcal{D}^{O}, \mathcal{D}^{I}, \mathcal{G}, es, number of steps T
Result: \mathbf{X}_{s}^{\star}, \mathbf{x}_{s}^{\star}, \hat{\mathbb{E}}[\mathbf{Y}^{\star}|do(\mathbf{X}_{s}^{\star} = \mathbf{x}_{s}^{\star})]
Initialise: Set \mathcal{D}_0^I = \mathcal{D}^I and \mathcal{D}_0^O = \mathcal{D}^O
for t=1, \dots, T do
     Compute \epsilon and sample u \sim \mathcal{U}(0, 1)
     if \epsilon > \mu then
           (Observe)
           1. Observe new observations (\mathbf{x}_t, c_t, \mathbf{y}_t).
           2. Augment \mathcal{D}^{\mathsf{O}} = \mathcal{D}^{\mathsf{O}} \cup \{(\mathbf{x}_t, c_t, \mathbf{y}_t, )\}.
           3. Update prior of the causal GP.
     end
     else
           (Intervene)
           1. Compute EI^{s}(\mathbf{x}) for each element
             s \in es.
           2. Obtain the optimal interventional
           set-value pair (s^*, \alpha^*).
           3. Intervene on the system.
           4. Update posterior of the interventional
             GP.
     end
end
```

Simulation analysis

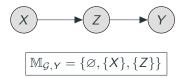


- Results are consistent with what is expected.
- Better results that BO: propagation of effect beyond default domain.

- 1. Many real systems decompose in interconnected nodes.
- 2. Optimization requires 'intervening' in the manipulative nodes and solving a Causal Optimization problem.
- 3. Standard Bayesian Optimization ignores causal assumptions.
- 4. CBO solves Causal Optimization problems and improves BO when causal information is available.
- 5. CBO efficiently explores 'worthy' interventions.
- 6. Causal GPs prior merges observational and interventional data.

- The number of GPs we require is determined by $|\mathcal{P}(\mathbf{X})|$ which is potentially huge.
- We don't transfer interventional information across GPs e.g. we don't account for the fact that intervening on X might give us some information about an intervention on X and Z.

Limitation of CBO



- $f_X(x)$
- $f_Z(z)$
- $f_{X,Z}(x,z)$

- The number of GPs we require is determined by $|\mathcal{P}(\mathbf{X})|$ which is potentially huge.
- We don't transfer interventional information across GPs e.g. we don't account for the fact that intervening on X might give us some information about an intervention on X and Z.

Research goal

Efficiently find the system configuration that optimises the target node.



We aim at learning the set of *intervention functions* for Y in \mathcal{G} :

$$\mathbf{T} = \{t_s(\mathbf{x})\}_{s=1}^{|\mathcal{P}(\mathbf{X})|} \qquad t_s(\mathbf{x}) = f_s(\mathbf{x}) = \mathbb{E}_{\rho(Y|\mathsf{do}(\mathbf{X}_s=\mathbf{x}))}[Y] = \mathbb{E}[Y|\mathsf{do}(\mathbf{X}_s=\mathbf{x})].$$

given
$$\mathcal{D}^O = \{\mathbf{x}_n, y_n\}_{n=1}^N$$
 and $\mathcal{D}^I = (\mathbf{X}^I, \mathbf{Y}^I)$ with $\mathbf{X}^I = \bigcup_s \{\mathbf{x}_{si}^I\}_{i=1}^{N_s^I}$ and $\mathbf{Y}^I = \bigcup_s \{y_{si}^I\}_{i=1}^{N_s^I}$.

 \Downarrow

Goal

Define $p(\mathbf{T})$ and compute $p(\mathbf{T}|\mathcal{D}')$ so as to make probabilistic predictions for \mathbf{T} at some unobserved intervention sets and levels.

- 1. Study the correlation among functions in $\mathbf{T} = \{f_s(\mathbf{x})\}_{s=1}^{|\mathcal{P}(\mathbf{X})|}$ which varies with the topology of \mathcal{G} .
- 2. Define a joint prior distribution $p(\mathbf{T})$.
- Develop a multi-task model based on p(T) so as to compute the posterior p(T|D^l).

Any function in **T** can be written as an integral transformation of some base function f, via some causal operator L_s such that $t_s(\mathbf{x}) = L_s(f)(\mathbf{x}), \forall \mathbf{X}_s \in \mathcal{P}(\mathbf{X})$ (Theorem 3.1):

$$L_s(f)(\mathbf{x}) = \int \cdots \int \pi_s(\mathbf{x}, (\mathbf{v}_s^N, \mathbf{c})) f(\mathbf{v}, \mathbf{c}) \mathrm{d}\mathbf{v}_s^N \mathrm{d}\mathbf{c},$$

Any function in **T** can be written as an integral transformation of some base function f, via some causal operator L_s such that $t_s(\mathbf{x}) = L_s(f)(\mathbf{x}), \forall \mathbf{X}_s \in \mathcal{P}(\mathbf{X})$ (Theorem 3.1):

$$L_s(f)(\mathbf{x}) = \int \cdots \int \pi_s(\mathbf{x}, (\mathbf{v}_s^N, \mathbf{c})) f(\mathbf{v}, \mathbf{c}) d\mathbf{v}_s^N d\mathbf{c},$$

- $f(\mathbf{v}, \mathbf{c}) = \mathbb{E}[Y | do(\mathbf{I} = \mathbf{v}), \mathbf{C}^N = \mathbf{c}]$
- **C**^N is the set of variables in *G* that are *directly* confounded with *Y* and are not colliders.
- I is the set Pa(Y).
- π_s(x, (v^N_s, c)) = p(c'_s|c^N_s)p(v^N_s, c^N_s|do (X_s = x)) is the integrating measure for the set X_s.

$$X \qquad Z \qquad Y$$

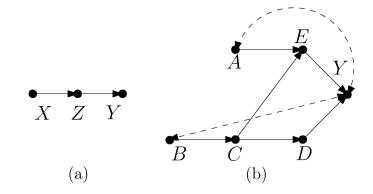
$$\mathbf{T} = \{t_X(x), t_Z(z), t_{X,Z}(x, z)\}$$

$$\mathbf{I} = \{Z\}$$

$$\mathbf{C} = \emptyset$$

$$f(z) = \mathbb{E}[Y | \operatorname{do} (Z = z)]$$

$$t_X(x) = \int f(z) p(z | X = x) dz$$



• (a)
$$I = \{Z\}, C^N = \emptyset$$

• (b)
$$I = \{E, D\}, C^N = \{A, B\}$$

$$t_s(\mathbf{x}) = L_s(f)(\mathbf{x}), \, orall \mathbf{X}_s \in \mathcal{P}(\mathbf{X})$$

We can define a prior for T by:

- Step (1): placing a *causal* prior on *f*
- Step (2): propagating this prior through $L_s(\cdot)$ for all $t_s(\mathbf{x})$

2. Define a joint prior p(T)

• Step (1): Placing a *causal* prior on $f(\mathbf{v}, \mathbf{c}) = f(\mathbf{b})$

 $f(\mathbf{b}) \sim \mathcal{GP}(m(\mathbf{b}), \mathcal{K}(\mathbf{b}, \mathbf{b}'))$

with $m(\mathbf{b}) = \hat{f}(\mathbf{b})$ and $\mathcal{K}(\mathbf{b},\mathbf{b}') = k_{\mathsf{rbf}}(\mathbf{b},\mathbf{b}') + \hat{\sigma}(\mathbf{b})\hat{\sigma}(\mathbf{b}')$ where

$$\begin{split} \hat{f}(\mathbf{b}) &= \hat{f}(\mathbf{v}, \mathbf{c}) = \hat{\mathbb{E}}[Y | \text{do}\left(\mathbf{I} = \mathbf{v}\right), \mathbf{c}] \\ \hat{\sigma}(\mathbf{b}) &= \hat{\sigma}(\mathbf{v}, \mathbf{c}) = \hat{\mathbb{V}}[Y | \text{do}\left(\mathbf{I} = \mathbf{v}\right), \mathbf{c}]^{1/2} \end{split}$$

where $\hat{\mathbb{V}}$ and $\hat{\mathbb{E}}$ represent the variance and expectation of the causal effects estimated from \mathcal{D}^{O} using *do-calculus*.

• Step (2): propagating this prior through $L_s(\cdot)$ for all $t_s(\mathbf{x})$

For each $X_s \in \mathcal{P}(X)$, we have $t_s(x) \sim \mathcal{GP}(m_s(x), k_s(x, x'))$ with:

$$m_{s}(\mathbf{x}) = \int \cdots \int m(\mathbf{b}) \pi_{s}(\mathbf{x}, \mathbf{b}_{s}) d\mathbf{b}_{s}$$
$$k_{s}(\mathbf{x}, \mathbf{x}') = \int \cdots \int K(\mathbf{b}, \mathbf{b}') \pi_{s}(\mathbf{x}, \mathbf{b}_{s}) \pi_{s}(\mathbf{x}', \mathbf{b}'_{s}) d\mathbf{b}_{s} d\mathbf{b}'_{s}$$

where $\mathbf{b}_s = (\mathbf{v}_s^N, \mathbf{c})$ is the subset of \mathbf{b} including only the \mathbf{v} values corresponding to the set \mathbf{I}_s^N .

Joint prior distribution: $T^D \sim \mathcal{N}(m_T(D), K_T(D, D))$

Likelihood function: $p(\mathbf{Y}^{\prime}|\mathbf{T}^{\prime},\sigma^2) = \mathcal{N}(\mathbf{T}^{\prime},\sigma^2\mathbf{I}).$

Joint posterior distribution: $\mathbf{T}^{D}|\mathcal{D}^{\prime} \sim \mathcal{N}(m_{\mathbf{T}|\mathcal{D}^{\prime}}(D), K_{\mathbf{T}|\mathcal{D}^{\prime}}(D, D))$ with $m_{\mathbf{T}|\mathcal{D}^{\prime}}(D) = m_{\mathbf{T}}(D) + K_{\mathbf{T}}(D, \mathbf{X}^{\prime})[K_{\mathbf{T}}(\mathbf{X}^{\prime}, \mathbf{X}^{\prime}) + \sigma^{2}\mathbf{I}](\mathbf{T}^{\prime} - m_{\mathbf{T}}(\mathbf{X}^{\prime}))$ and $K_{\mathbf{T}|\mathcal{D}^{\prime}}(D, D) = K_{\mathbf{T}}(D, D) - K_{\mathbf{T}}(D, \mathbf{X}^{\prime})[K_{\mathbf{T}}(\mathbf{X}^{\prime}, \mathbf{X}^{\prime}) + \sigma^{2}\mathbf{I}]K_{\mathbf{T}}(\mathbf{X}^{\prime}, D).$

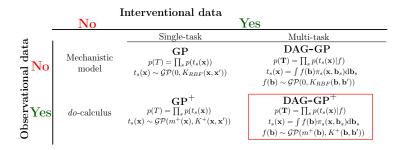


Figure 6: Models for learning the intervention functions T defined on a dag.

Learning intervention function from data

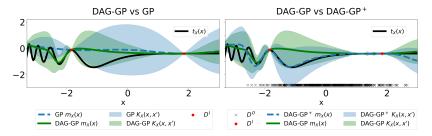


Figure 7: Posterior mean and variance for $t_X(\mathbf{x}) = f_X(\mathbf{x})$.

DAG-GP as surrogate model in CBO

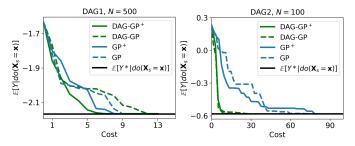


Figure 8: Convergence of the CBO algorithm to the global optimum $(\mathbb{E}[Y^*|do(X_s = x)])$ when a single-task or a multi-task GP model are used as surrogate models.

DAG-GP as surrogate model in CBO

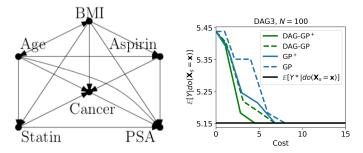


Figure 9: Convergence of the CBO algorithm to the global optimum for PSA $(\mathbb{E}[PSA^*|do(X_s = x)])$ when a single-task or a multi-task GP model are used as surrogate models.

1. The DAG-GP allows to efficiently learn the causal effects in a graph and identify the optimal intervention to perform

2. It captures the non-trivial correlation structure across different experimental outputs.

3. It enables proper uncertainty quantification and can be used within decision-making algorithm to choose experiments to perform.

Thanks for your attention!

lavier González

Theo Damoulas

Mauricio Álvarez

Xiaoyu Lu

Andrei Paleyes