Unsupervised and Composite Gaussian Processes

Carl Henrik Ek - che29@cam.ac.uk
September 15, 2020
http://carlhenrik.com

Learning Theory

- \mathcal{F} space of functions
- \mathcal{A} learning algorithm
- $\mathcal{S}=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{N}, y_{N}\right)\right\}$
- $\mathcal{S} \sim P(\mathcal{X} \times \mathcal{Y})$
- $\ell\left(\mathcal{A}_{\mathcal{F}}(\mathcal{S}), x, y\right)$ loss function

Statistical Learning

$$
e(\mathcal{S}, \mathcal{A}, \mathcal{F})=\mathbb{E}_{P(\{\mathcal{X}, \mathcal{Y}\})}\left[\ell\left(\mathcal{A}_{\mathcal{F}}(\mathcal{S}), x, y\right)\right]
$$

Statistical Learning

$$
\begin{aligned}
e(\mathcal{S}, \mathcal{A}, \mathcal{F}) & =\mathbb{E}_{P(\{\mathcal{X}, \mathcal{Y}\})}\left[\ell\left(\mathcal{A}_{\mathcal{F}}(\mathcal{S}), x, y\right)\right] \\
& \approx \frac{1}{M} \sum_{n=1}^{M} \ell\left(\mathcal{A}_{\mathcal{F}}(\mathcal{S}), x_{n}, y_{n}\right)
\end{aligned}
$$

No Free Lunch

We can come up with a combination of $\{\mathcal{S}, \mathcal{A}, \mathcal{F}\}$ that makes $e(\mathcal{S}, \mathcal{A}, \mathcal{F})$ take an arbitary value

Example

Example

Example

Example

Example

Data and Knowledge

Assumptions: Algorithms

y

Statistical Learning

$$
\mathcal{A}_{\mathcal{F}}(\mathcal{S})
$$

Assumptions: Biased Sample

Statistical Learning

$$
\mathcal{A}_{\mathcal{F}}(\mathcal{S})
$$

Assumptions: Hypothesis space

Statistical Learning

$$
\mathcal{A}_{\mathcal{F}}(\mathcal{S})
$$

The No Free Lunch

- There seems to be a narrative that the more flexible a model is the better it is

The No Free Lunch

- There seems to be a narrative that the more flexible a model is the better it is
- This is not true

The No Free Lunch

- There seems to be a narrative that the more flexible a model is the better it is
- This is not true
- The best possible model has infinite support (nothing is excluded) but very focused mass

The No Free Lunch

- There seems to be a narrative that the more flexible a model is the better it is
- This is not true
- The best possible model has infinite support (nothing is excluded) but very focused mass
- Your solution can only ever be interpreted in the light of your assumptions

GPSS

Iudicium Posterium Discipulus Est Prioris ${ }^{1}$

[^0]
Gaussian Processes

Gaussian Processes

Gaussian Processes

Gaussian Processes

Gaussian Processes

Gaussian Processes

Gaussian Processes

Gaussian Processes

Gaussian Processes

Gaussian Processes

Gaussian Processes

Gaussian Processes

Conditional Gaussians

$$
N\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
1 & 0.5 \\
0.5 & 1
\end{array}\right]\right)
$$

$$
N\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
1 & 0.9 \\
0.9 & 1
\end{array}\right]\right)
$$

$$
N\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)
$$

Gaussian Processes

Gaussian Processes

The Gaussian Identities

$p\left(x_{1}, x_{2}\right)$

$$
p\left(x_{1}\right)=\int p\left(x_{1}, x_{2}\right) \mathrm{d} x \quad p\left(x_{1} \mid x_{2}\right)=\frac{p\left(x_{1}, x_{2}\right)}{p\left(x_{2}\right)}
$$

Gaussian Identities

Stochastic Processes

Kolmogrovs Excistence Theorem

For all permutations π, measurable sets $F_{i} \subseteq \mathbb{R}^{n}$ and probability measure ν

1. Exchangeable

$$
\nu_{t_{\pi(1)} \cdots t_{\pi(k)}}\left(F_{\pi(1)} \times \cdot \times F_{\pi(k)}\right)=\nu_{t_{1} \cdots t_{k}}\left(F_{1} \times \cdots \times F_{k}\right)
$$

2. Marginal

$$
\nu_{t_{1} \cdot t_{k}}\left(F_{1} \times \cdot \times F_{k}\right)=\nu_{t_{1} \cdots t_{k}, t_{k+1} \cdot t_{k+m}}\left(F_{1} \times \cdot \times F_{k} \times \mathbb{R}^{n} \times \cdot \times \mathbb{R}^{n}\right)
$$

In this case the finite dimensional probability measure is a realisation of an underlying stochastic process

Gaussian Distribution - Exchangeable

$$
p\left(x_{1}, x_{2}\right)=\mathcal{N}\left(\begin{array}{l|lll}
x_{1} & \mu_{1} & k_{11} & k_{12} \\
x_{2} & \mu_{2} & k_{21} & k_{22}
\end{array}\right)
$$

Gaussian Distribution - Exchangeable

$$
\begin{aligned}
& p\left(x_{1}, x_{2}\right)=\mathcal{N}\left(\begin{array}{l|lll}
x_{1} & \mu_{1} & k_{11} & k_{12} \\
x_{2} & \mu_{2} & k_{21} & k_{22}
\end{array}\right) \\
= & p\left(x_{2}, x_{1}\right)
\end{aligned}
$$

Gaussian Distribution - Exchangeable

$$
\begin{aligned}
& p\left(x_{1}, x_{2}\right) \\
&=\mathcal{N}\left(\begin{array}{l|lll}
x_{1} & \mu_{1} \\
x_{2} & k_{11} & k_{12} \\
\mu_{2} & k_{21} & k_{22}
\end{array}\right) \\
&=p\left(x_{2}, x_{1}\right)=\mathcal{N}\left(\begin{array}{l|lll}
x_{2} & \mu_{2} \\
x_{1} & \mu_{1}
\end{array}, \begin{array}{lll}
k_{22} & k_{12} \\
k_{21} & k_{11}
\end{array}\right)
\end{aligned}
$$

Gaussian Distribution - Exchangeable

Gaussian Distribution - Exchangeable

Gaussian Distribution - Marginal

$$
p\left(x_{1}, x_{2}\right)=\mathcal{N}\left(\begin{array}{l|lll}
x_{1} & \mu_{1} & k_{11} & k_{12} \\
x_{2} & \mu_{2}
\end{array}, k_{21} \quad k_{22}, ~\right)
$$

Gaussian Distribution - Marginal

$$
\begin{aligned}
p\left(x_{1}, x_{2}\right) & =\mathcal{N}\left(\begin{array}{l|lll}
x_{1} & \mu_{1} & k_{11} & k_{12} \\
x_{2} & \mu_{2} & k_{21} & k_{22}
\end{array}\right) \\
& \Rightarrow p\left(x_{1}\right)=\int_{x_{2}} p\left(x_{1}, x_{2}\right)=\underline{\mathcal{N}\left(x_{1} \mid \mu_{1}, k_{11}\right)}
\end{aligned}
$$

Gaussian Distribution - Marginal

$$
\begin{aligned}
p\left(x_{1}, x_{2}\right) & =\mathcal{N}\left(\begin{array}{c|ccc}
x_{1} & \mu_{1} & k_{11} & k_{12} \\
x_{2} & \mu_{2} & k_{21} & k_{22}
\end{array}\right) \\
& \Rightarrow p\left(x_{1}\right)=\int_{x_{2}} p\left(x_{1}, x_{2}\right)=\underline{\mathcal{N}\left(x_{1} \mid \mu_{1}, k_{11}\right)} \\
p\left(x_{1}, x_{2}, \ldots, x_{N}\right) & =\mathcal{N}\left(\begin{array}{c|ccccc}
x_{1} & \mu_{1} & k_{11} & k_{12} & \cdots & k_{1 N} \\
x_{2} & \mu_{2} & k_{21} & k_{22} & \cdots & k_{2 N} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
x_{N} & \mu_{N} & k_{N 1} & k_{N 2} & \cdots & k_{N N}
\end{array}\right)
\end{aligned}
$$

Gaussian Distribution - Marginal

$$
\begin{aligned}
p\left(x_{1}, x_{2}\right) & =\mathcal{N}\left(\begin{array}{c|ccc}
x_{1} & \mu_{1} & k_{11} & k_{12} \\
x_{2} & \mu_{2} & k_{21} & k_{22}
\end{array}\right) \\
& \Rightarrow p\left(x_{1}\right)=\int_{x_{2}} p\left(x_{1}, x_{2}\right)=\underline{\mathcal{N}\left(x_{1} \mid \mu_{1}, k_{11}\right)} \\
p\left(x_{1}, x_{2}, \ldots, x_{N}\right) & =\mathcal{N}\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N}
\end{array} \left\lvert\, \begin{array}{ccccc}
\mu_{1} & k_{11} & k_{12} & \cdots & k_{1 N} \\
\vdots & \vdots & k_{22} & \cdots & k_{2 N} \\
x_{N} & k_{N 1} & k_{N 2} & \cdots & k_{N N}
\end{array}\right.\right) \\
& \Rightarrow p\left(x_{1}\right)=\int_{x_{2}, \ldots, x_{N}} p\left(x_{1}, x_{2}, \ldots, x_{N}\right)=\underline{\mathcal{N}}\left(x_{1} \mid \mu_{1}, k_{1}\right.
\end{aligned}
$$

Gaussian Distribution - Marginal

Gaussian processes

$$
\begin{array}{ccc}
\mathcal{G P}(\cdot, \cdot) & M \in \mathbb{R}^{\infty \times N} & \mathcal{N}(\cdot, \cdot) \\
& \rightarrow & N
\end{array}
$$

The Gaussian distribution is the projection of the infinite Gaussian process

Unsupervised Gaussian Processes

Unsupervised Learning

$p(y \mid x)$
$p(y)$

Unsupervised Learning

Priors

$$
p(y)=\int p(y \mid f) p(f \mid x) p(x) \mathrm{d} f \mathrm{~d} x
$$

1. Priors that makes sense
$p(f)$ describes our belief/assumptions and defines our notion of complexity in the function
$\mathbf{p}(\mathbf{x})$ expresses our belief/assumptions and defines our notion of complexity in the latent space
2. Now lets churn the handle

Relationship between x and data

$$
p(y)=\int p(y \mid f) p(f \mid x) p(x) \mathrm{d} f \mathrm{~d} x
$$

- GP prior

$$
\begin{aligned}
p(f \mid x) & \sim \mathcal{N}(0, K) \propto e^{-\frac{1}{2}\left(f^{\mathrm{T}} K^{-1} f\right)} \\
K_{i j} & =e^{-\left(x_{i}-x_{j}\right)^{\mathrm{T}} M^{\mathrm{T}} M\left(x_{i}-x_{j}\right)}
\end{aligned}
$$

Relationship between x and data

$$
p(y)=\int p(y \mid f) p(f \mid x) p(x) \mathrm{d} f \mathrm{~d} x
$$

- GP prior

$$
\begin{aligned}
p(f \mid x) & \sim \mathcal{N}(0, K) \propto e^{-\frac{1}{2}\left(f^{\mathrm{T}} K^{-1} f\right)} \\
K_{i j} & =e^{-\left(x_{i}-x_{j}\right)^{\mathrm{T}} M^{\mathrm{T}} M\left(x_{i}-x_{j}\right)}
\end{aligned}
$$

- Likelihood

$$
p(y \mid f) \sim N(y \mid f, \beta) \propto e^{-\frac{1}{2 \beta} \operatorname{tr}(y-f)^{\mathrm{T}}(y-f)}
$$

Laplace Integration

Approximate Inference

Machine Learning

$$
p(y)
$$

- Given some observed data y
- Find a probabilistic model such that the probability of the data is maximised
- Idea: find an approximate model q that we can integrate

Lower Bound

$p(y)=\int_{x} p(y \mid x) p(x)=\frac{p(y \mid x) p(x)}{p(x \mid y)}$
$q_{\theta}(x) \approx p(x \mid y)$

Deterministic Approximation

Variational Bayes

$$
p(y)
$$

Variational Bayes

$\log p(y)$

Variational Bayes

$$
\log p(y)=\log p(y)+\int \log \frac{p(x \mid y)}{p(x \mid y)} \mathrm{d} x
$$

Variational Bayes

$$
\begin{aligned}
& \log p(y)=\log p(y)+\int \log \frac{p(x \mid y)}{p(x \mid y)} \mathrm{d} x \\
& =\int q(x) \log p(y) \mathrm{d} x+\int q(x) \log \frac{p(x \mid y)}{p(x \mid y)} \mathrm{d} x
\end{aligned}
$$

Variational Bayes

$$
\begin{aligned}
& \log p(y)=\log p(y)+\int \log \frac{p(x \mid y)}{p(x \mid y)} \mathrm{d} x \\
& =\int q(x) \log p(y) \mathrm{d} x+\int q(x) \log \frac{p(x \mid y)}{p(x \mid y)} \mathrm{d} x \\
& =\int q(x) \log \frac{p(x \mid y) p(y)}{p(x \mid y)} \mathrm{d} x
\end{aligned}
$$

Variational Bayes

$$
\begin{aligned}
& \log p(y)=\log p(y)+\int \log \frac{p(x \mid y)}{p(x \mid y)} \mathrm{d} x \\
& =\int q(x) \log p(y) \mathrm{d} x+\int q(x) \log \frac{p(x \mid y)}{p(x \mid y)} \mathrm{d} x \\
& =\int q(x) \log \frac{p(x \mid y) p(y)}{p(x \mid y)} \mathrm{d} x \\
& =\int q(x) \log \frac{q(x)}{q(x)} \mathrm{d} x+\int q(x) \log p(x, y) \mathrm{d} x+\int q(x) \log \frac{1}{p(x \mid y)} \mathrm{d} x
\end{aligned}
$$

Variational Bayes

$$
\begin{aligned}
& \log p(y)=\log p(y)+\int \log \frac{p(x \mid y)}{p(x \mid y)} \mathrm{d} x \\
& =\int q(x) \log p(y) \mathrm{d} x+\int q(x) \log \frac{p(x \mid y)}{p(x \mid y)} \mathrm{d} x \\
& =\int q(x) \log \frac{p(x \mid y) p(y)}{p(x \mid y)} \mathrm{d} x \\
& =\int q(x) \log \frac{q(x)}{q(x)} \mathrm{d} x+\int q(x) \log p(x, y) \mathrm{d} x+\int q(x) \log \frac{1}{p(x \mid y)} \mathrm{d} x \\
& =\int q(x) \log \frac{1}{q(x)} \mathrm{d} x+\int q(x) \log p(x, y) \mathrm{d} x+\int q(x) \log \frac{q(x)}{p(x \mid y)} \mathrm{d} x
\end{aligned}
$$

Jensen Inequality

Convex Function

$$
\begin{aligned}
\lambda f\left(x_{0}\right)+(1-\lambda) f\left(x_{1}\right) & \geq f\left(\lambda x_{0}+(1-\lambda) x_{1}\right) \\
x & \in\left[x_{\min }, x_{\max }\right] \\
\lambda & \in[0,1]]
\end{aligned}
$$

Jensen Inequality

$$
\begin{aligned}
\mathbb{E}[f(x)] & \geq f(\mathbb{E}[x]) \\
\int f(x) p(x) \mathrm{d} x & \geq f\left(\int x p(x) \mathrm{d} x\right)
\end{aligned}
$$

Jensen Inequality in Variational Bayes

moving the log inside the the integral is a lower-bound on the integral

The "posterior" term

$$
K L(q(x) \| p(x \mid y))=\int q(x) \log \frac{q(x)}{p(x \mid y)} \mathrm{d} x
$$

The "posterior" term

$$
\begin{aligned}
K L(q(x) \| p(x \mid y)) & =\int q(x) \log \frac{q(x)}{p(x \mid y)} \mathrm{d} x \\
& =-\int q(x) \log \frac{p(x \mid y)}{q(x)} \mathrm{d} x
\end{aligned}
$$

The "posterior" term

$$
\begin{aligned}
K L(q(x) \| p(x \mid y)) & =\int q(x) \log \frac{q(x)}{p(x \mid y)} \mathrm{d} x \\
& =-\int q(x) \log \frac{p(x \mid y)}{q(x)} \mathrm{d} x \\
& \geq-\log \int p(x \mid y) \mathrm{d} x=-\log 1=0
\end{aligned}
$$

The "posterior" term

$$
K L(q(x) \| p(x \mid y))=\int q(x) \log \frac{q(x)}{p(x \mid y)} \mathrm{d} x
$$

$$
\begin{aligned}
K L(q(x) \| p(x \mid y)) & =\int q(x) \log \frac{q(x)}{p(x \mid y)} \mathrm{d} x \\
& =\{\text { Lets assume that } q(x)=p(x \mid y)\}
\end{aligned}
$$

The "posterior" term

$$
\begin{aligned}
K L(q(x) \| p(x \mid y)) & =\int q(x) \log \frac{q(x)}{p(x \mid y)} \mathrm{d} x \\
& =\{\text { Lets assume that } q(x)=p(x \mid y)\} \\
& =\int p(x \mid y) \log \underbrace{\frac{p(x \mid y)}{p(x \mid y)}}_{=1} \mathrm{~d} x
\end{aligned}
$$

The "posterior" term

$$
\begin{aligned}
K L(q(x) \| p(x \mid y)) & =\int q(x) \log \frac{q(x)}{p(x \mid y)} \mathrm{d} x \\
& =\{\text { Lets assume that } q(x)=p(x \mid y)\} \\
& =\int p(x \mid y) \log \underbrace{\frac{p(x \mid y)}{p(x \mid y)}}_{=1} \mathrm{~d} x \\
& =0
\end{aligned}
$$

Kullback-Leibler Divergence

$$
K L(q(x) \| p(x \mid y))=\int q(x) \log \frac{q(x)}{p(x \mid y)} \mathrm{d} x
$$

- Measure of divergence between distributions
- Not a metric (not symmetric)
- $K L(q(x)|\mid p(x \mid y))=0 \Leftrightarrow q(x)=p(x \mid y)$
- $K L(q(x) \| p(x \mid y)) \geq 0$

The "other terms"

$$
\int q(x) \log \frac{1}{q(x)} \mathrm{d} x+\int q(x) \log p(x, y) \mathrm{d} x=
$$

The "other terms"

$$
\begin{aligned}
& \int q(x) \log \frac{1}{q(x)} \mathrm{d} x+\int q(x) \log p(x, y) \mathrm{d} x= \\
& =\int q(x) \log \frac{p(x, y)}{q(x)} \mathrm{d} x
\end{aligned}
$$

The "other terms"

$$
\begin{aligned}
& \int q(x) \log \frac{1}{q(x)} \mathrm{d} x+\int q(x) \log p(x, y) \mathrm{d} x= \\
& =\int q(x) \log \frac{p(x, y)}{q(x)} \mathrm{d} x \\
& =\{\text { Lets assume that } q(x)=p(x \mid y)\}
\end{aligned}
$$

The "other terms"

$$
\begin{aligned}
& \int q(x) \log \frac{1}{q(x)} \mathrm{d} x+\int q(x) \log p(x, y) \mathrm{d} x= \\
& =\int q(x) \log \frac{p(x, y)}{q(x)} \mathrm{d} x \\
& =\{\text { Lets assume that } q(x)=p(x \mid y)\} \\
& =\int p(x \mid y) \log \frac{p(x, y)}{p(x \mid y)} \mathrm{d} x
\end{aligned}
$$

The "other terms"

$$
\begin{aligned}
& \int q(x) \log \frac{1}{q(x)} \mathrm{d} x+\int q(x) \log p(x, y) \mathrm{d} x= \\
& =\int q(x) \log \frac{p(x, y)}{q(x)} \mathrm{d} x \\
& =\{\text { Lets assume that } q(x)=p(x \mid y)\} \\
& =\int p(x \mid y) \log \frac{p(x, y)}{p(x \mid y)} \mathrm{d} x=\int p(x \mid y) \log \frac{p(x \mid y) p(y)}{p(x \mid y)} \mathrm{d} x
\end{aligned}
$$

The "other terms"

$$
\begin{aligned}
& \int q(x) \log \frac{1}{q(x)} \mathrm{d} x+\int q(x) \log p(x, y) \mathrm{d} x= \\
& =\int q(x) \log \frac{p(x, y)}{q(x)} \mathrm{d} x \\
& =\{\text { Lets assume that } q(x)=p(x \mid y)\} \\
& =\int p(x \mid y) \log \frac{p(x, y)}{p(x \mid y)} \mathrm{d} x=\int p(x \mid y) \log \frac{p(x \mid y) p(y)}{p(x \mid y)} \mathrm{d} x \\
& =\int p(x \mid y) \log \underbrace{\frac{p(x \mid y)}{p(x \mid y)} \mathrm{d} x}_{=1}+\int p(x \mid y) \log p(y) \mathrm{d} x
\end{aligned}
$$

The "other terms"

$$
\begin{aligned}
& \int q(x) \log \frac{1}{q(x)} \mathrm{d} x+\int q(x) \log p(x, y) \mathrm{d} x= \\
& =\int q(x) \log \frac{p(x, y)}{q(x)} \mathrm{d} x \\
& =\{\text { Lets assume that } q(x)=p(x \mid y)\} \\
& =\int p(x \mid y) \log \frac{p(x, y)}{\frac{p(x \mid y)}{} \mathrm{d} x=\int p(x \mid y) \log \frac{p(x \mid y) p(y)}{p(x \mid y)} \mathrm{d} x} \\
& =\int p(x \mid y) \log \underbrace{\frac{p(x \mid y)}{p(x \mid y)} \mathrm{d} x}_{=1}+\int p(x \mid y) \log p(y) \mathrm{d} x \\
& =\underbrace{\int p(x \mid y) \mathrm{d} x}_{=1} \log p(y)
\end{aligned}
$$

The "other terms"

$$
\begin{aligned}
& \int q(x) \log \frac{1}{q(x)} \mathrm{d} x+\int q(x) \log p(x, y) \mathrm{d} x= \\
& =\int q(x) \log \frac{p(x, y)}{q(x)} \mathrm{d} x \\
& =\{\text { Lets assume that } q(x)=p(x \mid y)\} \\
& =\int p(x \mid y) \log \frac{p(x, y)}{\frac{p(x \mid y)}{} \mathrm{d} x=\int p(x \mid y) \log \frac{p(x \mid y) p(y)}{p(x \mid y)} \mathrm{d} x} \\
& =\int p(x \mid y) \log \underbrace{\frac{p(x \mid y)}{p(x \mid y)} \mathrm{d} x}_{=1}+\int p(x \mid y) \log p(y) \mathrm{d} x \\
& =\underbrace{\int p(x \mid y) \mathrm{d} x}_{=1} \log p(y)=\log p(y)
\end{aligned}
$$

Variational Bayes

$$
\begin{aligned}
\log p(y)= & \int q(x) \log \frac{1}{q(x)} \mathrm{d} x+\int q(x) \log p(x, y) \mathrm{d} x+\int q(x) \log \frac{q(x)}{p(x \mid y)} \mathrm{d} x \\
& \geq-\int q(x) \log q(x) \mathrm{d} x+\int q(x) \log p(x, y) \mathrm{d} x
\end{aligned}
$$

- The Evidence Lower BOnd
- Tight if $q(x)=p(x \mid y)$

Deterministic Approximation

ELBO

$$
\begin{aligned}
\log p(y) & \geq-\int q(x) \log q(x) \mathrm{d} x+\int q(x) \log p(x, y) \mathrm{d} x \\
& =\mathbb{E}_{q(x)}[\log p(x, y)]-H(q(x))=\mathcal{L}(q(x))
\end{aligned}
$$

- if we maximise the ELBO we,
- find an approximate posterior
- lower bound the marginal likelihood
- maximising $p(y)$ is learning
- finding $q(x) \approx p(x \mid y)$ is prediction

Lower Bound

$p(y)=\int_{x} p(y \mid x) p(x)=\frac{p(y \mid x) p(x)}{p(x \mid y)}$
$q_{\theta}(x) \approx p(x \mid y)$

Why is this useful?

Why is this a sensible thing to do?

- Ryan Adams ${ }^{2}$

[^1]
Why is this useful?

Why is this a sensible thing to do?

- If we can't formulate the joint distribution there isn't much we can do
- Ryan Adams ${ }^{2}$

[^2]
Why is this useful?

Why is this a sensible thing to do?

- If we can't formulate the joint distribution there isn't much we can do
- Taking the expectation of a log is usually easier than the expectation
- Ryan Adams ${ }^{2}$

[^3]
Why is this useful?

Why is this a sensible thing to do?

- If we can't formulate the joint distribution there isn't much we can do
- Taking the expectation of a log is usually easier than the expectation
- We are allowed to choose the distribution to take the expectation over
- Ryan Adams ${ }^{2}$

[^4]
How to choose Q?

$$
\mathcal{L}(q(x))=\mathbb{E}_{q(x)}[\log p(x, y)]-H(q(x))
$$

- We have to be able to compute an expectation over the joint distribution
- The second term should be trivial

$$
\mathcal{L}=\int_{x} q(x) \log \left(\frac{p(y, f, x)}{q(x)}\right)
$$

Lower Bound ${ }^{3}$

$$
\begin{aligned}
\mathcal{L} & =\int_{x} q(x) \log \left(\frac{p(y, f, x)}{q(x)}\right) \\
& =\int_{x} q(x) \log \left(\frac{p(y \mid f) p(f \mid x) p(x))}{q(x)}\right)
\end{aligned}
$$

Lower Bound 3

$$
\begin{aligned}
\mathcal{L} & =\int_{x} q(x) \log \left(\frac{p(y, f, x)}{q(x)}\right) \\
& =\int_{x} q(x) \log \left(\frac{p(y \mid f) p(f \mid x) p(x))}{q(x)}\right) \\
& =\int_{x} q(x) \log p(y \mid f) p(f \mid x)-\int_{x} q(x) \log \frac{q(x)}{p(x)}
\end{aligned}
$$

Lower Bound 3

$$
\begin{aligned}
\mathcal{L} & =\int_{x} q(x) \log \left(\frac{p(y, f, x)}{q(x)}\right) \\
& =\int_{x} q(x) \log \left(\frac{p(y \mid f) p(f \mid x) p(x))}{q(x)}\right) \\
& =\int_{x} q(x) \log p(y \mid f) p(f \mid x)-\int_{x} q(x) \log \frac{q(x)}{p(x)} \\
& =\tilde{\mathcal{L}}-\operatorname{KL}(q(x) \| p(x))
\end{aligned}
$$

Lower Bound

$$
\tilde{\mathcal{L}}=\int q(x) \log p(y \mid f) p(f \mid x) \mathrm{d} f \mathrm{~d} x
$$

- Has not eliviate the problem at all, x still needs to go through f to reach the data
- Idea of sparse approximations ${ }^{4}$

[^5]
Lower Bound ${ }^{5}$

$$
p(f, u \mid x, z)
$$

- Add another set of samples from the same prior
- Conditional distribution

[^6]
Lower Bound ${ }^{5}$

$$
p(f, u \mid x, z)=p(f \mid u, x, z) p(u \mid z)
$$

- Add another set of samples from the same prior
- Conditional distribution

[^7]
Lower Bound ${ }^{5}$

$$
\begin{aligned}
p(f, u \mid x, z) & =p(f \mid u, x, z) p(u \mid z) \\
& =\mathcal{N}\left(f \mid K_{f u} K_{u u}^{-1} u, K_{f f}-K_{f u} K_{u u}^{-1} K_{u f}\right) \mathcal{N}\left(u \mid \mathbf{0}, K_{u u}\right)
\end{aligned}
$$

- Add another set of samples from the same prior
- Conditional distribution

Lower Bound

$$
p(y, f, u, x \mid z)=p(y \mid f) p(f \mid u, x) p(u \mid z) p(x)
$$

- we have done nothing to the model, just project an additional set of marginals from the GP
- however we will now interpret u and z not as random variables but variational parameters
- i.e. the variational distribution $q(\cdot)$ is parametrised by these

Lower Bound

- Variational distributions are approximations to intractable posteriors,

$$
\begin{aligned}
q(u) & \approx p(u \mid y, x, z, f) \\
q(f) & \approx p(f \mid u, x, z, y) \\
q(x) & \approx p(x \mid y)
\end{aligned}
$$

Lower Bound

- Variational distributions are approximations to intractable posteriors,

$$
\begin{aligned}
q(u) & \approx p(u \mid y, x, z, f) \\
q(f) & \approx p(f \mid u, x, z, y) \\
q(x) & \approx p(x \mid y)
\end{aligned}
$$

- Bound is tight if u completely represents f i.e. u is sufficient statistics for f

$$
q(f) \approx p(f \mid u, x, z, y)=p(f \mid u, x, z)
$$

Lower Bound

$$
\tilde{\mathcal{L}}=\int_{x, f, u} q(f) q(u) q(x) \log \frac{p(y, f, y \mid x, z)}{q(f) q(u)}
$$

Lower Bound

$$
\begin{aligned}
\tilde{\mathcal{L}} & =\int_{x, f, u} q(f) q(u) q(x) \log \frac{p(y, f, y \mid x, z)}{q(f) q(u)} \\
& =\int_{x, f, u} q(f) q(u) q(x) \log \frac{p(y \mid f) p(f \mid u, x, z) p(u \mid z)}{q(f) q(u)}
\end{aligned}
$$

- Assume that u is sufficient statistics of f

$$
q(f)=p(f \mid u, x, z)
$$

Lower Bound

$$
\tilde{\mathcal{L}}=\int_{x, f, u} q(f) q(u) q(x) \log \frac{p(y \mid f) p(f \mid u, x, z) p(u \mid z)}{q(f) q(u)}
$$

Lower Bound

$$
\begin{aligned}
\tilde{\mathcal{L}} & =\int_{x, f, u} q(f) q(u) q(x) \log \frac{p(y \mid f) p(f \mid u, x, z) p(u \mid z)}{q(f) q(u)} \\
& =\int_{x, f, u} p(f \mid u, x, z) q(u) q(x) \log \frac{p(y \mid f) p(f \mid u, x, z) p(u \mid z)}{p(f \mid u, x, z) q(u)}
\end{aligned}
$$

Lower Bound

$$
\begin{aligned}
\tilde{\mathcal{L}} & =\int_{x, f, u} q(f) q(u) q(x) \log \frac{p(y \mid f) p(f \mid u, x, z) p(u \mid z)}{q(f) q(u)} \\
& =\int_{x, f, u} p(f \mid u, x, z) q(u) q(x) \log \frac{p(y \mid f) p(f \mid u, x, z) p(u \mid z)}{p(f \mid u, x, z) q(u)}
\end{aligned}
$$

Lower Bound

$$
\begin{aligned}
\tilde{\mathcal{L}} & =\int_{x, f, u} q(f) q(u) q(x) \log \frac{p(y \mid f) p(f \mid u, x, z) p(u \mid z)}{q(f) q(u)} \\
& =\int_{x, f, u} p(f \mid u, x, z) q(u) q(x) \log \frac{p(y \mid f) p(f \mid u, x, z) p(u \mid z)}{p(f \mid u, x, z) q(u)} \\
& =\int_{x, f, u} p(f \mid u, x, z) q(u) q(x) \log \frac{p(y \mid f) p(u \mid z)}{q(u)}
\end{aligned}
$$

Lower Bound

$$
\begin{aligned}
\tilde{\mathcal{L}} & =\int_{x, f, u} q(f) q(u) q(x) \log \frac{p(y \mid f) p(f \mid u, x, z) p(u \mid z)}{q(f) q(u)} \\
& =\int_{x, f, u} p(f \mid u, x, z) q(u) q(x) \log \frac{p(y \mid f) p(f \mid u, x, z) p(u \mid z)}{p(f \mid u, x, z) q(u)} \\
& =\int_{x, f, u} p(f \mid u, x, z) q(u) q(x) \log \frac{p(y \mid f) p(u \mid z)}{q(u)} \\
& =\mathbb{E}_{p(f \mid u, x, z)}[p(y \mid f)]-\operatorname{KL}(q(u) \| p(u \mid z))
\end{aligned}
$$

Lower Bound

$$
\mathcal{L}=\mathbb{E}_{p(f \mid u, x, z)}[p(y \mid f)]-\operatorname{KL}(q(u) \| p(u \mid z))-\operatorname{KL}(q(x) \| p(x))
$$

- Expectation tractable (for some co-variances)
- Allows us to place priors and not "regularisers" over the latent representation
- Stochastic inference Hensman et al., 2013
- Importantly $p(x)$ only appears in $\mathrm{KL}(\cdot \| \cdot)$ term!

Latent Space Priors

Automatic Relevance Determination

$$
k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\sigma e^{-\sum_{d}^{D} \alpha_{d} \cdot\left(x_{i, d}-x_{j, d}\right)^{2}}
$$

[]python $\operatorname{RBF}(\ldots, A R D=$ True $)$ Matern32(...,ARD=True)

Dynamic Prior

$$
p(x \mid t)=\mathcal{N}\left(\mu_{t}, K_{t}\right)
$$

Structured Latent Spaces

Explaining Away

$$
y=f(x)+\epsilon
$$

Explaining Away

$$
y-\epsilon=f(x)
$$

Factor Analysis

$$
y=f\left(x_{1}, x_{2}, x_{3}\right)+\epsilon
$$

Alignments

Alignments

Alignments

Alignments

Alignments

Alignments

$$
\begin{aligned}
& \text { P } \leftarrow-=-=-=\rightarrow\{\text { duck }\} \\
& \text { ↔-------> }\{\text { cat }\} \\
& \leftrightarrow----->\{d u c k\} \\
& \text { \&-------> }\{c a t\} \\
& \leftrightarrow----->\{d u c k\}
\end{aligned}
$$

Alignments

IBFA with GP-LVM ${ }^{6}$

$$
y_{1}=f\left(w_{1}^{\mathrm{T}} x\right) \quad y_{2}=f\left(w_{2}^{\mathrm{T}} x\right)
$$

${ }^{6}$ Damianou et al., 2016

GP-DP ${ }^{7}$

${ }^{7}$ Lawrence et al., 2019

Constrained Latent Space ${ }^{8}$

${ }^{8}$ Lawrence et al., 2006

Geometry

Latent GP-Regression ${ }^{9}$

$$
p(\mathbf{Y} \mid \mathbf{X})=\int p(\mathbf{Y} \mid \mathbf{F}) p\left(\mathbf{F} \mid \mathbf{X}, \mathbf{X}^{(C)}\right) p\left(\mathbf{X}^{(C)}\right) \mathrm{d} \mathbf{F} \mathrm{~d} \mathbf{X}^{(C)} .
$$

${ }^{9}$ Bodin et al., 2017, Yousefi et al., 2016

Discrete

Continous

Composite Gaussian Processes

Composite Gaussian Processes ${ }^{10}$

${ }^{10}$ Damianou et al., 2013

Composite Functions

$$
y=f_{k}\left(f_{k-1}\left(\ldots f_{0}(x)\right)\right)=f_{k} \circ f_{k-1} \circ \cdots \circ f_{1}(x)
$$

When do I want Composite Functions

$$
y=f_{k} \circ f_{k-1} \circ \cdots \circ f_{1}(x)
$$

1. My generative process is composite

- my prior knowledge is composite

2. I want to "re-parametrise" my kernel in a learning setting

- i have knowledge of the re-parametrisation

Because we lack "models"?

Composite Functions

Diff Levels of Abstraction

- Hierarchical Learning
- Natural progression from low level to high level structure as seen in natural complexity
- Easier to monitor what is being learnt and to guide the machine to better subspaces
- A good lower level representation can be used for many distinct tasks

Feature representation

Composite functions

$$
y=f_{k}\left(f_{k-1}\left(\ldots f_{0}(x)\right)\right)=f_{k} \circ f_{k-1} \circ \cdots \circ f_{1}(x)
$$

$\operatorname{Kern}\left(f_{1}\right) \subseteq \operatorname{Kern}\left(f_{k-1} \circ \ldots \circ f_{2} \circ f_{1}\right) \subseteq \operatorname{Kern}\left(f_{k} \circ f_{k-1} \circ \ldots \circ f_{2} \circ f_{1}\right)$ $\operatorname{Im}\left(f_{k} \circ f_{k-1} \circ \ldots \circ f_{2} \circ f_{1}\right) \subseteq \operatorname{Im}\left(f_{k} \circ f_{k-1} \circ \ldots \circ f_{2}\right) \subseteq \ldots \subseteq \operatorname{Im}\left(f_{k}\right)$

Sampling

Sampling

Sampling

Change of Variables

Because we want to hang out with the cool kids

Deep Learning is a bit like smoking, you know that its wrong but you do it anyway because you want to look cool.

- Fantomens Djungelordspråk

MacKay plot

Composite Functions

The Final Composition

Remember why we did this in the first place

These damn plots

It gets worse

It gets even worse

Approximate Inference

- Sufficient statistics

$$
\begin{aligned}
q(\mathbf{F}) q(\mathbf{U}) q(\mathbf{X}) & =p(\mathbf{F} \mid \mathbf{Y}, \mathbf{U}, \mathbf{X}, \mathbf{Z}) q(\mathbf{U}) q(\mathbf{X}) \\
& =p(\mathbf{F} \mid \mathbf{U}, \mathbf{X}, \mathbf{Z}) q(\mathbf{U}) q(\mathbf{X})
\end{aligned}
$$

- Mean-Field

$$
q(\mathbf{U})=\prod_{i}^{L} q\left(\mathbf{U}_{i}\right)
$$

The effect

What have we lost

- Our priors are not reflected correctly
- \rightarrow we cannot interpret the results
- No intermediate uncertainties
- \rightarrow we cannot do sequential decision making

What have we lost

- Our priors are not reflected correctly
- \rightarrow we cannot interpret the results
- No intermediate uncertainties
- \rightarrow we cannot do sequential decision making
- We are performing a massive computational overhead for very little use

What have we lost

- Our priors are not reflected correctly
- \rightarrow we cannot interpret the results
- No intermediate uncertainties
- \rightarrow we cannot do sequential decision making
- We are performing a massive computational overhead for very little use
- ". . .throwing out the baby with the bathwater..."

What we really want ${ }^{11}$

What we really want ${ }^{12}$

Summary

Summary

- Unsupervised learning ${ }^{13}$ is very hard.
${ }^{13}$ I would argue that there is no such thing

Summary

- Unsupervised learning ${ }^{13}$ is very hard.
- Its actually not, its really really easy.
${ }^{13}$ I would argue that there is no such thing

Summary

- Unsupervised learning ${ }^{13}$ is very hard.
- Its actually not, its really really easy.
- Relevant assumptions needed to learn anything useful
${ }^{13}$ I would argue that there is no such thing

Summary

- Unsupervised learning ${ }^{13}$ is very hard.
- Its actually not, its really really easy.
- Relevant assumptions needed to learn anything useful
- Strong assumptions needed to learn anything from "sensible" amounts of data
${ }^{13}$ I would argue that there is no such thing

Summary

- Unsupervised learning ${ }^{13}$ is very hard.
- Its actually not, its really really easy.
- Relevant assumptions needed to learn anything useful
- Strong assumptions needed to learn anything from "sensible" amounts of data
- Stochastic processes such as GPs provide strong, interpretative assumptions that aligns well to our intuitions allowing us to make relevant assumptions
${ }^{13}$ I would argue that there is no such thing

Summary II

- Composite functions cannot model more things

Summary II

- Composite functions cannot model more things
- However, they can easily warp the input space to model less things

Summary II

- Composite functions cannot model more things
- However, they can easily warp the input space to model less things
- This leads to high requirments on data

Summary II

- Composite functions cannot model more things
- However, they can easily warp the input space to model less things
- This leads to high requirments on data
- Even bigger need for uncertainty propagation, we cannot assume noiseless data

Summary II

- Composite functions cannot model more things
- However, they can easily warp the input space to model less things
- This leads to high requirments on data
- Even bigger need for uncertainty propagation, we cannot assume noiseless data
- We need to think about correlated uncertainty, not marginals

Reference

References i

References

Bodin, Erik, Neill D. F. Campbell, and Carl Henrik Ek (2017). Latent Gaussian Process Regression.
(10ndela, Joaquin Quiñonero and Carl Edward Rasmussen (2005).
"A Unifying View of Sparse Approximate Gaussian Process Regression". In: Journal of Machine Learning Research 6, pp. 1939-1959.
(國 Damianou, Andreas, Neil D Lawrence, and Carl Henrik Ek (2016). "Multi-view Learning as a Nonparametric Nonlinear Inter-Battery Factor Analysis". In: arXiv preprint arXiv:1604.04939.

References ii

E Damianou, Andreas C (Feb. 2015). "Deep Gaussian Processes and Variational Propagation of Uncertainty". PhD thesis. University of Sheffield.
國 Damianou, Andreas C and Neil D Lawrence (2013). "Deep Gaussian Processes". In: International Conference on Airtificial Inteligence and Statistical Learning, pp. 207-215.
國 Hensman, James, N Fusi, and Neil D Lawrence (2013). "Gaussian Processes for Big Data". In: Uncertainty in Artificial Intelligence.

References iif

Eawrence, Andrew R., Carl Henrik Ek, and Neill W. Campbell (2019). "DP-GP-LVM: A Bayesian Non-Parametric Model for Learning Multivariate Dependency Structures". In: Proceedings of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, pp. 3682-3691.
(1) Lawrence, Neil D. and Joaquin Quiñonero Candela (2006). "Local Distance Preservation in the GP-LVM Through Back Constraints". In: Proceedings of the 23rd International Conference on Machine Learning. ICML '06. Pittsburgh, Pennsylvania, USA: ACM, pp. 513-520.

References iv

國 Titsias，Michalis and Neil D Lawrence（2010）．＂Bayesian Gaussian Process Latent Variable Model＇．In：International Conference on Airtificial Inteligence and Statistical Learning，pp．844－851．
雷 Ustyuzhaninov，Ivan et al．（2019）．＂Compositional Uncertainty in Deep Gaussian Processes＂．In：CoRR．
嗇 Yousefi，Fariba，Zhenwen Dai，Carl Henrik Ek，and Neil Lawrence （2016）．＂Unsupervised Learning With Imbalanced Data Via Structure Consolidation Latent Variable Model＇．In：CoRR．

[^0]: ${ }^{1}$ The posterior is the student of the prior

[^1]: ${ }^{2}$ Talking Machines Podcast

[^2]: ${ }^{2}$ Talking Machines Podcast

[^3]: ${ }^{2}$ Talking Machines Podcast

[^4]: ${ }^{2}$ Talking Machines Podcast

[^5]: ${ }^{4}$ Candela et al., 2005

[^6]: ${ }^{5}$ Titsias et al., 2010

[^7]: ${ }^{5}$ Titsias et al., 2010

