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Gaussian process
Input and Output Data:

y = (y1, . . . , yN), X = (x1, . . . ,xN)>

p(y|f) = N
(
y|f , σ2I

)
, p(f |X) = N (f |0,K(X,X))
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Behind a Gaussian process fit

Maximum likelihood estimate of the hyper-parameters.

θ∗ = arg max
θ

log p(y|X, θ) = arg max
θ

logN
(
y|0,K + σ2I

)
Prediction on a test point given the observed data and the optimized
hyper-parameters.

p(f∗|X∗,y,X, θ) =

N
(
f∗|K∗(K + σ2I)−1y,K∗∗ −K∗(K + σ2I)−1K>∗

)
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How to implement the log-likelihood (1)

Compute the covariance matrix K:

K =

k(x1,x1) · · · k(x1,xN)
...

. . .
...

k(xN ,x1) · · · k(xN ,xN)


where k(xi,xj) = γ exp

(
− 1

2l2
(xi − xj)

>(xi − xj)
)

The complexity is O(N2Q).
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How to implement the log-likelihood (2)

Plug in the log-pdf of multi-variate normal distribution:

log p(y|X) = logN
(
y|0,K + σ2I

)
=− 1

2
log |2π(K + σ2I)| − 1

2
y>(K + σ2I)−1y

=− 1

2
(||L−1y||2 +N log 2π)−

∑
i

log Lii

Take a Cholesky decomposition: L = chol(K + σ2I).

The computational complexity is O(N3 +N2 +N). Therefore, the overall
complexity including the computation of K is O(N3).
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A quick profiling (N=1000, Q=10)

Line # Time(ms) % Time Line Contents

2 def log_likelihood(kern, X, Y, sigma2):

3 6.0 0.0 N = X.shape[0]

4 55595.0 58.7 K = kern.K(X)

5 4369.0 4.6 Ky = K + np.eye(N)*sigma2

6 30012.0 31.7 L = np.linalg.cholesky(Ky)

7 4361.0 4.6 LinvY = dtrtrs(L, Y, lower=1)[0]

8 49.0 0.1 logL = N*np.log(2*np.pi)/-2.

9 82.0 0.1 logL += np.square(LinvY).sum()/-2.

10 208.0 0.2 logL += -np.log(np.diag(L)).sum()

11 2.0 0.0 return logL
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Empirical analysis of computational time
I collect the run time for N = {10, 100, 500, 1000, 1500, 2000}.
They take 1.3ms, 8.5ms, 28ms, 0.12s, 0.29s, 0.76s.
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What if we have 1 million data points?

The mean of predicted computational time is 9.4× 107 seconds ≈ 2.98 years.
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What about waiting for faster computers?

Computational time = amount of work / computer speed.

If the computer speed increase at the pace of 20% year over year:
I After 10 years, it will take about 176 days.
I After 50 years, it will take about 2.9 hours.
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What about parallel computing / GPU?

Ongoing works about speeding up
Cholesky decomposition with multi-core
CPU or GPU.

Main limitation:
I heavy communication and shared

memory.
I O(N2) memory consumption

Figure 2: Runtime of variational sparse GP criterion and gradient computation (see Section 3.2) on the
”power” dataset, using our MXNet linalg implementation (on CPU and GPU, averaged over 100 runs)
and the GPy reference implementation (same CPU instance, averaged over 20 runs). The x-axis shows the
number U of inducing points. For U = 50, MXNet with GPU takes 0.015 seconds, MXNet CPU 0.035
seconds, and GPy 1.070 seconds. For U = 3200, MXNet GPU takes 1.49 seconds, MXNet CPU 4.63 seconds,
and GPy 13.67 seconds.

targets, they have n = 11934 data points and 16 dimensional inputs. Kin8nm has n = 8192 data points
and 8 dimensional inputs, and power was already used above. We used 90% data points for training and
10% for testing. All the datasets are normalized column-wise. We used U = 50 inducing points for GPy,
and U = {50, 3200} inducing points for our MXNet implementation. The Adam optimizer [11] was used
for training in MXNet, running 3000 iterations with step rate 10�2, while GPy models are trained for a
maximum number of 1000 iterations with L-BFGS. Results with 10-fold averages measured in terms of root
mean squared error (RMSE) and test set log likelihood (TLL) are provided in Table 1. GPy and MXNet
with 50 inducing points give similar performance for both RMSE and TLL. By running on GPU, the MXNet
implementation allows us to use 3200 inducing points. This gives significantly better performance on all the
datasets for both RMSE and TLL.

Metric Method naval1 naval2 kin8nm power

RMSE

GPy (50) 3.5⇥ 10�5± 3.1⇥ 10�4± 8.7⇥ 10�2± 3.98±
1.0⇥ 10�5 9.0⇥ 10�6 3.1⇥ 10�3 1.86⇥ 10�1

MXNet (50) 3.7⇥ 10�5± 3.1⇥ 10�4± 8.85⇥ 10�2± 3.98±
1.1⇥ 10�5 8.0⇥ 10�6 2.96⇥ 10�3 1.86⇥ 10�1

MXNet (3200) 0.6⇥ 10�5± 2.97⇥ 10�4± 6.79⇥ 10�2± 3.08±
0.6⇥ 10�5 5.0⇥ 10�6 2.48⇥ 10�3 2.80⇥ 10�1

TLL
GPy (50) 8.58 ± 0.22 6.66 ± 0.03 0.98 ± 0.02 �2.80 ± 0.05
MXNet (50) 8.69 ± 0.19 6.67 ± 0.02 0.98 ± 0.02 �2.80 ± 0.05
MXNet (3200) 10.70 ± 0.51 6.70 ± 0.02 1.28 ± 0.04 �2.53 ± 0.10

Table 1: Performance comparison of sparse GP with MXNet and GPy implementation on four standard
regression benchmarks. We compare GPy with 50 inducing points with MXNet with 50 and 3200 inducing
points.

6.3 Deep Gaussian Processes

The benefits of specifying GP models in MXNet, enhanced with our linalg operators, increase with model
complexity. Not only do all gradients come for free, the derivation and implementation of which usually
dominate even first prototyping e↵orts. Also, since multi-threaded CPU and GPU are supported for the
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Other approaches

Apart from speeding up the exact computation, there have been a lot of works on
approximation of GP inference.

These methods often target at some specific scenario and provide good
approximation for the targeted scenarios.

Provide an overview about common approximations.
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Big data (?)

lots of data 6= complex function

In real world problems, we often collect a lot of data for modeling relatively simple
relations.
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Data subsampling?

Real data often do not evenly distributed.

We tend to get a lot of data on common cases and very few data on rare cases.
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Covariance matrix of redundant data

With redundant data, the covariance matrix becomes low rank.

What about low rank approximation?
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Low-rank approximation

Let’s recall the log-likelihood of GP:

log p(y|X) = logN
(
y|0,K + σ2I

)
,

where K is the covariance matrix computed from X according to the kernel
function k(·, ·) and σ2 is the variance of the Gaussian noise distribution.

Assume K to be low rank.

This leads to Nyström approximation by Williams and Seeger [Williams and Seeger,
2001].
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Approximation by subset

Let’s randomly pick a subset from the training data: Z ∈ RM×Q.

Approximate the covariance matrix K by K̃.

K̃ = KzK
−1
zz K>z , where Kz = K(X,Z) and Kzz = K(Z,Z).

Note that K̃ ∈ RN×N , Kz ∈ RN×M and Kzz ∈ RM×M .

The log-likelihood is approximated by

log p(y|X, θ) ≈ logN
(
y|0,KzK

−1
zz K>z + σ2I

)
.
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Nyström approximation example

The covariance matrix with Nyström approximation using 5 random data points:
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Nyström approximation example

Compute tr
(
K− K̃

)
with different M .
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Efficient computation using Woodbury formula

The naive formulation does not bring any computational benefits.

L̃ = −1

2
log |2π(K̃ + σ2I)| − 1

2
y>(K̃ + σ2I)−1y

Apply the Woodbury formula:

(KzK
−1
zz K>z + σ2I)−1 = σ−2I− σ−4Kz(Kzz + σ−2K>z Kz)

−1K>z

Note that (Kzz + σ−2K>z Kz) ∈ RM×M .

The computational complexity reduces to O(NM2).
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Nyström approximation

The approximation is directly done on the covariance matrix without the concept of
pseudo data.

The approximation becomes exact if the whole data set is taken, i.e.,
KK−1K> = K.

The subset selection is done randomly.
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Gaussian process with Pseudo Data (1)

Snelson and Ghahramani [2006] proposes the idea of having pseudo data, which is
later referred to as Fully independent training conditional (FITC).

Augment the training data (X, y) with pseudo data u at location Z.

p

([
y
u

]
|
[
X
Z

])
=N

([
y
u

]
|0,
[
Kff + σ2I Kfu

K>fu Kuu

])
where Kff = K(X,X), Kfu = K(X,Z) and Kuu = K(Z,Z).

Zhenwen Dai (Spotify) Variational Gaussian Processes 15 September 2020 @GPSS 2020 21 / 60



Gaussian process with Pseudo Data (2)

Thanks to the marginalization property of Gaussian distribution,

p(y|X) =

∫
u

p(y,u|X,Z).

Further re-arrange the notation:

p(y,u|X,Z) = p(y|u,X,Z)p(u|Z)

where p(u|Z) = N (u|0,Kuu),
p(y|u,X,Z) = N

(
y|KfuK

−1
uuu,Kff −KfuK

−1
uuK>fu + σ2I

)
.
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FITC approximation (1)

So far, p(y|X) has not been changed, but there is no speed-up.

Kff ∈ RN×N in Kff −KfuK
−1
uuK>fu + σ2I.

The FITC approximation assumes

p̃(y|u,X,Z) = N
(
y|KfuK

−1
uuu,Λ + σ2I

)
,

where Λ = (Kff −KfuK
−1
uuK>fu) ◦ I.
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FITC approximation (2)

Marginalize u from the model definition:

p̃(y|X,Z) = N
(
y|0,KfuK

−1
uuK>fu + Λ + σ2I

)
Woodbury formula can be applied in the sam way as in Nyström approximation:

(KzK
−1
zz K>z + Λ + σ2I)−1 = A−AKz(Kzz + K>z AKz)

−1K>z A,

where A = (Λ + σ2I)−1.
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FITC approximation (3)

FITC allows the pseudo data not being a subset of training data.

The inducing inputs Z can be optimized via gradient optimization.

Like Nyström approximation, when taking all the training data as inducing inputs,
the FITC approximation is equivalent to the original GP:

p̃(y|X,Z = X) = N
(
y|0,Kff + σ2I

)
FITC can be combined easily with expectation propagation (EP).

Bui et al. [2017] provides an overview and a nice connection with variational sparse
GP.
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Model Approximation vs. Approximate Inference
FITC approximation changes the model definition.

A better objective under FITC does not necessarily corresponds to a better
approximation to the original GP.

In fact, optimizing Z can lead to overfitting. [Quiñonero-Candela and Rasmussen,
2005, Bauer et al., 2016]

inducing inputs and number of inducing points. The noise variance is shrunk to practically zero,
despite the mean prediction not going through every data point. Note how the mean still behaves well
and how the training data lie well within the predictive variance. Only when considering predictive
probabilities will this behaviour cause diminished performance. VFE, on the other hand, is able to
approximate the posterior predictive distribution almost exactly.

FITC (nlml = 23.16, �n = 1.93 · 10�4) VFE (nlml = 38.86, �n = 0.286)

Figure 1: Behaviour of FITC and VFE on a subset of 100 data points of the Snelson dataset for 8
inducing inputs (red crosses indicate inducing inputs; red lines indicate mean and 2�) compared to
the prediction of the full GP in grey. Optimised values for the full GP: nlml = 34.15, �n = 0.274

For both approximations, the complexity penalty decreases with decreased noise variance, by reducing
the volume of datasets that can be explained. For a full GP and VFE this is accompanied by a data
fit penalty for data points lying far away from the predictive mean. FITC, on the other hand, has an
additional mechanism to avoid this penalty: its diagonal correction term diag(K↵ � Q↵ ). This term
can be seen as an input dependent or heteroscedastic noise term (discussed as a modelling advantage
by Snelson and Ghahramani [7]), which is zero exactly at an inducing input, and which grows to the
prior variance away from an inducing input. By placing the inducing inputs near training data that
happen to lie near the mean, the heteroscedastic noise term is locally shrunk, resulting in a reduced
complexity penalty. Data points both far from the mean and far from inducing inputs do not incur a
data fit penalty, as the heteroscedastic noise term has increased around these points. This mechanism
removes the need for the homoscedastic noise to explain deviations from the mean, such that �2

n can
be turned down to reduce the complexity penalty further.

This explains the extreme pinching (severely reduced noise variance) observed in Fig. 1, also see,
e.g., [9, Fig. 2]. In examples with more densely packed data, there may not be any places where a
near-zero noise point can be placed without incurring a huge data-fit penalty. However, inducing
inputs will be placed in places where the data happens to randomly cluster around the mean, which
still results in a decreased noise estimate, albeit less extreme, see Figs. 2 and 3 where we use all 200
data points.

Remark 1 FITC has an alternative mechanism to explain deviations from the learned function than
the likelihood noise and will underestimate �2

n as a consequence. In extreme cases, �2
n can incorrectly

be estimated to be almost zero.

As a consequence of this additional mechanism, �2
n can no longer be interpreted in the same way

as for VFE or the full GP. �2
n is often interpreted as the amount of uncertainty in the dataset which

can not be explained. Based on this interpretation, a low �2
n is often used as an indication that the

dataset is being fitted well. Active learning applications rely on a similar interpretation to differentiate
between inherent noise, and uncertainty in the latent GP which can be reduced. FITC’s different
interpretation of �2

n will cause efforts like these to fail.

VFE, on the other hand, is biased towards over-estimating the noise variance, because of both the data
fit and the trace term. Q↵ +�2

nI has N �M eigenvectors with an eigenvalue of �2
n, since the rank of

Q↵ is M . Any component of y in these directions will result in a larger data fit penalty than for K↵ ,
which can only be reduced by increasing �2

n. The trace term can also be reduced by increasing �2
n.

Remark 2 The VFE objective tends to over-estimate the noise variance compared to the full GP.

3.2 VFE improves with additional inducing inputs, FITC may ignore them

Here we investigate the behaviour of each method when more inducing inputs are added. For both
methods, adding an extra inducing input gives it an extra basis function to model the data with. We
discuss how and why VFE always improves, while FITC may deteriorate.

4

Optimal values for the exact GP: nlml = 34.15, σ = 0.274. [Bauer et al., 2016]
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Model Approximation vs. Approximate Inference

Variational inference (VI) takes a different approach.

VI keeps the model definition untouched.

VI derives a lower bound of the log-marginal likelihood:

log(y) ≥
∫
q(x) log

p(y, x)

q(x)
dx = L

Alternatively, it can be written as

KL (q(x) ‖ p(x|y)) = log p(y)− L.
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Variational Sparse Gaussian Process (1)

Titsias [2009] introduces a variational approach for sparse GP.

It follows the same concept of pseudo data:

p(y|X) =

∫
f ,u

p(y|f)p(f |u,X,Z)p(u|Z)

where p(u|Z) = N (u|0,Kuu),
p(y|u,X,Z) = N

(
y|KfuK

−1
uuu,Kff −KfuK

−1
uuK>fu + σ2I

)
.
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Variational Sparse Gaussian Process (2)

Instead of approximate the model, Titsias [2009] derives a variational lower bound.

Normally, a variational lower bound of a marginal likelihood looks like

log p(y|X) = log

∫
f ,u

p(y|f)p(f |u,X,Z)p(u|Z)

≥
∫
f ,u

q(f ,u) log
p(y|f)p(f |u,X,Z)p(u|Z)

q(f ,u)
.
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Special Variational Posterior

Titsias [2009] defines an unusual variational posterior:

q(f ,u) = p(f |u,X,Z)q(u), where q(u) = N (u|µ,Σ) .

Plug it into the lower bound:

L =

∫
f ,u

p(f |u,X,Z)q(u) log
p(y|f)(((((((

p(f |u,X,Z)p(u|Z)

(((((((
p(f |u,X,Z)q(u)

= 〈log p(y|f)〉p(f |u,X,Z)q(u) − KL (q(u) ‖ p(u|Z))

=
〈
logN

(
y|KfuK

−1
uuu, σ2I

)〉
q(u)
− KL (q(u) ‖ p(u|Z))
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Special Variational Posterior

There is no inversion of any big covariance matrices in the first term:

−N
2

log 2πσ2 − 1

2σ2

〈
(KfuK

−1
uuu− y)>(KfuK

−1
uuu− y)

〉
q(u)

The overall complexity of the lower bound is O(NM2).
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Tighten the Bound

Find the optimal parameters of q(u):

µ∗,Σ∗ = arg max
µ,Σ

L(µ,Σ).

Make the bound as tight as possible by plugging in µ∗ and Σ∗:

L = logN
(
y|0,KfuK

−1
uuK>fu + σ2I

)
− 1

2σ2
tr
(
Kff −KfuK

−1
uuK>fu

)
.

The 1st term is the same as in the Nyström approximation.

The overall complexity of the lower bound remains O(NM2).
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Variational sparse GP

Note that L is not a valid log-pdf,
∫
y

exp(L(y)) ≤ 1, due to the trace term.

As inducing points are variational parameters, optimizing the inducing inputs Z
always leads to a better bound.

The model does not “overfit” with too many inducing points.
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FITC vs. Variational sparse GP

model approximation vs. approximate inference (see [Bauer et al., 2016])

Note that, when point estimating hyper-parameters, if the number of inducing
points is too small, the model may “under-fit”:

L = log p(y)− KL (q(x) ‖ p(x|y)) .

inducing inputs and number of inducing points. The noise variance is shrunk to practically zero,
despite the mean prediction not going through every data point. Note how the mean still behaves well
and how the training data lie well within the predictive variance. Only when considering predictive
probabilities will this behaviour cause diminished performance. VFE, on the other hand, is able to
approximate the posterior predictive distribution almost exactly.

FITC (nlml = 23.16, �n = 1.93 · 10�4) VFE (nlml = 38.86, �n = 0.286)

Figure 1: Behaviour of FITC and VFE on a subset of 100 data points of the Snelson dataset for 8
inducing inputs (red crosses indicate inducing inputs; red lines indicate mean and 2�) compared to
the prediction of the full GP in grey. Optimised values for the full GP: nlml = 34.15, �n = 0.274

For both approximations, the complexity penalty decreases with decreased noise variance, by reducing
the volume of datasets that can be explained. For a full GP and VFE this is accompanied by a data
fit penalty for data points lying far away from the predictive mean. FITC, on the other hand, has an
additional mechanism to avoid this penalty: its diagonal correction term diag(K↵ � Q↵ ). This term
can be seen as an input dependent or heteroscedastic noise term (discussed as a modelling advantage
by Snelson and Ghahramani [7]), which is zero exactly at an inducing input, and which grows to the
prior variance away from an inducing input. By placing the inducing inputs near training data that
happen to lie near the mean, the heteroscedastic noise term is locally shrunk, resulting in a reduced
complexity penalty. Data points both far from the mean and far from inducing inputs do not incur a
data fit penalty, as the heteroscedastic noise term has increased around these points. This mechanism
removes the need for the homoscedastic noise to explain deviations from the mean, such that �2

n can
be turned down to reduce the complexity penalty further.

This explains the extreme pinching (severely reduced noise variance) observed in Fig. 1, also see,
e.g., [9, Fig. 2]. In examples with more densely packed data, there may not be any places where a
near-zero noise point can be placed without incurring a huge data-fit penalty. However, inducing
inputs will be placed in places where the data happens to randomly cluster around the mean, which
still results in a decreased noise estimate, albeit less extreme, see Figs. 2 and 3 where we use all 200
data points.

Remark 1 FITC has an alternative mechanism to explain deviations from the learned function than
the likelihood noise and will underestimate �2

n as a consequence. In extreme cases, �2
n can incorrectly

be estimated to be almost zero.

As a consequence of this additional mechanism, �2
n can no longer be interpreted in the same way

as for VFE or the full GP. �2
n is often interpreted as the amount of uncertainty in the dataset which

can not be explained. Based on this interpretation, a low �2
n is often used as an indication that the

dataset is being fitted well. Active learning applications rely on a similar interpretation to differentiate
between inherent noise, and uncertainty in the latent GP which can be reduced. FITC’s different
interpretation of �2

n will cause efforts like these to fail.

VFE, on the other hand, is biased towards over-estimating the noise variance, because of both the data
fit and the trace term. Q↵ +�2

nI has N �M eigenvectors with an eigenvalue of �2
n, since the rank of

Q↵ is M . Any component of y in these directions will result in a larger data fit penalty than for K↵ ,
which can only be reduced by increasing �2

n. The trace term can also be reduced by increasing �2
n.

Remark 2 The VFE objective tends to over-estimate the noise variance compared to the full GP.

3.2 VFE improves with additional inducing inputs, FITC may ignore them

Here we investigate the behaviour of each method when more inducing inputs are added. For both
methods, adding an extra inducing input gives it an extra basis function to model the data with. We
discuss how and why VFE always improves, while FITC may deteriorate.

4

Optimal values for the exact GP: nlml = 34.15, σ = 0.274. [Bauer et al., 2016]
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Limitations of Sparse GP

Variational sparse GP has computational complexity O(NM2).

The computation becomes infeasible under two scenarios:

The number of data points N is very high, e.g., millions of data points.

The function is very complex, which requires tens of thousands of inducing points.
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Mini-batch Learning (1)

Mini-batch learning allows DNNs to be trained on millions of data points.

Given a set of inputs and labels, D = {xi, yi}Ni=1, (xi, yi) ∼ p(x, y), the true loss
function is defined as

ctrue =

∫
l(fθ(x), y)p(x, y)dxdy ≈ 1

N

N∑
i=1

l(fθ(x), y) = c,

where fθ(·) is DNN and l(·, ·) is the loss function.

Gradient descent (GD) updates the parameters by

θt+1 = θt − η
dc

dθ
.
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Mini-batch Learning (2)

Mini-batch learning approximates the loss by subsampling the data,

cMB =
1

B

∑
xi,yi∼p̃(x,y)

l(fθ(xi), yi).

Stochastic gradient descent (SGD) updates the parameters by

θt+1 = θt − η
dcMB

dθ
.

Can mini-batch learning be applied to GPs as well?
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Mini-batch Learning for GPs

Mini-batch learning relies on the objective being an expectation w.r.t. the data,
i.e., 〈l(fθ(x), y)〉p(x,y).

The log-marginal likelihood of GP:

logN
(
y|0,K + σ2I

)
The variational lower bound of sparse GP:

logN
(
y|0,KfuK

−1
uuK>fu + σ2I

)
− 1

2σ2
tr
(
Kff −KfuK

−1
uuK>fu

)
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“Uncollapsed” Lower Bound

Hensman et al. [2013] discovers that the “uncollapsed” variational lower bound of
sparse GP can be used for mini-batch learning.

The “uncollapsed” variational lower bound of sparse GP:

L = 〈log p(y|f)〉p(f |u,X,Z)q(u) − KL (q(u) ‖ p(u))

The 2nd term, KL (q(u) ‖ p(u)), does not depend on the data.
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“Uncollapsed” Lower Bound

In the 1st term, as p(y|f) = N (y|f , σ2I),

log p(y|f) =
N∑
n=1

logN
(
yn|fn, σ2

)
Denote q(f |X,Z) =

∫
p(f |u,X,Z)q(u)du.

〈log p(y|f)〉q(f |X,Z) =

〈
N∑
n=1

logN
(
yn|fn, σ2

)〉
q(f |X,Z)

=
N∑
n=1

〈
logN

(
yn|fn, σ2

)〉
q(fn|xn,Z)
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Stochastic Variational GP (SVGP)

The resulting lower bound can be written as the sum over the data,

L =
N∑
n=1

〈
logN

(
yn|fn, σ2

)〉
q(fn|xn,Z)

− KL (q(u) ‖ p(u))

≈N
B

∑
xi,yi∼p̃(x,y)

〈
logN

(
yi|fi, σ2

)〉
q(fi|xi,Z)

− N

B
KL (q(u) ‖ p(u)) = LMB

This allows us to do mini-batch learning with SGD,

θt+1 = θt − η
dLMB

dθ
.
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2D Synthetic Data

Figure 4: Convergence of the SVIGP algorithm on the
two dimensional toy data

land-registry-monthly-price-paid-data/, which
covers England and Wales, and filtered for apart-
ments. This resulted in a data set with 75,000 entries,
which we cross referenced against a postcode database
to get lattitude and longitude, on which we regressed
the normalised logarithm of the apartment prices.

Randomly selecting 10,000 data as a test set, we build
a GP as described with a covariance function k(·, ·)
consisting of four parts: two squared exponential co-
variances, initialised with di↵erent length scales were
used to account for national and regional variations in
property prices, a constant (or ’bias’) term allowed for
non-zero mean data, and a noise variance accounted
for variation that could not be modelled using simply
latitude and longitude.

We selected 800 inducing input sites using a k-means
algorithm, and optimised the parameters of the co-
variance function alongside the variational parameters.
We performed some manual tuning of the learning
rates: empirically we found that the step length should
be much higher for the variational parameters of q(u)
than for the values of the covariance function parame-
ters. We used 0.01 and 1 ⇥ 10�5. Also, we included a
momentum term for the covariance function parame-
ters (set to 0.9). We tried including momentum terms
for the variational parameters, but we found this hin-
dered performance. A large mini-batch size (1000) re-
duced the stochasticity of the gradient computations.
We judged that the algorithm had converged after 750
iterations, as the stochastic estimate of the marginal
lower bound on the marginal likelihood failed to in-
crease further.

For comparison to our model, we constructed a se-
ries of GPs on subsets of the training data. Splitting
the data into sets of 500, 800, 1000 and 1200, we fit-

Figure 5: Variability of apartment price (logarithmi-
cally!) throughout England and Wales.

ted a GP with the same covariance function as our
stochastic GP. Parameters of the covariance function
were optimised using type-II maximum likelihood for
each batch. Table 1 reports the mean squared error in
our model’s prediction of the held out prices, as well
as the same for the random sub-set approach (along
with two standard deviations of the inter-sub-set vari-
ability).

Table 1: Mean squared errors in predicting the log-
apartment prices across England and Wales by latti-
tude and longitude

Mean square Error

SVIGP 0.426
Random sub-set (N=500) 0.522 +/- 0.018
Random sub-set (N=800) 0.510 +/- 0.015
Random sub-set (N=1000) 0.503 +/- 0.011
Random sub-set (N=1200) 0.502 +/- 1.012

4.3 Airline Delays

The second large scale dataset we considered consists
of flight arrival and departure times for every commer-
cial flight in the USA from January 2008 to April 2008.
This dataset contains extensive information about al-
most 2 million flights, including the delay (in minutes)
in reaching the destination. The average delay of a
flight in the first 4 months of 2008 was of 30 minutes.
Of course, much better estimates can be given by ex-
ploiting the enourmous wealth of data available, but
rich models are often overlooked in these cases due
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Airline Delay Data

Flight delays for every commercial flight in the USA from January to April 2008.
700,000 train, 100,000 test

Figure 7: Root mean squared errors in predicting flight delays using information about the flight.

to be covered. Distance and airtime should in theory
be correlated, but they have very di↵erent relevances.
This can be intuitively explained by considering that
on longer flights it’s easier to make up for delays at
departure.

5 Discussion

We have presented a method for inference in Gaussian
process models using stochastic variational inference.
These expressions allow for the transfer of a multitude
of Gaussian process techniques to big data.

We note several interesting results. First, the our
derivation disusses the bound on p(y |u) in detail,
showing that it becomes tight when Z = X.

Also, we have that there is a unique solution for the pa-
rameters of q(u) such that the bound associated with
the standard variational sparse GP [Titsias, 2009] is
recovered.

Further, since the complexity of our model is now
O(m3) rather than O(nm2), we are free to increase
m to much greater values than the sparse GP repre-
sentation. The e↵ect of this is that we can have much
richer models: for a squared exponential covariance
function, we have far more basis-functions with which
to model the data. In our UK apartment price exam-
ple, we had no di�culty setting m to 800, much higher
than experience tells us is feasible with the sparse GP.

The ability to increase the number of inducing vari-
ables and the applicability to unlimited data make our
method suitable for multiple output GPs [Álvarez and
Lawrence, 2011]. We have also briefly discussed how

this framework fits with other Gaussian process based
models such as the GPLVM and GP classification. We
leave the details of these implementations to future
work.

In all our experiments our algorithm was run on a
single CPU using the GPy Gaussian process toolkit
https://github.com/SheffieldML/GPy.
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Figure 6: Posterior variance of apartment prices.

to the sheer size of the dataset. We randomly selected
800,000 datapoints 2, using a random subset of 700,000
samples to train the model and 100,000 to test it. We
chose to include into our model 8 of the many variables
available for this dataset: the age of the aircraft (num-
ber of years since deployment), distance that needs to
be covered, airtime, departure time, arrival time, day
of the week, day of the month and month.

We built a Gaussian process with a squared exponen-
tial covariance function with a bias and noise term.
In order to discard irrelevant input dimensions, we al-
lowed a separate lengthscale for each input. For our
experiments, we used m = 1000 inducing inputs and
a mini-batch size of 5000. The learning rate for the
variational parameters of q(u) was set to 0.01, while
the learning rate for the covariance function parame-
ters was set to 1 ⇥ 10�5. We also used a momentum
term of 0.9 for the covariance parameters.

For the purpose of comparison, we fitted several GPs
with an identical covariance function on subsets of the
data. We split the data into sets of 800, 1000 and 1200
samples and optimised the parameters using type-II
maximum likelihood. We repeated this procedure 10
times.

The left pane of Figure 7 shows the root mean squared
error (RMSE) obtained by fitting GPs on subsets of
the data. The right pane of figure 7 shows the RMSE
obtained by fitting 10 SVI GPs as a function of the
iteration. The individual runs are shown in light gray,
while the blue line shows the average RMSE across

2Subsampling wasn’t technically necessary, but we
didn’t want to overburden the memory of a shared compute
node just before a submission deadline.

Figure 8: Root mean square errors for models with
di↵erent numbers of inducing variables.

Figure 9: Automatic relevance determination param-
eters for the features used for predicting flight delays.

runs.

One of the main advantages of the approach presented
here is that the computational complexity is indepen-
dent from the number of samples n. This allowed us
to use a much larger number of inducing inputs than
has traditionally been possible. Conventional sparse
GPs have a computational complexity of O(nm2), so
for large n the typical upper bound for m is between 50
and 100. The impact on the prediction performance is
quite significant, as highlighted in Figure 8, where we
fit several SVI GPs using di↵erent numbers of inducing
inputs.

Looking at the inverse lengthscales in Figure 9, it’s
possible to get a better idea of the relevance of the
di↵erent features available in this dataset. The most
relevant variable turned out to be the time of departure
of the flight, closely followed by the distance that needs
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The pros and cons of SVGP

Pros

With mini-batch learning, the computational complexity reduces from O(NM2) to
O(M3).

Cons

The variational distribution q(u) needs to be explicitly optimized.

The number of variational parameters increase from MQ to (2M +M2)Q.

Optimization relies on SGD methods and the methods like L-BFGS are no longer
applicable.

It can be challenging to initialize q(u).
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Non-Gaussian likelihood

So far, we have only discussed GP regression with Gaussian noise distribution.

In practice, many difference noise distributions for modelling real data, e.g.,

Student-t distribution: data with outliers

Poisson / Multi-nomial distribution: Integer counts

Beta distribution: bounded real values

Bernoulli / Categorical distribution: classification labels
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Common approaches

Common choice for approximation inference:

Exact GP with Laplace approximation

Expectation Propagation (EP) with sparse GP

Both of them are quite complex to implement and difficult to scale.
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SVGP with non-Gaussian likelihood

Let’s use a binary classification as an example.

The outputs are binary. y = (y1, . . . , yN), yi ∈ {0, 1}.
The likelihood is a Bernoulli distribution with a Sigmoid link function:

p(yi|fi) = σ(fi)
yi(1− σ(fi))

(1−yi)
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SVGP with non-Gaussian likelihood

The lower bound of SVGP is

L =
N∑
n=1

〈log p(yn|fn)〉q(fn|xn,Z) − KL (q(u) ‖ p(u)) .

The 2nd term, KL (q(u) ‖ p(u)), is closed form.

The 1st term,
∑N

n=1 〈log p(yn|fn)〉q(fn|xn,Z), is the sum of a list of 1D integrals.

Those integrals are intractable.
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Gauss-Hermite Quadrature

Regarding those 1D integrals,

q(fn|xn,Z) is a 1D Gaussian distribution. See the definition:

q(fn|xn,Z) =

∫
p(fn|u,xn,Z)q(u)du.

Gauss-Hermite quadrature can be applied,

〈log p(yn|fn)〉q(fn|xn,Z) ≈
C∑
j=1

wj log p(yn|fj),

wj =
2C−1C!

√
π

C2[HC−1(fj)]2
.

The quadrature result is exact if log p(yn|fn) is a polynomial
with its order less than C.
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Binary Classification Example
Scalable Variational Gaussian Process Classification

K
L
S
P

M=4 M=8 M=16 M=32 M=64 Full

M
F

G
F
IT

C

Figure 1: The e↵ect of increasing the number of inducing points for the banana dataset. Rows represent the
KL method, the mean field method and Generalized FITC, whilst columns show increasing numbers of inducing
points. In each pane, the colored points represent training data, the inducing inputs are black dots and the
decision boundaries are black lines. The rightmost column shows the result of the equivalent non-sparse methods

When Z = X, the approximate posterior reduces to
q(f) = N (f |m, S), and the number of parameters
required to represent the covariance can be reduced
to 2N [Opper and Archambeau, 2009], and we have
recovered the full-Gaussian approximation (the ‘KL’
method described by Nickisch and Rasmussen [2008]).

If the likelihood were Gaussian, the expectations in
equation (19) would be computable in closed form, and
after a little re-arranging the result is as [Hensman
et al., 2013], equation (7). In this case the bound has
a unique solution for m and S, which recovers the
variational bound of Titsias [2009], equation (6). In
the case where Z=X and the likelihood is Gaussian,
exact inference is recovered.

5 Experiments

We have proposed two variational approximations for
GP classification. The first in section 3 comprises a
mean-field approximation after making a variational
approximation to the prior over an augmented latent
vector. The second in section 4 proposes to minimize
the KL divergence using a Gaussian approximation at
a set of inducing points. We henceforth refer to these
as the MF (mean-field) and KL methods respectively.

Increasing the number of inducing points To
compare the methods with the state-of-the-art Gen-
eralized FITC method, we first turn to the two-
dimensional Banana dataset. For all three methods,
we initialized the inducing points using k-means clus-

tering. For the generalized FITC method we used the
implementation provided by Rasmussen and Nickisch
[2010]. For all the methods we used the L-BFGS-B
optimizer [Zhu et al., 1997].

With the expectation that increasing the number of
inducing points should improve all three methods, we
applied 4 to 64 inducing points, as shown in Figure
1. The KL method pulls the inducing points positions
toward the decision boundary, and provides a near-
optimal solution with 16 inducing points. The MF
method is less able to adapt the inducing input posi-
tions, but provides good solutions at the same number
of inducing points. The Generalized FITC method
appears to pull inducing points towards the decision
boundary, but is unable to make good use of 64 induc-
ing points, moving some to the decision boundary and
some toward the origin.

Numerical comparison We compared the perfor-
mance of the classifiers for a number of commonly used
classification data sets. We took ten folds of the data
and report the median hold out negative log probabil-
ity and 2-� confidence intervals. For comparison we
used the EP FITC implementation from the GPML
toolbox [Rasmussen and Nickisch, 2010] which is gen-
erally considered to be amongst the best implementa-
tions of this algorithm. For the KL and sparse KL
methods we found that the optimization behaviour
was improved by freezing the kernel hyper parameters
at the beginning of optimization and then unfreezing
them once a reasonable set of variational parameters

356

[Hensman et al., 2015]
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Beyond 1D GPs

Multi-class classification is a common example.

For a C-class classification, y ∈ {1, . . . , C}, a GP is used to model each class,

f1, . . . , fC ∼ GP (0, K(X,X)).

The common likelihood is a categorical distribution with a soft-max function,

p(yn|fn1, . . . , fnC) =
C∏
j=1

g(fnj)
δ[yn−j], g(fnj) =

efnj∑C
j′=1 e

fnj′

Gauss-Hermite quadrature is not a good choice due to high dimensionality.
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Monte Carlo Sampling

Monte Carlo sampling can approximate the multi-dimensional integral:

〈log p(yn|fn)〉q(fn|xn,Z) =

∫
q(fn|xn,Z)

C∑
j=1

δ[yn − j] log g(fnj)dfn

≈ 1

T

T∑
t=1

C∑
j=1

δ[yn − j] log g(ftnj)

where ftn ∼ q(fn|xn,Z) and ftn = (ftn1, . . . , ftnC).

Reparameterization trick can be used to reduce of the variance of the gradient.
Denote q(fnj|xnj,Z) = N (mnj, σ

2
nj). A sample can be rewritten as

ftnj = mnj + σnjεt, εt ∼ N (0, 1).
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Are big covariance matrices always (almost) low-rank?

Of course, not.

A time series example
y = f(t) + ε

The data are collected with even time interval continuously.
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A time series example: 10 data points

When we observe until t = 1.0:
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A time series example: 100 data points

When we observe until t = 10.0:
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A time series example: 1000 data points

When we observe until t = 100.0:
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Banded precision matrix

For the kernels like the Matern family, the precision matrix is banded.

For example, given a Matern1
2

or known as exponential kernel:

k(x, x′) = σ2 exp(− |x−x′|
l2

).

This slide is taken from Nicolas Durrande [Durrande et al., 2019].
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Closed form precision matrix

The precision matrix of Matern kernels can be computed in closed form.

The lower triangular matrix from the Cholesky decomposition of the precision
matrix is banded as well.

log(y|X) = −1

2
log |2π(LL>)−1| − 1

2
tr
(
yy>LL>

)
where L is the lower triangular matrix from the Cholesky decomposition of the
precision matrix Q, Q = LL>.

The computational complexity becomes O(N).
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Other approximations

deterministic/stochastic frequency approximation

distributed approximation

conjugate gradient methods for covariance matrix inversion
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