# Introduction to Bayesian Optimization 

Javier González<br>Microsoft Research Cambridge

GPSS 2020


## Big picture

"Civilization advances by extending the number of important operations which we can perform without thinking of them." (Alfred North Whitehead)

We are interested on automation:

- Automatic model configuration.
- Automate the design of physical experiments.


## Big picture

"Civilization advances by extending the number of important operations which we can perform without thinking of them." (Alfred North Whitehead)

We are interested on automation:

- Automatic model configuration.
- Automate the design of physical experiments.


## Data science pipeline/Autonomous system

Challenges and needs for automation


## Global optimization

Consider a 'well behaved' function $f: \mathcal{X} \rightarrow \mathbb{R}$ where $\mathcal{X} \subseteq \mathbb{R}^{D}$ is a bounded domain.

$$
x_{M}=\arg \min _{x \in \mathcal{X}} f(x) .
$$



- $f$ is explicitly unknown and multimodal.
- Evaluations of $f$ may be perturbed.
- Evaluations of $f$ are expensive.


## Expensive functions, who doesn't have one?

Parameter tuning in ML algorithms.


- Number of layers/units per layer
- Weight penalties, learning rates, etc.


## Expensive functions, who doesn't have one?

## Active Path Finding



Optimise the location of a sequence of waypoints in a map to navigate from a location to a destination.

## Expensive functions, who doesn't have one?

Many other problems:

- Robotics, control, reinforcement learning.
- Scheduling, planning.
- Compilers, hardware, software.
- Industrial design.
- Intractable likelihoods.


## What to do?

Option 1: Use previous knowledge

Option 2: Grid search? $f$ is L-Lipschitz continuous and we are in a noise-free domain. To propose $x_{M, n}$ such that

$$
f\left(x_{M}\right)-f\left(x_{M, n}\right) \leq \epsilon
$$

we need to evaluate $f$ on a D-dimensional unit hypercube:
$(L / \epsilon)^{D}$ evaluations!

## Example: $(10 / 0.01)^{5}=10 e 14 \ldots$

... but function evaluations are very expensive!

Option 3: We can sample the space uniformly [Bergstra and Bengio 2012]

## What to do?

Option 1: Use previous knowledge

Option 2: Grid search? $f$ is L-Lipschitz continuous and we are in a noise-free domain. To propose $x_{M, n}$ such that

$$
f\left(x_{M}\right)-f\left(x_{M, n}\right) \leq \epsilon
$$

we need to evaluate $f$ on a D-dimensional unit hypercube: $(L / \epsilon)^{D}$ evaluations!

Example: $(10 / 0.01)^{5}=10 e 14 \ldots$
... but function evaluations are very expensive!

Option 3: We can sample the space uniformly [Bergstra and Bengio 2012]

## What to do?

Option 1: Use previous knowledge

Option 2: Grid search? $f$ is L-Lipschitz continuous and we are in a noise-free domain. To propose $x_{M, n}$ such that

$$
f\left(x_{M}\right)-f\left(x_{M, n}\right) \leq \epsilon
$$

we need to evaluate $f$ on a D-dimensional unit hypercube: $(L / \epsilon)^{D}$ evaluations!

$$
\text { Example: }(10 / 0.01)^{5}=10 e 14 \ldots
$$

... but function evaluations are very expensive!

Option 3: We can sample the space uniformly [Bergstra and Bengio 2012]

## What to do?

Option 1: Use previous knowledge

Option 2: Grid search? $f$ is L-Lipschitz continuous and we are in a noise-free domain. To propose $x_{M, n}$ such that

$$
f\left(x_{M}\right)-f\left(x_{M, n}\right) \leq \epsilon
$$

we need to evaluate $f$ on a D-dimensional unit hypercube: $(L / \epsilon)^{D}$ evaluations!

$$
\text { Example: }(10 / 0.01)^{5}=10 e 14 \ldots
$$

... but function evaluations are very expensive!

Option 3: We can sample the space uniformly [Bergstra and Bengio 2012]

Can we do better?

## Problem for the audience of this tutorial!

You know that:

- Find the optimum of some function $f$ in the interval $[0,1]$.
- $f$ is (L-Lipchitz) continuous and differentiable.
- Evaluations of $f$ are exact and we have 4 of them!


## Situation

We have a few function evaluations


Where is the minimum of $f$ ?
Where should the take the next evaluation?

## Intuitive solution

One curve


## Intuitive solution

Three curves


## Intuitive solution

Ten curves


## Intuitive solution

Hundred curves


## Intuitive solution

Many curves


## Intuitive solution

Infinite curves



## General idea: surrogate modelling

1. Use a surrogate model of $f$ to carry out the optimization.
2. Define an utility function to collect new data points satisfying some optimality criterion: optimization as decision.
3. Study decision problems as inference using the surrogate model: use a probabilistic model able to calibrate both, epistemic and aleatoric uncertainty.

Uncertainty Quantification: Making informed decisions

## Utility functions

The utility should represent our design goal:.

1. Active Learning and experimental design: reduce the uncertainty in the model (prediction or hyper-parameters).
2. Optimization: Minimize the loss in a sequence $x_{1}, \ldots, x_{n}$

$$
r_{N}=\sum_{n=1}^{N} f\left(x_{n}\right)-N f\left(x_{M}\right)
$$

(1) does to a lot exploration whereas (2) encourages exploitation about the minimum of $f$.

## Bayesian Optimisation

[Mockus, 1978]
Methodology to perform global optimisation of multimodal black-box functions.

1. Choose some prior measure over the space of possible objectives $f$.
2. Combine prior and the likelihood to get a posterior measure over the objective given some observations.
3. Use the posterior to decide where to take the next evaluation according to some acquisition/loss function.
4. Augment the data.

Iterate between 2 and 4 until the evaluation budget is over.

## Surrogate model: Gaussian process

Default Choice: Gaussian processes [Rasmunsen and Williams, 2006]
Infinite-dimensional probability density, such that each linear finite-dimensional restriction is multivariate Gaussian.


- Model $f(x) \sim \mathcal{G} \mathcal{P}\left(\mu(x), k\left(x, x^{\prime}\right)\right)$ is determined by the mean function $m(x)$ and covariance function $k\left(x, x^{\prime} ; \theta\right)$.


## Surrogate model: Gaussian process

Default Choice: Gaussian processes [Rasmunsen and Williams, 2006]
Infinite-dimensional probability density, such that each linear finite-dimensional restriction is multivariate Gaussian.


- Model $f(x) \sim \mathcal{G} \mathcal{P}\left(\mu(x), k\left(x, x^{\prime}\right)\right)$ is determined by the mean function $m(x)$ and covariance function $k\left(x, x^{\prime} ; \theta\right)$.


## Exploration vs. exploitation

[Borji and Itti, 2013]


Bayesian optimization explains human active search

## GP Upper (lower) Confidence Band

[Srinivas et al., 2010]

Direct balance between exploration and exploitation:

$$
\alpha_{L C B}(\mathbf{x} ; \theta, \mathcal{D})=-\mu(\mathbf{x} ; \theta, \mathcal{D})+\beta_{t} \sigma(\mathbf{x} ; \theta, \mathcal{D})
$$



## GP Upper (lower) Confidence Band

[Srinivas et al., 2010]

- In noiseless cases, it is a lower bound of the function to minimize.
- This allows to computer a bound on how close we are to the minimum.
- Optimal choices available for the 'regularization parameter'.

Theorem 1 Let $\delta \in(0,1)$ and $\beta_{t}=$ $2 \log \left(|D| t^{2} \pi^{2} / 6 \delta\right)$. Running GP-UCB with $\beta_{t}$ for a sample $f$ of a GP with mean function zero and covariance function $k\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$, we obtain a regret bound of $\mathcal{O}^{*}\left(\sqrt{T \gamma_{T}} \log |D|\right)$ with high probability. Precisely, with $C_{1}=8 / \log \left(1+\sigma^{-2}\right)$ we have

$$
\operatorname{Pr}\left\{R_{T} \leq \sqrt{C_{1} T \beta_{T} \gamma_{T}} \quad \forall T \geq 1\right\} \geq 1-\delta
$$

## Expected Improvement

[Jones et al., 1998]

$$
\alpha_{E I}(\mathbf{x} ; \theta, \mathcal{D})=\int_{y} \max \left(0, y_{b e s t}-y\right) p(y \mid \mathbf{x} ; \theta, \mathcal{D}) d y
$$



## Expected Improvement

[Jones et al., 1998]

- Perhaps the most used acquisition.
- Explicit for available for Gaussian posteriors.
- It is too greedy in some problems. It is possible to make more explorative adding a 'explorative' parameter

$$
\alpha_{E I}(\mathbf{x} ; \theta, \mathcal{D})=\sigma(\mathbf{x} ; \theta, \mathcal{D})(\gamma(x) \Phi(\gamma(x)))+\mathcal{N}(\gamma(x) ; 0,1)
$$

where

$$
\gamma(x)=\frac{f\left(x_{\text {best }}\right)-\mu(\mathbf{x} ; \theta, \mathcal{D})+\psi}{\sigma(\mathbf{x} ; \theta, \mathcal{D})}
$$

## Thompson sampling

Probability matching [Rahimi and B. Recht, 2007]

$$
\alpha_{T H O M P S O N}(\mathbf{x} ; \theta, \mathcal{D})=g(\mathbf{x})
$$

$g(\mathbf{x})$ is sampled form $\mathcal{G} \mathcal{P}\left(\mu(x), k\left(x, x^{\prime}\right)\right)$


## Thompson sampling

Probability matching [Rahimi and B. Recht, 2007]

- It is easy to generate posterior samples of a GP at a finite set of locations.
- More difficult is to generate 'continuous' samples.

Possible using the Bochner's lemma: existence of the Fourier dual of $k, s(\omega)$ which is equal to the spectral density of $k$
$k\left(x, x^{\prime}\right)=\nu \mathbb{E}_{\omega}\left[e^{-i \omega^{T}\left(x-x^{\prime}\right)}\right]=2 \nu \mathbb{E}_{\omega, b}\left[\cos \left(\omega x^{T}+b\right) \cos \left(\omega x^{T}+b\right)\right]$
With sampling and this lemma (taking $p(w)=s(\omega) / \nu$ and $b \sim \mathcal{U}[0,2 \pi])$ we can construct a feature based approximation for sample paths of the GP.

$$
k\left(x, x^{\prime}\right) \approx \frac{\nu}{m} \sum_{i=1}^{m} e^{-i \omega^{(i) T} x} e^{-i \omega^{(i) T} x^{\prime}}
$$

## Information-theoretic approaches

[Hennig and Schuler, 2013; Hernández-Lobato et al., 2014]

$$
\alpha_{E S}(\mathbf{x} ; \theta, \mathcal{D})=H\left[p\left(x_{\min } \mid \mathcal{D}\right)\right]-\mathbb{E}_{p(y \mid \mathcal{D}, \mathbf{x})}\left[H\left[p\left(x_{\min } \mid \mathcal{D} \cup\{\mathbf{x}, y\}\right)\right]\right]
$$



## Information-theoretic approaches

[Hennig and Schuler, 2013; Hernández-Lobato et al., 2014]

Uses the distribution of the minimum

$$
p_{\min }(x) \equiv p[x=\arg \min f(x)]=\int_{f: I \rightarrow \Re} p(f) \prod_{\substack{\tilde{x} \in I \\ \tilde{x} \neq x}} \theta[f(\tilde{x})-f(x)] d f
$$

where $\theta$ is the Heaviside's step function. No closed form!

Use Thompson sampling to approximate the distribution. Generate many sample paths from the GP, optimize them to take samples from $p_{\text {min }}(x)$.

## The choice of utility matters

[Hoffman, Shahriari and de Freitas, 2013]

The choice of the utility may change a lot the result of the optimisation.


## The choice of utility in practice

[Hoffman, Shahriari and de Freitas, 2013]


The best utility depends on the problem and the level of exploration/exploitation required.

## Illustration of BO




## Bayesian Optimization

As a 'mapping' between two problems
BO is an strategy to transform the problem

$$
\begin{gathered}
x_{M}=\arg \min _{x \in \mathcal{X}} f(x) \\
\text { unsolvable! }
\end{gathered}
$$

into a series of problems:

$$
\begin{gathered}
x_{n+1}=\underset{x \in \mathcal{X}}{\arg \max _{x}} \alpha\left(x ; \mathcal{D}_{n}, \mathcal{M}_{n}\right) \\
\text { solvable! }
\end{gathered}
$$

where now:

- $\alpha(x)$ is inexpensive to evaluate.
- The gradients of $\alpha(x)$ are typically available.
- Still need to find $x_{n+1}$.


## Secrets of Bayesian optimization...

Be aware that:

- The model matters a lot! Be sure that you have it right (sample hyper-parameters, prior knowledge, etc.)
- Optimizing the acquisition can be hard (multimodal) but you can use standard techniques.
- Be aware of the input dimension. Up to 10 dimensions is OK, If you have more probably you'll need to impose some structure in the problem.


## Main issues

- What to do with the hyper-parameters of the model?
- How to select points to initialize the model?
- How to optimize the acquisition function?


## BO independent of the parameters of the GP.

[Snoek et al. 2012]

Integrate out across parameter values or location outputs.


## How to initialise the model?

- One point in the centre of the domain.
- Uniformly selected random locations.
- Latin design.
- Halton sequences.
- Determinantal point processes.


## Determinantal point processes

Kulesza and Taskar, [2012]

We say that $X$ is a 'determinantal point process' on $\Lambda$ with kernel $K$ if it is a simple point process on $\Lambda$ with a joint intensity or 'correlation function' given by

$$
\rho_{n}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{det}\left(K\left(x_{i}, x_{j}\right)_{1 \leq i, j \leq n}\right)
$$

- Probability measures over subsets.
- Possible to characterise the samples in terms of quality and diversity.


## Determinantal point processes

Kulesza and Taskar, [2012]



Key idea:

$$
\begin{aligned}
\mathcal{P}(i, j \in \boldsymbol{Y}) & =\left|\begin{array}{ll}
K_{i i} & K_{i j} \\
K_{j i} & K_{j j}
\end{array}\right| \\
& =K_{i i} K_{j j}-K_{i j} K_{j i} \\
& =\mathcal{P}(i \in \boldsymbol{Y}) \mathcal{P}(j \in \boldsymbol{Y})-K_{i j}^{2}
\end{aligned}
$$

## Determinantal point processes

Kulesza and Taskar, [2012]


## Methods to optimise the acquisition function

This may not be easy.

- Gradient descent methods: Conjugate gradient, BFGS, etc.
- Lipschitz based heuristics: DIRECT.
- Evolutionary algorithms: CMA.

Some of these methods can also be used to directly optimize $f$.

## Some advanced topics

- Multi-task Bayesian optimization
- Early stopping
- Parallel Bayesian optimization.
- Non myopic menthods
- Conditional dependencies.
- Preferential optimization.


## Multi-task Bayesian Optimization [Wersky et al., 2013]

Two types of problems:

1. Multiple, and conflicting objectives: design an engine more powerful but more efficient.
2. The objective is very expensive, but we have access to another cheaper and correlated one.

## Multi-task Bayesian Optimization [Wersky et al., 2013]

- We want to optimise an objective that it is very expensive to evaluate but we have access to another function, correlated with objective, that is cheaper to evaluate.
- The idea is to use the correlation among the function to improve the optimization.

Multi-output Gaussian process

$$
\tilde{k}\left(x, x^{\prime}\right)=\mathbf{B} \otimes k\left(x, x^{\prime}\right)
$$

## Multi-task Bayesian Optimization

[Wersky et al., 2013]

(a) Multi-task GP sample functions

(b) Independent GP predictions

(c) Multi-task GP predictions

- Correlation among tasks reduces global uncertainty.
- The choice (acquisition) changes.


## Multi-task Bayesian Optimization [Wersky et al., 2013]

- In other cases we want to optimize several tasks at the same time.
- We need to use a combination of them (the mean, for instance) or have a look to the Pareto frontiers of the problem.

Averaged expected improvement.

## Multi-task Bayesian Optimization

[Wersky et al., 2013]


## Early-stopping Bayesian optimization

Swersky et al. [2014]

Considerations:

- When looking for a good parameters set for a model, in many cases each evaluation requires of a inner loop optimization.
- Learning curves have a similar (monotonically decreasing) shape.
- Fit a meta-model to the learning curves to predict the expected performance of sets of parameters

Main benefit: allows for early-stopping

## Early-stopping Bayesian optimization

Swersky et al. [2014]

Kernel for learning curves

$$
k\left(t, t^{\prime}\right)=\int_{0}^{\infty} e^{-\lambda t} e^{-\lambda t} \varphi(d \lambda)
$$

where $\varphi$ is a Gamma distribution.

(a) Exponential Decay Basis

(b) Samples

(c) Training Curve Samples

## Early-stopping Bayesian optimization

Swersky et al. [2014]

- Non-stationary kernel as an infinite mixture of exponentially decaying basis function.
- A hierarchical model is used to model the learning curves.
- Early-stopping is possible for bad parameter sets.

(a) Graphical Model

(b) Training curve predictions

(c) Asymptotic GP


## Early-stopping Bayesian optimization

Swersky et al. [2014]

- Good results compared to standard approaches.
- What to do if exponential decay assumption does not hold?



## Scalable BO: Parallel/batch BO

Avoiding the bottleneck of evaluating $f$


- Cost of $f\left(\mathbf{x}_{n}\right)=\operatorname{cost}$ of $\left\{f\left(\mathbf{x}_{n, 1}\right), \ldots, f\left(\mathbf{x}_{n, n b}\right)\right\}$.
- Many cores available, simultaneous lab experiments, etc.


## Considerations when designing a batch

- Available pairs $\left\{\left(\mathbf{x}_{j}, y_{i}\right)\right\}_{i=1}^{n}$ are augmented with the evaluations of $f$ on $\mathcal{B}_{t}^{n_{b}}=\left\{\mathbf{x}_{t, 1}, \ldots, \mathbf{x}_{t, n b}\right\}$.
- Goal: design $\mathcal{B}_{1}^{n_{b}}, \ldots, \mathcal{B}_{m}^{n_{b}}$.

Notation:

- $\mathcal{I}_{n}$ : represents the available data set $\mathcal{D}_{n}$ and the $\mathcal{G} \mathcal{P}$ structure when $n$ data points are available ( $\mathcal{I}_{t, k}$ in the batch context).
- $\alpha\left(\mathbf{x} ; \mathcal{I}_{n}\right)$ : generic acquisition function given $\mathcal{I}_{n}$.


## Available approaches

[Azimi et al., 2010; Desautels et al., 2012; Chevalier et al., 2013; Contal et al. 2013]

- Exploratory approaches, reduction in system uncertainty.
- Generate 'fake' observations of $f$ using $p\left(y_{t, j} \mid \mathbf{x}_{j}, \mathcal{I}_{t, j-1}\right)$.
- Simultaneously optimize elements on the batch using the joint distribution of $y_{t_{1}}, \ldots y_{t, n b}$.

Bottleneck: All these methods require to iteratively update $p\left(y_{t, j} \mid \mathbf{x}_{j}, \mathcal{I}_{t, j-1}\right)$ to model the iteration between the elements in the batch: $\mathcal{O}\left(n^{3}\right)$

How to design batches reducing this cost? Local penalization

## Local penalization strategy

[González, Dai, Hennig, Lawrence, 2016]




The maximization-penalization strategy selects $\mathbf{x}_{t, k}$ as


## Local penalization strategy

[González, Dai, Hennig, Lawrence, 2016]



3th batch element


The maximization-penalization strategy selects $\mathbf{x}_{t, k}$ as

$$
\mathbf{x}_{t, k}=\arg \max _{x \in \mathcal{X}}\left\{g\left(\alpha\left(\mathbf{x} ; \mathcal{I}_{t, 0}\right)\right) \prod_{j=1}^{k-1} \varphi\left(\mathbf{x} ; \mathbf{x}_{t, j}\right)\right\}
$$

$g$ is a transformation of $\alpha\left(\mathbf{x} ; \mathcal{I}_{t, 0}\right)$ to make it always positive.

## 2D experiment with 'large domain'

Comparison in terms of the wall clock time


## Myopia of optimisation techniques

[Gonzalez et al., 2016]

- Most global optimisation techniques are myopic, in considering no more than a single step into the future.
- Relieving this myopia requires solving the multi-step lookahead problem.


Figure: Two evaluations, if the first evaluation is made myopically, the second must be sub-optimal.

## Non-myopic thinking

## [Gonzalez et al., 2016]

To think non-myopically is important: it is a way of integrating in our decisions the information about our available (limited) resources to solve a given problem.


## Relieving the myopia of Bayesian optimisation

[Gonzalez et al., 2016]

## GLASSES!

## Global optimisation with Look-Ahead through Stochastic Simulation and Expected-loss Search

Idea: jointly model the epistemic uncertainty about the steps ahead using some defining some point process.

## Results in a benchmark of objectives

[Gonzalez et al., 2016]

|  | MPI | GP-LCB | EL | EL-2 | EL-3 | EL-5 | EL-10 | GLASSES |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SinCos | 0.7147 | 0.6058 | 0.7645 | 0.8656 | 0.6027 | 0.4881 | 0.8274 | $\boldsymbol{0 . 9 0 0 0}$ |
| Cosines | 0.8637 | 0.8704 | 0.8161 | 0.8423 | 0.8118 | 0.7946 | 0.7477 | $\mathbf{0 . 8 7 2 2}$ |
| Branin | 0.9854 | 0.9616 | $\mathbf{0 . 9 9 0 0}$ | 0.9856 | 0.9673 | 0.9824 | 0.9887 | 0.9811 |
| Sixhumpcamel | 0.8983 | $\mathbf{0 . 9 3 4 6}$ | 0.9299 | 0.9115 | 0.9067 | 0.8970 | 0.9123 | 0.8880 |
| Mccormick | $\mathbf{0 . 9 5 1 4}$ | 0.9326 | 0.9055 | 0.9139 | 0.9189 | 0.9283 | 0.9389 | 0.9424 |
| Dropwave | 0.7308 | 0.7413 | 0.7667 | 0.7237 | 0.7555 | 0.7293 | 0.6860 | $\boldsymbol{0 . 7 7 4 0}$ |
| Powers | 0.2177 | 0.2167 | 0.2216 | 0.2428 | 0.2372 | 0.2390 | 0.2339 | $\boldsymbol{0 . 3 6 7 0}$ |
| Ackley-2 | 0.8230 | $\mathbf{0 . 8 9 7 5}$ | 0.7333 | 0.6382 | 0.5864 | 0.6864 | 0.6293 | 0.7001 |
| Ackley-5 | 0.1832 | 0.2082 | 0.5473 | 0.6694 | 0.3582 | 0.3744 | $\mathbf{0 . 6 7 0 0}$ | 0.4348 |
| Ackley-10 | 0.9893 | 0.9864 | 0.8178 | 0.9900 | 0.9912 | $\mathbf{0 . 9 9 1 6}$ | 0.8340 | 0.8567 |
| Alpine2-2 | $\mathbf{0 . 8 6 2 8}$ | 0.8482 | 0.7902 | 0.7467 | 0.5988 | 0.6699 | 0.6393 | 0.7807 |
| Alpine2-5 | 0.5221 | 0.6151 | $\mathbf{0 . 7 7 9 7}$ | 0.6740 | 0.6431 | 0.6592 | 0.6747 | 0.7123 |

GLASSES is overall the best method.

## Structured input space

[Jenatton et al., 2017]

Conditional relationships: $\mathcal{X}=\mathcal{X}_{0} \times \mathcal{X}_{1} \times \cdots \times \mathcal{X}_{d}$

Definition: Depending on some values in $\mathcal{X}$, parameters in $\mathcal{X}_{j}$ become irrelevant

Examples:

- Feedforward neural nets: hyperpar. for layer 1

- Data analytic pipeline:
logistic-reg. hyperpar.



## Tree GPs based approach

[Jenatton et al., 2017]

Optimization the topology of a multilayer perceptron for classification over 45 datasets.


## Preferential Bayesian optimization

Javier González et al., 2017


- In some experiments we only have access to preferential outputs.
- These can be modeled by a GP an optimize a latent preference function.
- State-of-the-art method for learning preferences.


## A couple of applications

- Robotics
- Gene design


## Optimizing gene designs for drug production [González et, 2015]



- Use mammalian cells to make protein products.
- Control the ability of the cell-factory to use synthetic DNA.
- Optimize genes (ATTGGTUGA...) to best enable the cell-factory to operate most efficiently.


## Take home messages

- Bayesian optimization is a way of encoding our beliefs about a property of a function (the minimum) and sequentially making decisions to know more about it.
- Two key elements: the model and the acquisition function.
- The key is to find a good balance between exploration and exploitation of the minimum in the search.

