
An introduction to Gaussian Processes

Richard Wilkinson

School of Mathematical Sciences
University of Nottingham

GP summer school
September 2020

Welcome to Sheffield

Introduction

(Multivariate) Gaussian distributions

Definition of Gaussian processes

Motivations and derivations

Difficulties

You can download a copy of these slides from www.gpss.cc

Univariate Gaussian distributions

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

PDF of a N(0,1) random variable

x

de
ns

ity

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF of a N(0,1) random variable

x

P
(X

<
x)

Y ∼ N(µ, σ2)

PDF: fY (y) =
1√

2πσ2
exp

(
−(y − µ)2

2σ2

)
CDF: FY (y) = P(Y ≤ y) not known in closed form

If Z ∼ N(0, 1) then Y = µ+ σZ ∼ N(µ, σ2)

Univariate Gaussian distributions

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

PDF of a N(0,1) random variable

x

de
ns

ity

−4 −2 0 2 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

CDF of a N(0,1) random variable

x

P
(X

<
x)

Y ∼ N(µ, σ2)

PDF: fY (y) =
1√

2πσ2
exp

(
−(y − µ)2

2σ2

)
CDF: FY (y) = P(Y ≤ y) not known in closed form

If Z ∼ N(0, 1) then Y = µ+ σZ ∼ N(µ, σ2)

Univariate Gaussians
The normal/Gaussian distribution occurs naturally and is convenient
mathematically

Family of normal distributions is closed under linear operations (more
later).

Central limit theorem

Maximum entropy/surprisal: N(µ, σ2) has maximum entropy of any
distribution with mean µ and variance σ2 (max. ent. principle: the
distribution with the largest entropy should be used as a
least-informative default)

Infinite divisibility

If Y and Z are jointly normally distributed and are uncorrelated, then
they are independent

Square-loss functions lead to procedures that have a Gaussian
probabilistic interpretation
eg Fit model fβ(x) to data y by mimizing

∑
(yi − fβ(xi))2 is

equivalent to maximum likelihood estimation under the assumption
that y = fβ(x) + ε where ε ∼ N(0, σ2).

Univariate Gaussians
The normal/Gaussian distribution occurs naturally and is convenient
mathematically

Family of normal distributions is closed under linear operations (more
later).

Central limit theorem

Maximum entropy/surprisal: N(µ, σ2) has maximum entropy of any
distribution with mean µ and variance σ2 (max. ent. principle: the
distribution with the largest entropy should be used as a
least-informative default)

Infinite divisibility

If Y and Z are jointly normally distributed and are uncorrelated, then
they are independent

Square-loss functions lead to procedures that have a Gaussian
probabilistic interpretation
eg Fit model fβ(x) to data y by mimizing

∑
(yi − fβ(xi))2 is

equivalent to maximum likelihood estimation under the assumption
that y = fβ(x) + ε where ε ∼ N(0, σ2).

Univariate Gaussians
The normal/Gaussian distribution occurs naturally and is convenient
mathematically

Family of normal distributions is closed under linear operations (more
later).

Central limit theorem

Maximum entropy/surprisal: N(µ, σ2) has maximum entropy of any
distribution with mean µ and variance σ2 (max. ent. principle: the
distribution with the largest entropy should be used as a
least-informative default)

Infinite divisibility

If Y and Z are jointly normally distributed and are uncorrelated, then
they are independent

Square-loss functions lead to procedures that have a Gaussian
probabilistic interpretation
eg Fit model fβ(x) to data y by mimizing

∑
(yi − fβ(xi))2 is

equivalent to maximum likelihood estimation under the assumption
that y = fβ(x) + ε where ε ∼ N(0, σ2).

Univariate Gaussians
The normal/Gaussian distribution occurs naturally and is convenient
mathematically

Family of normal distributions is closed under linear operations (more
later).

Central limit theorem

Maximum entropy/surprisal: N(µ, σ2) has maximum entropy of any
distribution with mean µ and variance σ2 (max. ent. principle: the
distribution with the largest entropy should be used as a
least-informative default)

Infinite divisibility

If Y and Z are jointly normally distributed and are uncorrelated, then
they are independent

Square-loss functions lead to procedures that have a Gaussian
probabilistic interpretation
eg Fit model fβ(x) to data y by mimizing

∑
(yi − fβ(xi))2 is

equivalent to maximum likelihood estimation under the assumption
that y = fβ(x) + ε where ε ∼ N(0, σ2).

Univariate Gaussians
The normal/Gaussian distribution occurs naturally and is convenient
mathematically

Family of normal distributions is closed under linear operations (more
later).

Central limit theorem

Maximum entropy/surprisal: N(µ, σ2) has maximum entropy of any
distribution with mean µ and variance σ2 (max. ent. principle: the
distribution with the largest entropy should be used as a
least-informative default)

Infinite divisibility

If Y and Z are jointly normally distributed and are uncorrelated, then
they are independent

Square-loss functions lead to procedures that have a Gaussian
probabilistic interpretation
eg Fit model fβ(x) to data y by mimizing

∑
(yi − fβ(xi))2 is

equivalent to maximum likelihood estimation under the assumption
that y = fβ(x) + ε where ε ∼ N(0, σ2).

Univariate Gaussians
The normal/Gaussian distribution occurs naturally and is convenient
mathematically

Family of normal distributions is closed under linear operations (more
later).

Central limit theorem

Maximum entropy/surprisal: N(µ, σ2) has maximum entropy of any
distribution with mean µ and variance σ2 (max. ent. principle: the
distribution with the largest entropy should be used as a
least-informative default)

Infinite divisibility

If Y and Z are jointly normally distributed and are uncorrelated, then
they are independent

Square-loss functions lead to procedures that have a Gaussian
probabilistic interpretation
eg Fit model fβ(x) to data y by mimizing

∑
(yi − fβ(xi))2 is

equivalent to maximum likelihood estimation under the assumption
that y = fβ(x) + ε where ε ∼ N(0, σ2).

Univariate Gaussians
The normal/Gaussian distribution occurs naturally and is convenient
mathematically

Family of normal distributions is closed under linear operations (more
later).

Central limit theorem

Maximum entropy/surprisal: N(µ, σ2) has maximum entropy of any
distribution with mean µ and variance σ2 (max. ent. principle: the
distribution with the largest entropy should be used as a
least-informative default)

Infinite divisibility

If Y and Z are jointly normally distributed and are uncorrelated, then
they are independent

Square-loss functions lead to procedures that have a Gaussian
probabilistic interpretation
eg Fit model fβ(x) to data y by mimizing

∑
(yi − fβ(xi))2 is

equivalent to maximum likelihood estimation under the assumption
that y = fβ(x) + ε where ε ∼ N(0, σ2).

Multivariate Gaussian distributions
‘Multivariate’ = two or more random variables

Suppose Y ∈ Rd has a multivariate Gaussian distribution with

mean vector µ ∈ Rd

covariance matrix Σ ∈ Rd×d .

Write
Y ∼ Nd(µ,Σ)

Bivariate Gaussian: d=2

Y =

(
Y1

Y2

)
µ =

(
µ1

µ2

)
Σ =

(
σ2

1 ρ12σ1σ2

ρ21σ1σ2 σ2
2

)

Var(Yi) = σ2
i Cov(Yi ,Yj) = ρijσiσj Cor(Yi ,Yj) = ρ12 for i 6= j

pdf: f (y | µ,Σ) = |Σ|−
1
2 (2π)−

d
2 exp

(
−1

2
(y − µ)>Σ−1(y − µ)

)

Multivariate Gaussian distributions
‘Multivariate’ = two or more random variables

Suppose Y ∈ Rd has a multivariate Gaussian distribution with

mean vector µ ∈ Rd

covariance matrix Σ ∈ Rd×d .

Write
Y ∼ Nd(µ,Σ)

Bivariate Gaussian: d=2

Y =

(
Y1

Y2

)
µ =

(
µ1

µ2

)
Σ =

(
σ2

1 ρ12σ1σ2

ρ21σ1σ2 σ2
2

)

Var(Yi) = σ2
i Cov(Yi ,Yj) = ρijσiσj Cor(Yi ,Yj) = ρ12 for i 6= j

pdf: f (y | µ,Σ) = |Σ|−
1
2 (2π)−

d
2 exp

(
−1

2
(y − µ)>Σ−1(y − µ)

)

Multivariate Gaussian distributions
‘Multivariate’ = two or more random variables

Suppose Y ∈ Rd has a multivariate Gaussian distribution with

mean vector µ ∈ Rd

covariance matrix Σ ∈ Rd×d .

Write
Y ∼ Nd(µ,Σ)

Bivariate Gaussian: d=2

Y =

(
Y1

Y2

)
µ =

(
µ1

µ2

)
Σ =

(
σ2

1 ρ12σ1σ2

ρ21σ1σ2 σ2
2

)

Var(Yi) = σ2
i Cov(Yi ,Yj) = ρijσiσj Cor(Yi ,Yj) = ρ12 for i 6= j

pdf: f (y | µ,Σ) = |Σ|−
1
2 (2π)−

d
2 exp

(
−1

2
(y − µ)>Σ−1(y − µ)

)

Multivariate Gaussian distributions
‘Multivariate’ = two or more random variables

Suppose Y ∈ Rd has a multivariate Gaussian distribution with

mean vector µ ∈ Rd

covariance matrix Σ ∈ Rd×d .

Write
Y ∼ Nd(µ,Σ)

Bivariate Gaussian: d=2

Y =

(
Y1

Y2

)
µ =

(
µ1

µ2

)
Σ =

(
σ2

1 ρ12σ1σ2

ρ21σ1σ2 σ2
2

)

Var(Yi) = σ2
i Cov(Yi ,Yj) = ρijσiσj Cor(Yi ,Yj) = ρ12 for i 6= j

pdf: f (y | µ,Σ) = |Σ|−
1
2 (2π)−

d
2 exp

(
−1

2
(y − µ)>Σ−1(y − µ)

)

Multivariate Gaussian distributions
‘Multivariate’ = two or more random variables

Suppose Y ∈ Rd has a multivariate Gaussian distribution with

mean vector µ ∈ Rd

covariance matrix Σ ∈ Rd×d .

Write
Y ∼ Nd(µ,Σ)

Bivariate Gaussian: d=2

Y =

(
Y1

Y2

)
µ =

(
µ1

µ2

)
Σ =

(
σ2

1 ρ12σ1σ2

ρ21σ1σ2 σ2
2

)

Var(Yi) = σ2
i Cov(Yi ,Yj) = ρijσiσj Cor(Yi ,Yj) = ρ12 for i 6= j

pdf: f (y | µ,Σ) = |Σ|−
1
2 (2π)−

d
2 exp

(
−1

2
(y − µ)>Σ−1(y − µ)

)

−4

−2

0

2

4

−4 −2 0 2 4
Y1

Y
2

µ =

(
0
0

)

Σ =

(
1 0
0 1

)

So
Cor(Y1,Y2) = 0
hence Y1

independent of Y2

−4

−2

0

2

4

−4 −2 0 2 4
Y1

Y
2

µ =

(
0
0

)

Σ =

(
1 0
0 1

)

So
Cor(Y1,Y2) = 0
hence Y1

independent of Y2

−4

−2

0

2

4

−4 −2 0 2 4
Y1

Y
2

µ =

(
0
1

)

Σ =

(
1 0
0 0.2

)

−4

−2

0

2

4

−4 −2 0 2 4
Y1

Y
2

µ =

(
0
0

)

Σ =

(
1 0.9

0.9 1

)

−4

−2

0

2

4

−4 −2 0 2 4
Y1

Y
2

µ =

(
0
0

)

Σ =
1

3

(
1 0.9

0.9 1

)

−4

−2

0

2

4

−4 −2 0 2 4
Y1

Y
2

µ =

(
0
0

)

Σ =

(
1 0.99

0.99 1

)

−4

−2

0

2

4

−4 −2 0 2 4
Y1

Y
2

µ =

(
0
0

)

Σ =

(
1 0.54

0.54 0.3

)
Cor(Y1,Y2) =
0.54/

√
(0.3) =

0.99

More pictures

Hard to visualise in dimensions > 2, so stack points next to each other.

So for 2d instead of we have

−1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

Y1

Y
2

1 2 3 4 5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

Index

Y

More pictures

Hard to visualise in dimensions > 2, so stack points next to each other.
So for 2d instead of we have

−1.0 −0.5 0.0 0.5 1.0 1.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

Y1

Y
2

1 2 3 4 5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1.
5

Index

Y

Consider d = 5 with

µ =

0
0

.

.

.
0

 Σ =

1 0.99 0.98 0.97 0.96

0.99 1 0.99 0.98 0.97
0.98 0.99 1 0.99 0.98
0.97 0.98 0.99 1 0.99
0.96 0.97 0.98 0.99 1

1 2 3 4 5

−
2

−
1

0
1

2

index

Y

Each line is one sample.

d = 50

µ =

0
0

.

.

.
0

 Σ =

1 0.99 0.98 0.97 0.96 ...
0.99 1 0.99 0.98 0.97 ...
0.98 0.99 1 0.99 0.98 ...
0.97 0.98 0.99 1 0.99 ...
0.96 0.97 0.98 0.99 1 ...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 10 20 30 40

−
2

−
1

0
1

2

index

Y

Each line is one sample.

We can think of Gaussian processes as an infinite dimensional distribution
over functions - all we need to do is change the indexing

d = 50

µ =

0
0

.

.

.
0

 Σ =

1 0.99 0.98 0.97 0.96 ...
0.99 1 0.99 0.98 0.97 ...
0.98 0.99 1 0.99 0.98 ...
0.97 0.98 0.99 1 0.99 ...
0.96 0.97 0.98 0.99 1 ...

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 10 20 30 40

−
2

−
1

0
1

2

index

Y

Each line is one sample.
We can think of Gaussian processes as an infinite dimensional distribution
over functions - all we need to do is change the indexing

Gaussian processes

A stochastic process is a collection of random variables indexed by some
variable x ∈ X

y = {y(x) : x ∈ X}

Usually y(x) ∈ R and X ⊂ Rn i.e. y can be thought of as a function of x .
If X = Rn, then y is an infinite dimensional process.
Thankfully, to understand the law of y we only need consider the finite
dimensional distributions (FDDs), i.e., for all x1, . . . , xn and for all n ∈ N

P(y(x1) ≤ c1, . . . , y(xn) ≤ cn)

as these uniquely determine the law of y .
A Gaussian process is a stochastic process with Gaussian FDDs, i.e.,

(y(x1), . . . , y(xn)) ∼ Nn(µ,Σ)

We write y(·) ∼ GP to denote that the function y is a GP.

Gaussian processes

A stochastic process is a collection of random variables indexed by some
variable x ∈ X

y = {y(x) : x ∈ X}

Usually y(x) ∈ R and X ⊂ Rn i.e. y can be thought of as a function of x .

If X = Rn, then y is an infinite dimensional process.
Thankfully, to understand the law of y we only need consider the finite
dimensional distributions (FDDs), i.e., for all x1, . . . , xn and for all n ∈ N

P(y(x1) ≤ c1, . . . , y(xn) ≤ cn)

as these uniquely determine the law of y .
A Gaussian process is a stochastic process with Gaussian FDDs, i.e.,

(y(x1), . . . , y(xn)) ∼ Nn(µ,Σ)

We write y(·) ∼ GP to denote that the function y is a GP.

Gaussian processes

A stochastic process is a collection of random variables indexed by some
variable x ∈ X

y = {y(x) : x ∈ X}

Usually y(x) ∈ R and X ⊂ Rn i.e. y can be thought of as a function of x .
If X = Rn, then y is an infinite dimensional process.

Thankfully, to understand the law of y we only need consider the finite
dimensional distributions (FDDs), i.e., for all x1, . . . , xn and for all n ∈ N

P(y(x1) ≤ c1, . . . , y(xn) ≤ cn)

as these uniquely determine the law of y .
A Gaussian process is a stochastic process with Gaussian FDDs, i.e.,

(y(x1), . . . , y(xn)) ∼ Nn(µ,Σ)

We write y(·) ∼ GP to denote that the function y is a GP.

Gaussian processes

A stochastic process is a collection of random variables indexed by some
variable x ∈ X

y = {y(x) : x ∈ X}

Usually y(x) ∈ R and X ⊂ Rn i.e. y can be thought of as a function of x .
If X = Rn, then y is an infinite dimensional process.
Thankfully, to understand the law of y we only need consider the finite
dimensional distributions (FDDs), i.e., for all x1, . . . , xn and for all n ∈ N

P(y(x1) ≤ c1, . . . , y(xn) ≤ cn)

as these uniquely determine the law of y .

A Gaussian process is a stochastic process with Gaussian FDDs, i.e.,

(y(x1), . . . , y(xn)) ∼ Nn(µ,Σ)

We write y(·) ∼ GP to denote that the function y is a GP.

Gaussian processes

A stochastic process is a collection of random variables indexed by some
variable x ∈ X

y = {y(x) : x ∈ X}

Usually y(x) ∈ R and X ⊂ Rn i.e. y can be thought of as a function of x .
If X = Rn, then y is an infinite dimensional process.
Thankfully, to understand the law of y we only need consider the finite
dimensional distributions (FDDs), i.e., for all x1, . . . , xn and for all n ∈ N

P(y(x1) ≤ c1, . . . , y(xn) ≤ cn)

as these uniquely determine the law of y .
A Gaussian process is a stochastic process with Gaussian FDDs, i.e.,

(y(x1), . . . , y(xn)) ∼ Nn(µ,Σ)

We write y(·) ∼ GP to denote that the function y is a GP.

Gaussian processes

A stochastic process is a collection of random variables indexed by some
variable x ∈ X

y = {y(x) : x ∈ X}

Usually y(x) ∈ R and X ⊂ Rn i.e. y can be thought of as a function of x .
If X = Rn, then y is an infinite dimensional process.
Thankfully, to understand the law of y we only need consider the finite
dimensional distributions (FDDs), i.e., for all x1, . . . , xn and for all n ∈ N

P(y(x1) ≤ c1, . . . , y(xn) ≤ cn)

as these uniquely determine the law of y .
A Gaussian process is a stochastic process with Gaussian FDDs, i.e.,

(y(x1), . . . , y(xn)) ∼ Nn(µ,Σ)

We write y(·) ∼ GP to denote that the function y is a GP.

Mean and covariance function

To fully specify the law of a Gaussian distribution we only need the mean
and variance.

X ∼ N(µ,Σ)

To fully specify the law of a Gaussian process, we need to specify mean
and covariance functions.

y(·) ∼ GP(m(·), k(·, ·))

where

E(y(x)) = m(x)

Cov(y(x), y(x ′)) = k(x , x ′)

Mean and covariance function

To fully specify the law of a Gaussian distribution we only need the mean
and variance.

X ∼ N(µ,Σ)

To fully specify the law of a Gaussian process, we need to specify mean
and covariance functions.

y(·) ∼ GP(m(·), k(·, ·))

where

E(y(x)) = m(x)

Cov(y(x), y(x ′)) = k(x , x ′)

Mean and covariance function

To fully specify the law of a Gaussian distribution we only need the mean
and variance.

X ∼ N(µ,Σ)

To fully specify the law of a Gaussian process, we need to specify mean
and covariance functions.

y(·) ∼ GP(m(·), k(·, ·))

where

E(y(x)) = m(x)

Cov(y(x), y(x ′)) = k(x , x ′)

Mean and covariance function

To fully specify the law of a Gaussian distribution we only need the mean
and variance.

X ∼ N(µ,Σ)

To fully specify the law of a Gaussian process, we need to specify mean
and covariance functions.

y(·) ∼ GP(m(·), k(·, ·))

where

E(y(x)) = m(x)

Cov(y(x), y(x ′)) = k(x , x ′)

Specifying the mean function

We are free to choose the mean E(y(x)) and covariance Cov(y(x), y(x ′))
functions however we like (e.g. trial and error), subject to some ‘rules’:

We can use any mean function we want:

m(x) = E(y(x))

Most popular choices are m(x) = 0 or m(x) = const for all x , or
m(x) = β>x

Specifying the mean function

We are free to choose the mean E(y(x)) and covariance Cov(y(x), y(x ′))
functions however we like (e.g. trial and error), subject to some ‘rules’:

We can use any mean function we want:

m(x) = E(y(x))

Most popular choices are m(x) = 0 or m(x) = const for all x , or
m(x) = β>x

Covariance functions
We usually use a covariance function that is a function of the
indexes/locations

k(x , x ′) = Cov(y(x), y(x ′)),

k must be a positive semi-definite function, i.e., lead to valid covariance
matrices:

Given locations x1, . . . , xn, the n × n Gram matrix K with
Kij = k(xi , xj) must be a positive semi-definite matrix.

This can be problematic (see Nicolas’ talk)

We often assume k is a function of only the distance between locations

Cov(y(x), y(x ′)) = k(x − x ′)

which results in a stationary processes.

If Cov(y(x), y(x ′)) = k(||x − x ′||) the covariance function is said to be
isotropic.

The covariance function determines the nature of the GP.

k determines the hypothesis space/space of functions

Covariance functions
We usually use a covariance function that is a function of the
indexes/locations

k(x , x ′) = Cov(y(x), y(x ′)),

k must be a positive semi-definite function, i.e., lead to valid covariance
matrices:

Given locations x1, . . . , xn, the n × n Gram matrix K with
Kij = k(xi , xj) must be a positive semi-definite matrix.

This can be problematic (see Nicolas’ talk)

We often assume k is a function of only the distance between locations

Cov(y(x), y(x ′)) = k(x − x ′)

which results in a stationary processes.

If Cov(y(x), y(x ′)) = k(||x − x ′||) the covariance function is said to be
isotropic.

The covariance function determines the nature of the GP.

k determines the hypothesis space/space of functions

Covariance functions
We usually use a covariance function that is a function of the
indexes/locations

k(x , x ′) = Cov(y(x), y(x ′)),

k must be a positive semi-definite function, i.e., lead to valid covariance
matrices:

Given locations x1, . . . , xn, the n × n Gram matrix K with
Kij = k(xi , xj) must be a positive semi-definite matrix.

This can be problematic (see Nicolas’ talk)

We often assume k is a function of only the distance between locations

Cov(y(x), y(x ′)) = k(x − x ′)

which results in a stationary processes.

If Cov(y(x), y(x ′)) = k(||x − x ′||) the covariance function is said to be
isotropic.

The covariance function determines the nature of the GP.

k determines the hypothesis space/space of functions

Covariance functions
We usually use a covariance function that is a function of the
indexes/locations

k(x , x ′) = Cov(y(x), y(x ′)),

k must be a positive semi-definite function, i.e., lead to valid covariance
matrices:

Given locations x1, . . . , xn, the n × n Gram matrix K with
Kij = k(xi , xj) must be a positive semi-definite matrix.

This can be problematic (see Nicolas’ talk)

We often assume k is a function of only the distance between locations

Cov(y(x), y(x ′)) = k(x − x ′)

which results in a stationary processes.

If Cov(y(x), y(x ′)) = k(||x − x ′||) the covariance function is said to be
isotropic.

The covariance function determines the nature of the GP.

k determines the hypothesis space/space of functions

Covariance functions
We usually use a covariance function that is a function of the
indexes/locations

k(x , x ′) = Cov(y(x), y(x ′)),

k must be a positive semi-definite function, i.e., lead to valid covariance
matrices:

Given locations x1, . . . , xn, the n × n Gram matrix K with
Kij = k(xi , xj) must be a positive semi-definite matrix.

This can be problematic (see Nicolas’ talk)

We often assume k is a function of only the distance between locations

Cov(y(x), y(x ′)) = k(x − x ′)

which results in a stationary processes.

If Cov(y(x), y(x ′)) = k(||x − x ′||) the covariance function is said to be
isotropic.

The covariance function determines the nature of the GP.

k determines the hypothesis space/space of functions

Examples
RBF/Squared-exponential/exponentiated quadratic

k(x , x ′) = exp

(
−1

2
(x − x ′)2

)

Examples
RBF/Squared-exponential/exponentiated quadratic

k(x , x ′) = exp

(
−1

2

(x − x ′)2

0.252

)

Examples
RBF/Squared-exponential/exponentiated quadratic

k(x , x ′) = exp

(
−1

2

(x − x ′)2

42

)

Examples
RBF/Squared-exponential/exponentiated quadratic

k(x , x ′) = 100 exp

(
−1

2
(x − x ′)2

)

Examples

Matern 3/2
k(x , x ′) ∼ (1 + |x − x ′|) exp

(
−|x − x ′|

)

Examples

Brownian motion
k(x , x ′) = min(x , x ′)

Examples

White noise

k(x , x ′) =

{
1 if x = x ′

0 otherwise

Examples
The GP inherits its properties primarily from the covariance function k .

Smoothness

Differentiability

Variance

A final example
k(x , x ′) = x>x ′

What is happening?
Suppose y(x) = cx where
c ∼ N(0, 1).
Then
Cov(y(x), y(x ′)) = Cov(cx , cx ′)

= x>Cov(c, c)x ′

= x>x ′

So y(·) ∼ GP(0, k(x , x ′)) with
k(x , x ′) = x>x ′

Examples
The GP inherits its properties primarily from the covariance function k .

Smoothness

Differentiability

Variance

A final example
k(x , x ′) = x>x ′

What is happening?

Suppose y(x) = cx where
c ∼ N(0, 1).
Then
Cov(y(x), y(x ′)) = Cov(cx , cx ′)

= x>Cov(c, c)x ′

= x>x ′

So y(·) ∼ GP(0, k(x , x ′)) with
k(x , x ′) = x>x ′

Examples
The GP inherits its properties primarily from the covariance function k .

Smoothness

Differentiability

Variance

A final example
k(x , x ′) = x>x ′

What is happening?
Suppose y(x) = cx where
c ∼ N(0, 1).

Then
Cov(y(x), y(x ′)) = Cov(cx , cx ′)

= x>Cov(c, c)x ′

= x>x ′

So y(·) ∼ GP(0, k(x , x ′)) with
k(x , x ′) = x>x ′

Examples
The GP inherits its properties primarily from the covariance function k .

Smoothness

Differentiability

Variance

A final example
k(x , x ′) = x>x ′

What is happening?
Suppose y(x) = cx where
c ∼ N(0, 1).
Then
Cov(y(x), y(x ′)) = Cov(cx , cx ′)

= x>Cov(c, c)x ′

= x>x ′

So y(·) ∼ GP(0, k(x , x ′)) with
k(x , x ′) = x>x ′

Examples
The GP inherits its properties primarily from the covariance function k .

Smoothness

Differentiability

Variance

A final example
k(x , x ′) = x>x ′

What is happening?
Suppose y(x) = cx where
c ∼ N(0, 1).
Then
Cov(y(x), y(x ′)) = Cov(cx , cx ′)

= x>Cov(c, c)x ′

= x>x ′

So y(·) ∼ GP(0, k(x , x ′)) with
k(x , x ′) = x>x ′

Why use Gaussian processes?
Why would we want to use this very restricted class of model?

Gaussian distributions have several properties that make them easy to
work with:

Proposition:

Y ∼ Nd(µ,Σ) if and only if AY ∼ Np(Aµ,AΣA>)

for all A ∈ Rp×d .
So sums of Gaussians are Gaussian, and marginal distributions of
multivariate Gaussians are still Gaussian.

Corollary: Σ must be positive semi-definite as a>Σa ≥ 0 for all a ∈ Rd .

Conversely, any matrix Σ which is positive semi-definite is a valid
covariance matrix:

If Z ∼ Nd(0d , Id) then Y = µ+ Σ
1
2Z ∼ Nd(µ,Σ).

Where Σ
1
2 is a matrix square root of Σ.

Gives one way of generating multivariate Gaussians.

Why use Gaussian processes?
Why would we want to use this very restricted class of model?

Gaussian distributions have several properties that make them easy to
work with:

Proposition:

Y ∼ Nd(µ,Σ) if and only if AY ∼ Np(Aµ,AΣA>)

for all A ∈ Rp×d .

So sums of Gaussians are Gaussian, and marginal distributions of
multivariate Gaussians are still Gaussian.

Corollary: Σ must be positive semi-definite as a>Σa ≥ 0 for all a ∈ Rd .

Conversely, any matrix Σ which is positive semi-definite is a valid
covariance matrix:

If Z ∼ Nd(0d , Id) then Y = µ+ Σ
1
2Z ∼ Nd(µ,Σ).

Where Σ
1
2 is a matrix square root of Σ.

Gives one way of generating multivariate Gaussians.

Why use Gaussian processes?
Why would we want to use this very restricted class of model?

Gaussian distributions have several properties that make them easy to
work with:

Proposition:

Y ∼ Nd(µ,Σ) if and only if AY ∼ Np(Aµ,AΣA>)

for all A ∈ Rp×d .
So sums of Gaussians are Gaussian, and marginal distributions of
multivariate Gaussians are still Gaussian.

Corollary: Σ must be positive semi-definite as a>Σa ≥ 0 for all a ∈ Rd .

Conversely, any matrix Σ which is positive semi-definite is a valid
covariance matrix:

If Z ∼ Nd(0d , Id) then Y = µ+ Σ
1
2Z ∼ Nd(µ,Σ).

Where Σ
1
2 is a matrix square root of Σ.

Gives one way of generating multivariate Gaussians.

Why use Gaussian processes?
Why would we want to use this very restricted class of model?

Gaussian distributions have several properties that make them easy to
work with:

Proposition:

Y ∼ Nd(µ,Σ) if and only if AY ∼ Np(Aµ,AΣA>)

for all A ∈ Rp×d .
So sums of Gaussians are Gaussian, and marginal distributions of
multivariate Gaussians are still Gaussian.

Corollary: Σ must be positive semi-definite as a>Σa ≥ 0 for all a ∈ Rd .

Conversely, any matrix Σ which is positive semi-definite is a valid
covariance matrix:

If Z ∼ Nd(0d , Id) then Y = µ+ Σ
1
2Z ∼ Nd(µ,Σ).

Where Σ
1
2 is a matrix square root of Σ.

Gives one way of generating multivariate Gaussians.

Why use Gaussian processes?
Why would we want to use this very restricted class of model?

Gaussian distributions have several properties that make them easy to
work with:

Proposition:

Y ∼ Nd(µ,Σ) if and only if AY ∼ Np(Aµ,AΣA>)

for all A ∈ Rp×d .
So sums of Gaussians are Gaussian, and marginal distributions of
multivariate Gaussians are still Gaussian.

Corollary: Σ must be positive semi-definite as a>Σa ≥ 0 for all a ∈ Rd .

Conversely, any matrix Σ which is positive semi-definite is a valid
covariance matrix:

If Z ∼ Nd(0d , Id) then Y = µ+ Σ
1
2Z ∼ Nd(µ,Σ).

Where Σ
1
2 is a matrix square root of Σ.

Gives one way of generating multivariate Gaussians.

Why use Gaussian processes?
Why would we want to use this very restricted class of model?

Gaussian distributions have several properties that make them easy to
work with:

Proposition:

Y ∼ Nd(µ,Σ) if and only if AY ∼ Np(Aµ,AΣA>)

for all A ∈ Rp×d .
So sums of Gaussians are Gaussian, and marginal distributions of
multivariate Gaussians are still Gaussian.

Corollary: Σ must be positive semi-definite as a>Σa ≥ 0 for all a ∈ Rd .

Conversely, any matrix Σ which is positive semi-definite is a valid
covariance matrix:

If Z ∼ Nd(0d , Id) then Y = µ+ Σ
1
2Z ∼ Nd(µ,Σ).

Where Σ
1
2 is a matrix square root of Σ.

Gives one way of generating multivariate Gaussians.

Property 2: Conditional distributions are still Gaussian

Suppose

Y =

(
Y1

Y2

)
∼ N (µ,Σ)

where

µ =

(
µ1

µ2

)
Σ =

(
Σ11 Σ12

Σ21 Σ22

)

Then

Y2 | Y1 = y1 ∼ N
(
µ2 + Σ21Σ−1

11 (y1 − µ1),Σ22 − Σ21Σ−1
11 Σ12

)

Property 2: Conditional distributions are still Gaussian

Suppose

Y =

(
Y1

Y2

)
∼ N (µ,Σ)

where

µ =

(
µ1

µ2

)
Σ =

(
Σ11 Σ12

Σ21 Σ22

)
Then

Y2 | Y1 = y1 ∼ N
(
µ2 + Σ21Σ−1

11 (y1 − µ1),Σ22 − Σ21Σ−1
11 Σ12

)

Property 2: Conditional distributions are still Gaussian

Suppose

Y =

(
Y1

Y2

)
∼ N (µ,Σ)

where

µ =

(
µ1

µ2

)
Σ =

(
Σ11 Σ12

Σ21 Σ22

)
Then

Y2 | Y1 = y1 ∼ N
(
µ2 + Σ21Σ−1

11 (y1 − µ1),Σ22 − Σ21Σ−1
11 Σ12

)

Proof:

π(y2|y1) =
π(y1, y2)

π(y1)
∝ π(y1, y2)

∝ exp

(
−1

2
(y − µ)>Σ−1(y − µ)

)
= exp(−1

2

[((
y1

y2

)
−
(
µ1

µ2

))>(
Q11 Q12

Q21 Q22

)
· · ·

]

∝ exp

(
−1

2

[
(y2 − µ2)>Q22(y2 − µ2) + 2(y2 − µ2)>Q21(y1 − µ1)

])
where

Σ−1 := Q :=

(
Q11 Q12

Q21 Q22

)
So Y2|Y1 = y1 is Gaussian.

Proof:

π(y2|y1) =
π(y1, y2)

π(y1)
∝ π(y1, y2)

∝ exp

(
−1

2
(y − µ)>Σ−1(y − µ)

)
= exp(−1

2

[((
y1

y2

)
−
(
µ1

µ2

))>(
Q11 Q12

Q21 Q22

)
· · ·

]

∝ exp

(
−1

2

[
(y2 − µ2)>Q22(y2 − µ2) + 2(y2 − µ2)>Q21(y1 − µ1)

])

where

Σ−1 := Q :=

(
Q11 Q12

Q21 Q22

)

So Y2|Y1 = y1 is Gaussian.

Proof:

π(y2|y1) =
π(y1, y2)

π(y1)
∝ π(y1, y2)

∝ exp

(
−1

2
(y − µ)>Σ−1(y − µ)

)
= exp(−1

2

[((
y1

y2

)
−
(
µ1

µ2

))>(
Q11 Q12

Q21 Q22

)
· · ·

]

∝ exp

(
−1

2

[
(y2 − µ2)>Q22(y2 − µ2) + 2(y2 − µ2)>Q21(y1 − µ1)

])
where

Σ−1 := Q :=

(
Q11 Q12

Q21 Q22

)

So Y2|Y1 = y1 is Gaussian.

Proof:

π(y2|y1) =
π(y1, y2)

π(y1)
∝ π(y1, y2)

∝ exp

(
−1

2
(y − µ)>Σ−1(y − µ)

)
= exp(−1

2

[((
y1

y2

)
−
(
µ1

µ2

))>(
Q11 Q12

Q21 Q22

)
· · ·

]

∝ exp

(
−1

2

[
(y2 − µ2)>Q22(y2 − µ2) + 2(y2 − µ2)>Q21(y1 − µ1)

])
where

Σ−1 := Q :=

(
Q11 Q12

Q21 Q22

)
So Y2|Y1 = y1 is Gaussian.

π(y2|y1) ∝ exp

(
−1

2

[
(y2 − µ2)>Q22(y2 − µ2) + 2(y2 − µ2)>Q21(y1 − µ1)

])

∝ exp

(
−1

2

[
y>2 Q22y2 − 2y>2 (Q22µ2 + Q21(y1 − µ1))

])
∝ exp

(
−1

2

(
y2 − Q−1

22 (Q22µ2 + Q21(y1 − µ1))
)>

Q22 (y2 − . . .)
)

So
Y2|Y1 = y1 ∼ N(µ2 + Q−1

22 Q21(y1 − µ1),Q22)

A simple matrix inversion lemma gives

Q−1
22 = Σ22 − Σ21Σ−1

11 Σ12

andQ−1
22 Q21 = Σ21Σ−1

11

giving

Y2|Y1 = y1 ∼ N
(
µ2 + Σ21Σ−1

11 (y1 − µ1),Σ22 − Σ21Σ−1
11 Σ12

)

π(y2|y1) ∝ exp

(
−1

2

[
(y2 − µ2)>Q22(y2 − µ2) + 2(y2 − µ2)>Q21(y1 − µ1)

])
∝ exp

(
−1

2

[
y>2 Q22y2 − 2y>2 (Q22µ2 + Q21(y1 − µ1))

])

∝ exp

(
−1

2

(
y2 − Q−1

22 (Q22µ2 + Q21(y1 − µ1))
)>

Q22 (y2 − . . .)
)

So
Y2|Y1 = y1 ∼ N(µ2 + Q−1

22 Q21(y1 − µ1),Q22)

A simple matrix inversion lemma gives

Q−1
22 = Σ22 − Σ21Σ−1

11 Σ12

andQ−1
22 Q21 = Σ21Σ−1

11

giving

Y2|Y1 = y1 ∼ N
(
µ2 + Σ21Σ−1

11 (y1 − µ1),Σ22 − Σ21Σ−1
11 Σ12

)

π(y2|y1) ∝ exp

(
−1

2

[
(y2 − µ2)>Q22(y2 − µ2) + 2(y2 − µ2)>Q21(y1 − µ1)

])
∝ exp

(
−1

2

[
y>2 Q22y2 − 2y>2 (Q22µ2 + Q21(y1 − µ1))

])
∝ exp

(
−1

2

(
y2 − Q−1

22 (Q22µ2 + Q21(y1 − µ1))
)>

Q22 (y2 − . . .)
)

So
Y2|Y1 = y1 ∼ N(µ2 + Q−1

22 Q21(y1 − µ1),Q22)

A simple matrix inversion lemma gives

Q−1
22 = Σ22 − Σ21Σ−1

11 Σ12

andQ−1
22 Q21 = Σ21Σ−1

11

giving

Y2|Y1 = y1 ∼ N
(
µ2 + Σ21Σ−1

11 (y1 − µ1),Σ22 − Σ21Σ−1
11 Σ12

)

π(y2|y1) ∝ exp

(
−1

2

[
(y2 − µ2)>Q22(y2 − µ2) + 2(y2 − µ2)>Q21(y1 − µ1)

])
∝ exp

(
−1

2

[
y>2 Q22y2 − 2y>2 (Q22µ2 + Q21(y1 − µ1))

])
∝ exp

(
−1

2

(
y2 − Q−1

22 (Q22µ2 + Q21(y1 − µ1))
)>

Q22 (y2 − . . .)
)

So
Y2|Y1 = y1 ∼ N(µ2 + Q−1

22 Q21(y1 − µ1),Q22)

A simple matrix inversion lemma gives

Q−1
22 = Σ22 − Σ21Σ−1

11 Σ12

andQ−1
22 Q21 = Σ21Σ−1

11

giving

Y2|Y1 = y1 ∼ N
(
µ2 + Σ21Σ−1

11 (y1 − µ1),Σ22 − Σ21Σ−1
11 Σ12

)

π(y2|y1) ∝ exp

(
−1

2

[
(y2 − µ2)>Q22(y2 − µ2) + 2(y2 − µ2)>Q21(y1 − µ1)

])
∝ exp

(
−1

2

[
y>2 Q22y2 − 2y>2 (Q22µ2 + Q21(y1 − µ1))

])
∝ exp

(
−1

2

(
y2 − Q−1

22 (Q22µ2 + Q21(y1 − µ1))
)>

Q22 (y2 − . . .)
)

So
Y2|Y1 = y1 ∼ N(µ2 + Q−1

22 Q21(y1 − µ1),Q22)

A simple matrix inversion lemma gives

Q−1
22 = Σ22 − Σ21Σ−1

11 Σ12

andQ−1
22 Q21 = Σ21Σ−1

11

giving

Y2|Y1 = y1 ∼ N
(
µ2 + Σ21Σ−1

11 (y1 − µ1),Σ22 − Σ21Σ−1
11 Σ12

)

π(y2|y1) ∝ exp

(
−1

2

[
(y2 − µ2)>Q22(y2 − µ2) + 2(y2 − µ2)>Q21(y1 − µ1)

])
∝ exp

(
−1

2

[
y>2 Q22y2 − 2y>2 (Q22µ2 + Q21(y1 − µ1))

])
∝ exp

(
−1

2

(
y2 − Q−1

22 (Q22µ2 + Q21(y1 − µ1))
)>

Q22 (y2 − . . .)
)

So
Y2|Y1 = y1 ∼ N(µ2 + Q−1

22 Q21(y1 − µ1),Q22)

A simple matrix inversion lemma gives

Q−1
22 = Σ22 − Σ21Σ−1

11 Σ12

andQ−1
22 Q21 = Σ21Σ−1

11

giving

Y2|Y1 = y1 ∼ N
(
µ2 + Σ21Σ−1

11 (y1 − µ1),Σ22 − Σ21Σ−1
11 Σ12

)

Conditional updates of Gaussian processes
So suppose f is a Gaussian process, then

f (x1), . . . , f (xn), f (x) ∼ N(µ,Σ)

If we observe its value at x1, . . . , xn then

f (x)|f (x1), . . . , f (xn) ∼ N(µ∗, σ∗)

where µ∗ and σ∗ are as on the previous slide.

Note that we still believe f is a GP even though we’ve observed its value
at a number of locations.

Conditional updates of Gaussian processes
So suppose f is a Gaussian process, then

f (x1), . . . , f (xn), f (x) ∼ N(µ,Σ)

If we observe its value at x1, . . . , xn then

f (x)|f (x1), . . . , f (xn) ∼ N(µ∗, σ∗)

where µ∗ and σ∗ are as on the previous slide.

Note that we still believe f is a GP even though we’ve observed its value
at a number of locations.

Conditional updates of Gaussian processes
So suppose f is a Gaussian process, then

f (x1), . . . , f (xn), f (x) ∼ N(µ,Σ)

If we observe its value at x1, . . . , xn then

f (x)|f (x1), . . . , f (xn) ∼ N(µ∗, σ∗)

where µ∗ and σ∗ are as on the previous slide.

Note that we still believe f is a GP even though we’ve observed its value
at a number of locations.

Why use GPs? Answer 1
The GP class of models is closed under various operations.

Closed under addition

f1(·), f2(·) ∼ GP then (f1 + f2)(·) ∼ GP

Closed under Bayesian conditioning, i.e., if we observe

D = (f (x1), . . . , f (xn))

then
f |D ∼ GP

but with updated mean and covariance functions.

Closed under any linear operator. If f ∼ GP(m(·), k(·, ·)), then if L
is a linear operator

L ◦ f ∼ GP(L ◦m,L2 ◦ k)

e.g. df
dx ,
∫
f (x)dx , Af are all GPs

Why use GPs? Answer 1
The GP class of models is closed under various operations.

Closed under addition

f1(·), f2(·) ∼ GP then (f1 + f2)(·) ∼ GP

Closed under Bayesian conditioning, i.e., if we observe

D = (f (x1), . . . , f (xn))

then
f |D ∼ GP

but with updated mean and covariance functions.

Closed under any linear operator. If f ∼ GP(m(·), k(·, ·)), then if L
is a linear operator

L ◦ f ∼ GP(L ◦m,L2 ◦ k)

e.g. df
dx ,
∫
f (x)dx , Af are all GPs

Why use GPs? Answer 1
The GP class of models is closed under various operations.

Closed under addition

f1(·), f2(·) ∼ GP then (f1 + f2)(·) ∼ GP

Closed under Bayesian conditioning, i.e., if we observe

D = (f (x1), . . . , f (xn))

then
f |D ∼ GP

but with updated mean and covariance functions.

Closed under any linear operator. If f ∼ GP(m(·), k(·, ·)), then if L
is a linear operator

L ◦ f ∼ GP(L ◦m,L2 ◦ k)

e.g. df
dx ,
∫
f (x)dx , Af are all GPs

Why use GPs? Answer 1
The GP class of models is closed under various operations.

Closed under addition

f1(·), f2(·) ∼ GP then (f1 + f2)(·) ∼ GP

Closed under Bayesian conditioning, i.e., if we observe

D = (f (x1), . . . , f (xn))

then
f |D ∼ GP

but with updated mean and covariance functions.

Closed under any linear operator. If f ∼ GP(m(·), k(·, ·)), then if L
is a linear operator

L ◦ f ∼ GP(L ◦m,L2 ◦ k)

e.g. df
dx ,
∫
f (x)dx , Af are all GPs

Conditional updates of Gaussian processes - revisited
Suppose f is a Gaussian process, then

f (x1), . . . , f (xn), f (x) ∼ N(0,Σ)

where

Σ =

k(x1, x1 . . . k(x1, xn) k(x1, x)

...
...

...
k(xn, x1) . . . k(xn, xn) k(xn, x)

k(x , x1) . . . k(x , xn) k(x , x)

=

 KXX kX (x)

kX (x)> k(x , x)

where X = {x1, . . . , xn}, [KXX]ij = k(xi , xj) is the Gram/kernel matrix,
and [kX (x)]j = k(xj , x)

Conditional updates of Gaussian processes - revisited
Suppose f is a Gaussian process, then

f (x1), . . . , f (xn), f (x) ∼ N(0,Σ)

where

Σ =

k(x1, x1 . . . k(x1, xn) k(x1, x)

...
...

...
k(xn, x1) . . . k(xn, xn) k(xn, x)

k(x , x1) . . . k(x , xn) k(x , x)

=

 KXX kX (x)

kX (x)> k(x , x)

where X = {x1, . . . , xn}, [KXX]ij = k(xi , xj) is the Gram/kernel matrix,
and [kX (x)]j = k(xj , x)

Conditional updates of Gaussian processes - revisited
Then

f (x)|f (x1), . . . , f (xn) ∼ N(m̄(x), k̄(x))

where
m̄(x) = kX (x)>K−1

XX f

with

f = (f (x1), . . . , f (xn))>

kX (x)> = (k(x , x1) k(x , x2) . . . k(x , xn)) ∈ R1×n

and

k̄(x) = k(x , x)− kX (x)>K−1
XXkX (x)

Cf

Y2|Y1 = x1 ∼ N
(
µ2 + Σ21Σ−1

11 (x1 − µ1),Σ22 − Σ21Σ−1
11 Σ12

)

Conditional updates of Gaussian processes - revisited
Then

f (x)|f (x1), . . . , f (xn) ∼ N(m̄(x), k̄(x))

where
m̄(x) = kX (x)>K−1

XX f

with

f = (f (x1), . . . , f (xn))>

kX (x)> = (k(x , x1) k(x , x2) . . . k(x , xn)) ∈ R1×n

and

k̄(x) = k(x , x)− kX (x)>K−1
XXkX (x)

Cf

Y2|Y1 = x1 ∼ N
(
µ2 + Σ21Σ−1

11 (x1 − µ1),Σ22 − Σ21Σ−1
11 Σ12

)

Conditional updates of Gaussian processes - revisited
Then

f (x)|f (x1), . . . , f (xn) ∼ N(m̄(x), k̄(x))

where
m̄(x) = kX (x)>K−1

XX f

with

f = (f (x1), . . . , f (xn))>

kX (x)> = (k(x , x1) k(x , x2) . . . k(x , xn)) ∈ R1×n

and

k̄(x) = k(x , x)− kX (x)>K−1
XXkX (x)

Cf

Y2|Y1 = x1 ∼ N
(
µ2 + Σ21Σ−1

11 (x1 − µ1),Σ22 − Σ21Σ−1
11 Σ12

)

More generally, if
f (·) ∼ GP(m(·), k(·, ·))

then
f (·)|f (x1), . . . , f (xn) ∼ GP(m̄(·), k̄(·, ·))

with

m̄(x) = m(x) + kX (x)>K−1
XX f

k̄(x , x ′) = k(x , x ′)− kX (x)>K−1
XXkX (x ′)

No noise/nugget - Interpolation

Solid line m̄(x) = kX (x)K−1
XX f

Shaded region m̄(x)± 1.96k̄(x)

k̄(x) = k(x , x)− kX (x)>K−1
XXkX (x)

Noisy observations/with nugget - Regression
In practice, we don’t usually observe f (x) directly. If we observe

yi = f (xi) + N(0, σ2)

then y1, . . . , yn, f (x) ∼ N(0,Σ)

where Σ =

k(x1, x)

KXX + σ2I k(x2, x)
...

k(xn, x)

k(x , x1) k(x , x2) . . . k(x , xn) k(x , x)

Then

f (x) | y1, . . . , yn ∼ N(m̄(x), k̄(x))

where

m̄(x) = kX (x)>(KXX + σ2I)−1y k̄(x) = k(x , x)−kX (x)>(KXX + σ2I)−1kX (x)

Noisy observations/with nugget - Regression
In practice, we don’t usually observe f (x) directly. If we observe

yi = f (xi) + N(0, σ2)

then y1, . . . , yn, f (x) ∼ N(0,Σ)

where Σ =

k(x1, x)

KXX + σ2I k(x2, x)
...

k(xn, x)

k(x , x1) k(x , x2) . . . k(x , xn) k(x , x)

Then
f (x) | y1, . . . , yn ∼ N(m̄(x), k̄(x))

where

m̄(x) = kX (x)>(KXX + σ2I)−1y k̄(x) = k(x , x)−kX (x)>(KXX + σ2I)−1kX (x)

Noisy observations/with nugget - Regression
In practice, we don’t usually observe f (x) directly. If we observe

yi = f (xi) + N(0, σ2)

then y1, . . . , yn, f (x) ∼ N(0,Σ)

where Σ =

k(x1, x)

KXX + σ2I k(x2, x)
...

k(xn, x)

k(x , x1) k(x , x2) . . . k(x , xn) k(x , x)

Then

f (x) | y1, . . . , yn ∼ N(m̄(x), k̄(x))

where

m̄(x) = kX (x)>(KXX + σ2I)−1y k̄(x) = k(x , x)−kX (x)>(KXX + σ2I)−1kX (x)

Nugget standard deviation σ = 0.1

Solid line m̄(x) = kX (x)>K−1
XXy

Shaded region m̄(x)± 1.96k̄(x)

k̄(x) = k(x , x)− kX (x)>(K−1
XX + σ2I)kX (x)

Nugget standard deviation σ = 0.025

Solid line m̄(x) = kX (x)>K−1
XXy

Shaded region m̄(x)± 1.96k̄(x)

k̄(x) = k(x , x)− kX (x)>(K−1
XX + σ2I)kX (x)

If mean is a linear combination of known regressor functions,

m(x) = β>h(x) for known h(x)

and β) is given a normal prior distribution (including π(β) ∝ 1), then
y(·) | D, β ∼ GP and

y(·) | D ∼ GP

with slightly modified mean and variance formulas.

If
k(x , x ′) = σ2c(x , x ′)

and we give σ2 an inverse gamma prior (including π(σ2) ∝ 1/σ2)
then y |D, σ2 ∼ GP and

y |D ∼ t-process

with n − p degrees of freedom. In practice, for reasonable n, this is
indistinguishable from a GP.

If mean is a linear combination of known regressor functions,

m(x) = β>h(x) for known h(x)

and β) is given a normal prior distribution (including π(β) ∝ 1), then
y(·) | D, β ∼ GP and

y(·) | D ∼ GP

with slightly modified mean and variance formulas.

If
k(x , x ′) = σ2c(x , x ′)

and we give σ2 an inverse gamma prior (including π(σ2) ∝ 1/σ2)
then y |D, σ2 ∼ GP and

y |D ∼ t-process

with n − p degrees of freedom. In practice, for reasonable n, this is
indistinguishable from a GP.

Why use GPs? Answer 2: non-parametric/kernel regression
We can also view GPs as a non-parametric extension to linear regression.

k determines the space of functions that sample paths live in.

Suppose we’re given data {(xi , yi)ni=1} with xi ∈ Rn, yi ∈ R

β̂ = arg min
β
||y − Xβ||22 + σ2||β||22 regularised least squares1

= (X>X + σ2I)−1X>y usual least squares estimator

= X>(XX> + σ2I)−1y the dual form

as (X>X + σ2I)X> = X>(XX> + σ2I)

so X>(XX> + σ2I)−1 = (X>X + σ2I)−1X>

where X =

x>1
x>2
...
x>n

1

Tikhonov regularisation/the Bayesian MAP estimator with a normal prior on β

1

Tikhonov regularisation/the Bayesian MAP estimator with a normal prior on β

Why use GPs? Answer 2: non-parametric/kernel regression
We can also view GPs as a non-parametric extension to linear regression.

k determines the space of functions that sample paths live in.

Suppose we’re given data {(xi , yi)ni=1} with xi ∈ Rn, yi ∈ R

β̂ = arg min
β
||y − Xβ||22 + σ2||β||22 regularised least squares1

= (X>X + σ2I)−1X>y usual least squares estimator

= X>(XX> + σ2I)−1y the dual form

as (X>X + σ2I)X> = X>(XX> + σ2I)

so X>(XX> + σ2I)−1 = (X>X + σ2I)−1X>

where X =

x>1
x>2
...
x>n

1

Tikhonov regularisation/the Bayesian MAP estimator with a normal prior on β

1

Tikhonov regularisation/the Bayesian MAP estimator with a normal prior on β

Why use GPs? Answer 2: non-parametric/kernel regression
We can also view GPs as a non-parametric extension to linear regression.

k determines the space of functions that sample paths live in.

Suppose we’re given data {(xi , yi)ni=1} with xi ∈ Rn, yi ∈ R

β̂ = arg min
β
||y − Xβ||22 + σ2||β||22 regularised least squares1

= (X>X + σ2I)−1X>y usual least squares estimator

= X>(XX> + σ2I)−1y the dual form

as (X>X + σ2I)X> = X>(XX> + σ2I)

so X>(XX> + σ2I)−1 = (X>X + σ2I)−1X>

where X =

x>1
x>2
...
x>n

1Tikhonov regularisation/the Bayesian MAP estimator with a normal prior on β
1Tikhonov regularisation/the Bayesian MAP estimator with a normal prior on β

Why use GPs? Answer 2: non-parametric/kernel regression
We can also view GPs as a non-parametric extension to linear regression.

k determines the space of functions that sample paths live in.

Suppose we’re given data {(xi , yi)ni=1} with xi ∈ Rn, yi ∈ R

β̂ = arg min
β
||y − Xβ||22 + σ2||β||22 regularised least squares1

= (X>X + σ2I)−1X>y usual least squares estimator

= X>(XX> + σ2I)−1y the dual form

as (X>X + σ2I)X> = X>(XX> + σ2I)

so X>(XX> + σ2I)−1 = (X>X + σ2I)−1X>

where X =

x>1
x>2
...
x>n

1Tikhonov regularisation/the Bayesian MAP estimator with a normal prior on β
1Tikhonov regularisation/the Bayesian MAP estimator with a normal prior on β

Why use GPs? Answer 2: non-parametric/kernel regression
We can also view GPs as a non-parametric extension to linear regression.

k determines the space of functions that sample paths live in.

Suppose we’re given data {(xi , yi)ni=1} with xi ∈ Rn, yi ∈ R

β̂ = arg min
β
||y − Xβ||22 + σ2||β||22 regularised least squares1

= (X>X + σ2I)−1X>y usual least squares estimator

= X>(XX> + σ2I)−1y the dual form

as (X>X + σ2I)X> = X>(XX> + σ2I)

so X>(XX> + σ2I)−1 = (X>X + σ2I)−1X>

where X =

x>1
x>2
...
x>n

1Tikhonov regularisation/the Bayesian MAP estimator with a normal prior on β
1Tikhonov regularisation/the Bayesian MAP estimator with a normal prior on β

Why use GPs? Answer 2: non-parametric/kernel regression
We can also view GPs as a non-parametric extension to linear regression.

k determines the space of functions that sample paths live in.

Suppose we’re given data {(xi , yi)ni=1} with xi ∈ Rn, yi ∈ R

β̂ = arg min
β
||y − Xβ||22 + σ2||β||22 regularised least squares1

= (X>X + σ2I)−1X>y usual least squares estimator

= X>(XX> + σ2I)−1y the dual form

as (X>X + σ2I)X> = X>(XX> + σ2I)

so X>(XX> + σ2I)−1 = (X>X + σ2I)−1X>

where X =

x>1
x>2
...
x>n

1Tikhonov regularisation/the Bayesian MAP estimator with a normal prior on β
1Tikhonov regularisation/the Bayesian MAP estimator with a normal prior on β

At first the dual form

β̂ = X>(XX> + σ2I)−1y

looks harder to compute than the usual

β̂ = (X>X + σ2I)−1X>y

X>X is p × p p = number of features/parameters

XX> is n × n n is the number of data points

But the dual form only uses inner products between vectors in Rn

XX> =

 x>1
...
x>n

 (x1 . . . xn) =

 x>1 x1 . . . x>1 xn
...

x>n x1 . . . x>n xn

=KXX if k(x , x ′) = x>x ′

— This is useful!

At first the dual form

β̂ = X>(XX> + σ2I)−1y

looks harder to compute than the usual

β̂ = (X>X + σ2I)−1X>y

X>X is p × p p = number of features/parameters

XX> is n × n n is the number of data points

But the dual form only uses inner products between vectors in Rn

XX> =

 x>1
...
x>n

 (x1 . . . xn) =

 x>1 x1 . . . x>1 xn
...

x>n x1 . . . x>n xn

=KXX if k(x , x ′) = x>x ′

— This is useful!

Prediction

The best prediction of y at a new location x ′ is

ŷ ′ = x ′>β̂

= x ′>X>(XX> + σ2I)−1y

= kX (x ′)>(KXX + σ2I)−1y

where kX (x ′)> := (x ′>x1, . . . , x
′>xn) and [KXX]ij := x>i xj

KXX and kX (x) are kernel matrices:

every element is an inner product between 2 points: k(x , x ′) = x>x ′

Note this is exactly the GP conditional mean we derived before.

m(x) = kX (x)>(KXX + σ2I)−1y

linear regression and GP regression are equivalent when
k(x , x ′) = x>x ′.

Prediction

The best prediction of y at a new location x ′ is

ŷ ′ = x ′>β̂

= x ′>X>(XX> + σ2I)−1y

= kX (x ′)>(KXX + σ2I)−1y

where kX (x ′)> := (x ′>x1, . . . , x
′>xn) and [KXX]ij := x>i xj

KXX and kX (x) are kernel matrices:

every element is an inner product between 2 points: k(x , x ′) = x>x ′

Note this is exactly the GP conditional mean we derived before.

m(x) = kX (x)>(KXX + σ2I)−1y

linear regression and GP regression are equivalent when
k(x , x ′) = x>x ′.

Prediction

The best prediction of y at a new location x ′ is

ŷ ′ = x ′>β̂

= x ′>X>(XX> + σ2I)−1y

= kX (x ′)>(KXX + σ2I)−1y

where kX (x ′)> := (x ′>x1, . . . , x
′>xn) and [KXX]ij := x>i xj

KXX and kX (x) are kernel matrices:

every element is an inner product between 2 points: k(x , x ′) = x>x ′

Note this is exactly the GP conditional mean we derived before.

m(x) = kX (x)>(KXX + σ2I)−1y

linear regression and GP regression are equivalent when
k(x , x ′) = x>x ′.

Including features I

We can replace x by a feature vector in linear regression, e.g.,
φ(x) = (1 x x2)

It doesn’t change the expressions other than the inner product

k(x ′, x) = x ′>x

is replaced by
k(x ′, x) = φ(x ′)>φ(x)

Including features II
For some sets of features, φ(x), computation of the inner product doesn’t
require us to evaluate the individual features.

E.g., Consider X = R2 and let

φ : x = (x1, x2) 7→ (1,
√

2x1,
√

2x2, x
2
1 ,
√

2x1x2, x
2
2)>

i.e., linear regression using all the linear and quadratic terms, and first
order interactions.
Then

k(x, z′) = φ(x)>φ(z ′)

= (1,
√

2x1,
√

2x2, x
2
1 ,
√

2x1x2, x
2
2)(1,

√
2z1,
√

2z2, z
2
1 ,
√

2z1z2, z
2
2)>

= (1 + (x1, x2)(z1, z2)>)2

= (1 + x>z)2

To evaluate k(x, z′) we didn’t need to explicitly compute the feature
vector φ(x)

Including features II
For some sets of features, φ(x), computation of the inner product doesn’t
require us to evaluate the individual features.

E.g., Consider X = R2 and let

φ : x = (x1, x2) 7→ (1,
√

2x1,
√

2x2, x
2
1 ,
√

2x1x2, x
2
2)>

i.e., linear regression using all the linear and quadratic terms, and first
order interactions.

Then

k(x, z′) = φ(x)>φ(z ′)

= (1,
√

2x1,
√

2x2, x
2
1 ,
√

2x1x2, x
2
2)(1,

√
2z1,
√

2z2, z
2
1 ,
√

2z1z2, z
2
2)>

= (1 + (x1, x2)(z1, z2)>)2

= (1 + x>z)2

To evaluate k(x, z′) we didn’t need to explicitly compute the feature
vector φ(x)

Including features II
For some sets of features, φ(x), computation of the inner product doesn’t
require us to evaluate the individual features.

E.g., Consider X = R2 and let

φ : x = (x1, x2) 7→ (1,
√

2x1,
√

2x2, x
2
1 ,
√

2x1x2, x
2
2)>

i.e., linear regression using all the linear and quadratic terms, and first
order interactions.
Then

k(x, z′) = φ(x)>φ(z ′)

= (1,
√

2x1,
√

2x2, x
2
1 ,
√

2x1x2, x
2
2)(1,

√
2z1,
√

2z2, z
2
1 ,
√

2z1z2, z
2
2)>

= (1 + (x1, x2)(z1, z2)>)2

= (1 + x>z)2

To evaluate k(x, z′) we didn’t need to explicitly compute the feature
vector φ(x)

Including features II
For some sets of features, φ(x), computation of the inner product doesn’t
require us to evaluate the individual features.

E.g., Consider X = R2 and let

φ : x = (x1, x2) 7→ (1,
√

2x1,
√

2x2, x
2
1 ,
√

2x1x2, x
2
2)>

i.e., linear regression using all the linear and quadratic terms, and first
order interactions.
Then

k(x, z′) = φ(x)>φ(z ′)

= (1,
√

2x1,
√

2x2, x
2
1 ,
√

2x1x2, x
2
2)(1,

√
2z1,
√

2z2, z
2
1 ,
√

2z1z2, z
2
2)>

= (1 + (x1, x2)(z1, z2)>)2

= (1 + x>z)2

To evaluate k(x, z′) we didn’t need to explicitly compute the feature
vector φ(x)

Including features III

To evaluate k(x, z′) we didn’t need to explicitly compute the feature
vectors φ(x), φ(z) ∈ R6

The same idea works with much larger feature vectors, sometimes even
when φ(x) ∈ R∞

Theorem: A function
k : X × X → R

is positive semi-definite (and thus a valid covariance function) if and only
if we can write2

k(x , x ′) = φ(x)>φ(x ′)

for some (possibly infinite dimensional) feature vector φ(x).

So GP regression with k can be thought of as linear regression with φ(x).

2I’m being sloppy - really we should write this as an inner product
k(x , x ′) = 〈φ(x), φ(x ′)〉

Including features III

To evaluate k(x, z′) we didn’t need to explicitly compute the feature
vectors φ(x), φ(z) ∈ R6

The same idea works with much larger feature vectors, sometimes even
when φ(x) ∈ R∞
Theorem: A function

k : X × X → R

is positive semi-definite (and thus a valid covariance function) if and only
if we can write2

k(x , x ′) = φ(x)>φ(x ′)

for some (possibly infinite dimensional) feature vector φ(x).

So GP regression with k can be thought of as linear regression with φ(x).

2I’m being sloppy - really we should write this as an inner product
k(x , x ′) = 〈φ(x), φ(x ′)〉

Including features III

To evaluate k(x, z′) we didn’t need to explicitly compute the feature
vectors φ(x), φ(z) ∈ R6

The same idea works with much larger feature vectors, sometimes even
when φ(x) ∈ R∞
Theorem: A function

k : X × X → R

is positive semi-definite (and thus a valid covariance function) if and only
if we can write2

k(x , x ′) = φ(x)>φ(x ′)

for some (possibly infinite dimensional) feature vector φ(x).

So GP regression with k can be thought of as linear regression with φ(x).

2I’m being sloppy - really we should write this as an inner product
k(x , x ′) = 〈φ(x), φ(x ′)〉

Example: If X = [0, 1], c0 = 0, c1 = 1
N , c2 = 2

N , . . . , cN = 1 then
(modulo some detail) if

φ(x) ∝ (e−
(x−c0)2

2λ2 , . . . , e−
(x−cN)2

2λ2)

then as N →∞ then

φ(x)>φ(x) = exp

(
−(x − x ′)2

2λ2

)

We can use an infinite dimensional feature vector φ(x), and because linear
regression can be done solely in terms of inner-products (inverting a n× n
matrix in the dual form) we never need evaluate the feature vector, only
the kernel.

Example: If X = [0, 1], c0 = 0, c1 = 1
N , c2 = 2

N , . . . , cN = 1 then
(modulo some detail) if

φ(x) ∝ (e−
(x−c0)2

2λ2 , . . . , e−
(x−cN)2

2λ2)

then as N →∞ then

φ(x)>φ(x) = exp

(
−(x − x ′)2

2λ2

)

We can use an infinite dimensional feature vector φ(x), and because linear
regression can be done solely in terms of inner-products (inverting a n× n
matrix in the dual form) we never need evaluate the feature vector, only
the kernel.

Kernel trick:

lift x into feature space by replacing inner products x>x ′ by k(x , x ′)

Kernel regression
Kernel regression and GP regression are closely related.

Consider the space of functions

Hk = span{k(·, x) : x ∈ X}
ie functions of the form

∑n
i=1 αik(x , xi) with inner product

〈
∑

aik(·, xi),
∑

bik(·, yi)〉 =
∑
ij

aibjk(xi , yj)

This is the reproducing kernel Hilbert space (RKHS) associated with k.
Kernel ridge regression chooses f to minimise

L(f) =
∑
i

(f (xi)− yi)
2 + σ2||f ||2Hk

We can show that
m̄(x) = arg min

f ∈Hk

L(f)

where m̄(x) is the posterior mean if we assume yi = f (xi) + N(0, σ2) and
f (·) ∼ GP(0, k(·, ·))
Note that m̄(·) ∈ Hk (samples from a GP live in a slightly larger RKHS)

Kernel regression
Kernel regression and GP regression are closely related.

Consider the space of functions

Hk = span{k(·, x) : x ∈ X}
ie functions of the form

∑n
i=1 αik(x , xi) with inner product

〈
∑

aik(·, xi),
∑

bik(·, yi)〉 =
∑
ij

aibjk(xi , yj)

This is the reproducing kernel Hilbert space (RKHS) associated with k.
Kernel ridge regression chooses f to minimise

L(f) =
∑
i

(f (xi)− yi)
2 + σ2||f ||2Hk

We can show that
m̄(x) = arg min

f ∈Hk

L(f)

where m̄(x) is the posterior mean if we assume yi = f (xi) + N(0, σ2) and
f (·) ∼ GP(0, k(·, ·))
Note that m̄(·) ∈ Hk (samples from a GP live in a slightly larger RKHS)

Kernel regression
Kernel regression and GP regression are closely related.

Consider the space of functions

Hk = span{k(·, x) : x ∈ X}
ie functions of the form

∑n
i=1 αik(x , xi) with inner product

〈
∑

aik(·, xi),
∑

bik(·, yi)〉 =
∑
ij

aibjk(xi , yj)

This is the reproducing kernel Hilbert space (RKHS) associated with k.

Kernel ridge regression chooses f to minimise

L(f) =
∑
i

(f (xi)− yi)
2 + σ2||f ||2Hk

We can show that
m̄(x) = arg min

f ∈Hk

L(f)

where m̄(x) is the posterior mean if we assume yi = f (xi) + N(0, σ2) and
f (·) ∼ GP(0, k(·, ·))
Note that m̄(·) ∈ Hk (samples from a GP live in a slightly larger RKHS)

Kernel regression
Kernel regression and GP regression are closely related.

Consider the space of functions

Hk = span{k(·, x) : x ∈ X}
ie functions of the form

∑n
i=1 αik(x , xi) with inner product

〈
∑

aik(·, xi),
∑

bik(·, yi)〉 =
∑
ij

aibjk(xi , yj)

This is the reproducing kernel Hilbert space (RKHS) associated with k.
Kernel ridge regression chooses f to minimise

L(f) =
∑
i

(f (xi)− yi)
2 + σ2||f ||2Hk

We can show that
m̄(x) = arg min

f ∈Hk

L(f)

where m̄(x) is the posterior mean if we assume yi = f (xi) + N(0, σ2) and
f (·) ∼ GP(0, k(·, ·))
Note that m̄(·) ∈ Hk (samples from a GP live in a slightly larger RKHS)

Kernel regression
Kernel regression and GP regression are closely related.

Consider the space of functions

Hk = span{k(·, x) : x ∈ X}
ie functions of the form

∑n
i=1 αik(x , xi) with inner product

〈
∑

aik(·, xi),
∑

bik(·, yi)〉 =
∑
ij

aibjk(xi , yj)

This is the reproducing kernel Hilbert space (RKHS) associated with k.
Kernel ridge regression chooses f to minimise

L(f) =
∑
i

(f (xi)− yi)
2 + σ2||f ||2Hk

We can show that
m̄(x) = arg min

f ∈Hk

L(f)

where m̄(x) is the posterior mean if we assume yi = f (xi) + N(0, σ2) and
f (·) ∼ GP(0, k(·, ·))

Note that m̄(·) ∈ Hk (samples from a GP live in a slightly larger RKHS)

Kernel regression
Kernel regression and GP regression are closely related.

Consider the space of functions

Hk = span{k(·, x) : x ∈ X}
ie functions of the form

∑n
i=1 αik(x , xi) with inner product

〈
∑

aik(·, xi),
∑

bik(·, yi)〉 =
∑
ij

aibjk(xi , yj)

This is the reproducing kernel Hilbert space (RKHS) associated with k.
Kernel ridge regression chooses f to minimise

L(f) =
∑
i

(f (xi)− yi)
2 + σ2||f ||2Hk

We can show that
m̄(x) = arg min

f ∈Hk

L(f)

where m̄(x) is the posterior mean if we assume yi = f (xi) + N(0, σ2) and
f (·) ∼ GP(0, k(·, ·))
Note that m̄(·) ∈ Hk

(samples from a GP live in a slightly larger RKHS)

Kernel regression
Kernel regression and GP regression are closely related.

Consider the space of functions

Hk = span{k(·, x) : x ∈ X}
ie functions of the form

∑n
i=1 αik(x , xi) with inner product

〈
∑

aik(·, xi),
∑

bik(·, yi)〉 =
∑
ij

aibjk(xi , yj)

This is the reproducing kernel Hilbert space (RKHS) associated with k.
Kernel ridge regression chooses f to minimise

L(f) =
∑
i

(f (xi)− yi)
2 + σ2||f ||2Hk

We can show that
m̄(x) = arg min

f ∈Hk

L(f)

where m̄(x) is the posterior mean if we assume yi = f (xi) + N(0, σ2) and
f (·) ∼ GP(0, k(·, ·))
Note that m̄(·) ∈ Hk (samples from a GP live in a slightly larger RKHS)

Generally, we don’t think about these features, we just choose a kernel.

k(x , x ′) is a kernel ifF it is a positive semidefinite function

Functions live in function spaces (vector spaces with inner products).
There are lots of different function spaces: the GP kernel implicitly
determines this space - our hypothesis space.
We can write k(x , x ′) = φ(x)>φ(x ′) for some feature vector φ(x)), and
our model only includes functions that are linear combinations of this set
of features

f (x) =
∑
i

cik(x , xi)
3

this space of functions is called the Reproducing Kernel Hilbert
Space (RKHS) of k .

Although reality may not lie in the RKHS defined by k , this space is much
richer than any parametric regression model (and can be dense in some
sets of continuous bounded functions), and is thus more likely to contain
an element close to the true functional form than any class of models that
contains only a finite number of features.

This is the motivation for non-parametric methods.

3

Not quite - it lies in the completion of this set of linear combinations

Generally, we don’t think about these features, we just choose a kernel.

k(x , x ′) is a kernel ifF it is a positive semidefinite function

Functions live in function spaces (vector spaces with inner products).
There are lots of different function spaces: the GP kernel implicitly
determines this space - our hypothesis space.

We can write k(x , x ′) = φ(x)>φ(x ′) for some feature vector φ(x)), and
our model only includes functions that are linear combinations of this set
of features

f (x) =
∑
i

cik(x , xi)
3

this space of functions is called the Reproducing Kernel Hilbert
Space (RKHS) of k .

Although reality may not lie in the RKHS defined by k , this space is much
richer than any parametric regression model (and can be dense in some
sets of continuous bounded functions), and is thus more likely to contain
an element close to the true functional form than any class of models that
contains only a finite number of features.

This is the motivation for non-parametric methods.

3

Not quite - it lies in the completion of this set of linear combinations

Generally, we don’t think about these features, we just choose a kernel.

k(x , x ′) is a kernel ifF it is a positive semidefinite function

Functions live in function spaces (vector spaces with inner products).
There are lots of different function spaces: the GP kernel implicitly
determines this space - our hypothesis space.
We can write k(x , x ′) = φ(x)>φ(x ′) for some feature vector φ(x)), and
our model only includes functions that are linear combinations of this set
of features

f (x) =
∑
i

cik(x , xi)
3

this space of functions is called the Reproducing Kernel Hilbert
Space (RKHS) of k .

Although reality may not lie in the RKHS defined by k , this space is much
richer than any parametric regression model (and can be dense in some
sets of continuous bounded functions), and is thus more likely to contain
an element close to the true functional form than any class of models that
contains only a finite number of features.

This is the motivation for non-parametric methods.

3Not quite - it lies in the completion of this set of linear combinations

Generally, we don’t think about these features, we just choose a kernel.

k(x , x ′) is a kernel ifF it is a positive semidefinite function

Functions live in function spaces (vector spaces with inner products).
There are lots of different function spaces: the GP kernel implicitly
determines this space - our hypothesis space.
We can write k(x , x ′) = φ(x)>φ(x ′) for some feature vector φ(x)), and
our model only includes functions that are linear combinations of this set
of features

f (x) =
∑
i

cik(x , xi)
3

this space of functions is called the Reproducing Kernel Hilbert
Space (RKHS) of k .

Although reality may not lie in the RKHS defined by k , this space is much
richer than any parametric regression model (and can be dense in some
sets of continuous bounded functions), and is thus more likely to contain
an element close to the true functional form than any class of models that
contains only a finite number of features.

This is the motivation for non-parametric methods.

3Not quite - it lies in the completion of this set of linear combinations

Generally, we don’t think about these features, we just choose a kernel.

k(x , x ′) is a kernel ifF it is a positive semidefinite function

Functions live in function spaces (vector spaces with inner products).
There are lots of different function spaces: the GP kernel implicitly
determines this space - our hypothesis space.
We can write k(x , x ′) = φ(x)>φ(x ′) for some feature vector φ(x)), and
our model only includes functions that are linear combinations of this set
of features

f (x) =
∑
i

cik(x , xi)
3

this space of functions is called the Reproducing Kernel Hilbert
Space (RKHS) of k .

Although reality may not lie in the RKHS defined by k , this space is much
richer than any parametric regression model (and can be dense in some
sets of continuous bounded functions), and is thus more likely to contain
an element close to the true functional form than any class of models that
contains only a finite number of features.

This is the motivation for non-parametric methods.
3Not quite - it lies in the completion of this set of linear combinations

Why use GPs? Answer 3: Naturalness of GP framework

Why use Gaussian processes as non-parametric models?

If we only knew the expectation and variance of some random variables,
X and Y , then how should we best do statistics?

It has been shown, using coherency arguments, or geometric arguments,
or..., that the best second-order inference we can do to update our beliefs
about X given Y is

E(X |Y) = E(X) + Cov(X ,Y)Var(Y)−1(Y − E(Y))

i.e., exactly the Gaussian process update for the posterior mean.
So GPs are in some sense second-order optimal.

Why use GPs? Answer 3: Naturalness of GP framework

Why use Gaussian processes as non-parametric models?

If we only knew the expectation and variance of some random variables,
X and Y , then how should we best do statistics?

It has been shown, using coherency arguments, or geometric arguments,
or..., that the best second-order inference we can do to update our beliefs
about X given Y is

E(X |Y) = E(X) + Cov(X ,Y)Var(Y)−1(Y − E(Y))

i.e., exactly the Gaussian process update for the posterior mean.
So GPs are in some sense second-order optimal.

Why use GPs? Answer 3: Naturalness of GP framework

Why use Gaussian processes as non-parametric models?

If we only knew the expectation and variance of some random variables,
X and Y , then how should we best do statistics?

It has been shown, using coherency arguments, or geometric arguments,
or..., that the best second-order inference we can do to update our beliefs
about X given Y is

E(X |Y) = E(X) + Cov(X ,Y)Var(Y)−1(Y − E(Y))

i.e., exactly the Gaussian process update for the posterior mean.
So GPs are in some sense second-order optimal.

Kriging

Suppose Y (x) is a (second order stationary) stochastic process with

EY (x) = µ ∀ x
Cov(Y (x),Y (x ′)) = k(x − x ′) ∀ x , x ′

NB we’re not assuming Y has a Gaussian distribution.

If someone tells you y = (Y (x1), . . . ,Y (xn))>, how would you predict
Y (x)?
One option is to find the best linear unbiased predictor (BLUP) of Y (x).

Kriging

Suppose Y (x) is a (second order stationary) stochastic process with

EY (x) = µ ∀ x
Cov(Y (x),Y (x ′)) = k(x − x ′) ∀ x , x ′

NB we’re not assuming Y has a Gaussian distribution.

If someone tells you y = (Y (x1), . . . ,Y (xn))>, how would you predict
Y (x)?
One option is to find the best linear unbiased predictor (BLUP) of Y (x).

Kriging

Suppose Y (x) is a (second order stationary) stochastic process with

EY (x) = µ ∀ x
Cov(Y (x),Y (x ′)) = k(x − x ′) ∀ x , x ′

NB we’re not assuming Y has a Gaussian distribution.

If someone tells you y = (Y (x1), . . . ,Y (xn))>, how would you predict
Y (x)?

One option is to find the best linear unbiased predictor (BLUP) of Y (x).

Kriging

Suppose Y (x) is a (second order stationary) stochastic process with

EY (x) = µ ∀ x
Cov(Y (x),Y (x ′)) = k(x − x ′) ∀ x , x ′

NB we’re not assuming Y has a Gaussian distribution.

If someone tells you y = (Y (x1), . . . ,Y (xn))>, how would you predict
Y (x)?
One option is to find the best linear unbiased predictor (BLUP) of Y (x).

Best Linear Unbiased Predictors (BLUP)

Consider the linear estimator

Ŷ (x) = c +
∑

wiY (xi) = c + w>y

If we require Ŷ (x) to be unbiased,

µ = EŶ (x)

= E(c + w>y)

= c + w>µ

where µ = (µ, . . . , µ)>.

Thus c = µ−w>µ and we must have

Ŷ (x) = µ+ w>(y − µ)

Best Linear Unbiased Predictors (BLUP)

Consider the linear estimator

Ŷ (x) = c +
∑

wiY (xi) = c + w>y

If we require Ŷ (x) to be unbiased,

µ = EŶ (x)

= E(c + w>y)

= c + w>µ

where µ = (µ, . . . , µ)>.

Thus c = µ−w>µ and we must have

Ŷ (x) = µ+ w>(y − µ)

Best Linear Unbiased Predictors (BLUP)

Consider the linear estimator

Ŷ (x) = c +
∑

wiY (xi) = c + w>y

If we require Ŷ (x) to be unbiased,

µ = EŶ (x)

= E(c + w>y)

= c + w>µ

where µ = (µ, . . . , µ)>.

Thus c = µ−w>µ and we must have

Ŷ (x) = µ+ w>(y − µ)

Best Linear Unbiased Predictors (BLUP) - II
The best linear unbiased predictor minimises the mean square error

MSE (Ŷ (x)) = E((Ŷ (x)− Y (x))2)

= E
(

(w>(y − µ) + (µ− Y (x))2
)

= w>Var(y)w + Var(Y (x))− 2w>Cov(y,Y (x))

= w>KXXw + k(0)− 2w>kX (x)

If we differentiate wrt w and set the gradient equal to zero, we find

0 = 2KXXw − 2kX (x)

and thus
Ŷ (x) = µ+ kX (x)>K−1

XX (y − µ)

as before.
So the Gaussian process posterior mean is optimal (i.e. is the BLUP) even
if we don’t assume a Gaussian distribution.

Best Linear Unbiased Predictors (BLUP) - II
The best linear unbiased predictor minimises the mean square error

MSE (Ŷ (x)) = E((Ŷ (x)− Y (x))2)

= E
(

(w>(y − µ) + (µ− Y (x))2
)

= w>Var(y)w + Var(Y (x))− 2w>Cov(y,Y (x))

= w>KXXw + k(0)− 2w>kX (x)

If we differentiate wrt w and set the gradient equal to zero, we find

0 = 2KXXw − 2kX (x)

and thus
Ŷ (x) = µ+ kX (x)>K−1

XX (y − µ)

as before.
So the Gaussian process posterior mean is optimal (i.e. is the BLUP) even
if we don’t assume a Gaussian distribution.

Best Linear Unbiased Predictors (BLUP) - II
The best linear unbiased predictor minimises the mean square error

MSE (Ŷ (x)) = E((Ŷ (x)− Y (x))2)

= E
(

(w>(y − µ) + (µ− Y (x))2
)

= w>Var(y)w + Var(Y (x))− 2w>Cov(y,Y (x))

= w>KXXw + k(0)− 2w>kX (x)

If we differentiate wrt w and set the gradient equal to zero, we find

0 = 2KXXw − 2kX (x)

and thus
Ŷ (x) = µ+ kX (x)>K−1

XX (y − µ)

as before.
So the Gaussian process posterior mean is optimal (i.e. is the BLUP) even
if we don’t assume a Gaussian distribution.

Why use GPs? Answer 4: Uncertainty estimates from
emulators
We often think of our prediction as consisting of two parts

point estimate

uncertainty in that estimate

That GPs come equipped with the uncertainty in their prediction is seen
as one of their main advantages.

It is important to check both aspects.

Warning: the uncertainty estimates from a GP can be flawed. Note that
given data D = {X , y} x

Var(f (x)|X , y) = k(x , x)− kX (x)K−1
XXkX (x)

so that the posterior variance of f (x) does not depend upon y !

The variance estimates are particularly sensitive to the hyper-parameter
estimates.

Why use GPs? Answer 4: Uncertainty estimates from
emulators
We often think of our prediction as consisting of two parts

point estimate

uncertainty in that estimate

That GPs come equipped with the uncertainty in their prediction is seen
as one of their main advantages.

It is important to check both aspects.

Warning: the uncertainty estimates from a GP can be flawed. Note that
given data D = {X , y} x

Var(f (x)|X , y) = k(x , x)− kX (x)K−1
XXkX (x)

so that the posterior variance of f (x) does not depend upon y !

The variance estimates are particularly sensitive to the hyper-parameter
estimates.

Why use GPs? Answer 4: Uncertainty estimates from
emulators
We often think of our prediction as consisting of two parts

point estimate

uncertainty in that estimate

That GPs come equipped with the uncertainty in their prediction is seen
as one of their main advantages.

It is important to check both aspects.

Warning: the uncertainty estimates from a GP can be flawed. Note that
given data D = {X , y} x

Var(f (x)|X , y) = k(x , x)− kX (x)K−1
XXkX (x)

so that the posterior variance of f (x) does not depend upon y !

The variance estimates are particularly sensitive to the hyper-parameter
estimates.

Difficulties of using GPs

If we know what RKHS/hypothesis space/covariance function we should
use, GPs work great!

Unfortunately, we don’t usually know this.

We pick a covariance function from a small set, based usually on
differentiability considerations.

Possibly try a few (plus combinations of a few) covariance functions,
and attempt to make a good choice using some sort of empirical
evaluation.

Covariance functions often contain hyper-parameters. E.g
I RBF kernel

k(x , x ′) = σ2 exp

(
−1

2

(x − x ′)2

λ2

)
Estimate these using your favourite statistical procedure (maximum
likelihood, cross-validation, Bayes, expert judgement etc)

Difficulties of using GPs

If we know what RKHS/hypothesis space/covariance function we should
use, GPs work great!
Unfortunately, we don’t usually know this.

We pick a covariance function from a small set, based usually on
differentiability considerations.

Possibly try a few (plus combinations of a few) covariance functions,
and attempt to make a good choice using some sort of empirical
evaluation.

Covariance functions often contain hyper-parameters. E.g
I RBF kernel

k(x , x ′) = σ2 exp

(
−1

2

(x − x ′)2

λ2

)
Estimate these using your favourite statistical procedure (maximum
likelihood, cross-validation, Bayes, expert judgement etc)

Difficulties of using GPs

If we know what RKHS/hypothesis space/covariance function we should
use, GPs work great!
Unfortunately, we don’t usually know this.

We pick a covariance function from a small set, based usually on
differentiability considerations.

Possibly try a few (plus combinations of a few) covariance functions,
and attempt to make a good choice using some sort of empirical
evaluation.

Covariance functions often contain hyper-parameters. E.g
I RBF kernel

k(x , x ′) = σ2 exp

(
−1

2

(x − x ′)2

λ2

)
Estimate these using your favourite statistical procedure (maximum
likelihood, cross-validation, Bayes, expert judgement etc)

Difficulties of using GPs

If we know what RKHS/hypothesis space/covariance function we should
use, GPs work great!
Unfortunately, we don’t usually know this.

We pick a covariance function from a small set, based usually on
differentiability considerations.

Possibly try a few (plus combinations of a few) covariance functions,
and attempt to make a good choice using some sort of empirical
evaluation.

Covariance functions often contain hyper-parameters. E.g
I RBF kernel

k(x , x ′) = σ2 exp

(
−1

2

(x − x ′)2

λ2

)
Estimate these using your favourite statistical procedure (maximum
likelihood, cross-validation, Bayes, expert judgement etc)

Difficulties of using GPs
Gelman et al. 2017

Assuming a GP model for your data imposes a complex structure on the
data.

The number of parameters in a GP is essentially infinite, and so they are
not always identified even asymptotically.

So the posterior can concentrate not on a point, but on some submanifold
of parameter space, and the projection of the prior on this space continues
to impact the posterior even as more and more data are collected.

E.g. consider a zero mean GP on [0, 1] with covariance function

k(x , x ′) = σ2 exp(−κ2|x − x |)

We can consistently estimate σ2κ, but not σ2 or κ, even as n→∞.

Difficulties of using GPs
Gelman et al. 2017

Assuming a GP model for your data imposes a complex structure on the
data.

The number of parameters in a GP is essentially infinite, and so they are
not always identified even asymptotically.

So the posterior can concentrate not on a point, but on some submanifold
of parameter space, and the projection of the prior on this space continues
to impact the posterior even as more and more data are collected.

E.g. consider a zero mean GP on [0, 1] with covariance function

k(x , x ′) = σ2 exp(−κ2|x − x |)

We can consistently estimate σ2κ, but not σ2 or κ, even as n→∞.

Difficulties of using GPs
Gelman et al. 2017

Assuming a GP model for your data imposes a complex structure on the
data.

The number of parameters in a GP is essentially infinite, and so they are
not always identified even asymptotically.

So the posterior can concentrate not on a point, but on some submanifold
of parameter space, and the projection of the prior on this space continues
to impact the posterior even as more and more data are collected.

E.g. consider a zero mean GP on [0, 1] with covariance function

k(x , x ′) = σ2 exp(−κ2|x − x |)

We can consistently estimate σ2κ, but not σ2 or κ, even as n→∞.

Difficulties of using GPs
Gelman et al. 2017

Assuming a GP model for your data imposes a complex structure on the
data.

The number of parameters in a GP is essentially infinite, and so they are
not always identified even asymptotically.

So the posterior can concentrate not on a point, but on some submanifold
of parameter space, and the projection of the prior on this space continues
to impact the posterior even as more and more data are collected.

E.g. consider a zero mean GP on [0, 1] with covariance function

k(x , x ′) = σ2 exp(−κ2|x − x |)

We can consistently estimate σ2κ, but not σ2 or κ, even as n→∞.

Problems with hyper-parameter optimization

As well as problems of identifiability, the likelihood surface that is being
maximized is often flat and multi-modal, and thus the optimizer can
sometimes fail to converge, or gets stuck in local-maxima.

In practice, it is not uncommon to optimize hyper parameters and find
solutions such as

We often work around these problems by running the optimizer multiple
times from random start points, using prior distributions, constraining or
fixing hyper-parameters, or adding white noise.

Problems with hyper-parameter optimization

As well as problems of identifiability, the likelihood surface that is being
maximized is often flat and multi-modal, and thus the optimizer can
sometimes fail to converge, or gets stuck in local-maxima.
In practice, it is not uncommon to optimize hyper parameters and find
solutions such as

We often work around these problems by running the optimizer multiple
times from random start points, using prior distributions, constraining or
fixing hyper-parameters, or adding white noise.

Problems with hyper-parameter optimization

As well as problems of identifiability, the likelihood surface that is being
maximized is often flat and multi-modal, and thus the optimizer can
sometimes fail to converge, or gets stuck in local-maxima.
In practice, it is not uncommon to optimize hyper parameters and find
solutions such as

We often work around these problems by running the optimizer multiple
times from random start points, using prior distributions, constraining or
fixing hyper-parameters, or adding white noise.

Computational cost
One difficulty with GP is the computational cost of training them is
O(n3) (and O(n2) memory)

There are many ways to side-step this cost, but one approach is to
consider basis expansions and switching back to the primal form for linear
regression.
Suppose

k(x , x ′) =
m∑
i=1

φi (x)φi (x
′) = φ(x)>φ(x ′)

Then GP regression is equivalent to linear regression with covariates φ(x)

Dual form for regression coefficients costs O(n3),
but primal solution only costs O(m3)

In practice we may use a basis expansion with m << n such that

k(x , x ′) ≈
m∑
i=1

φi (x)φi (x
′)

Computational cost
One difficulty with GP is the computational cost of training them is
O(n3) (and O(n2) memory)
There are many ways to side-step this cost, but one approach is to
consider basis expansions and switching back to the primal form for linear
regression.

Suppose

k(x , x ′) =
m∑
i=1

φi (x)φi (x
′) = φ(x)>φ(x ′)

Then GP regression is equivalent to linear regression with covariates φ(x)

Dual form for regression coefficients costs O(n3),
but primal solution only costs O(m3)

In practice we may use a basis expansion with m << n such that

k(x , x ′) ≈
m∑
i=1

φi (x)φi (x
′)

Computational cost
One difficulty with GP is the computational cost of training them is
O(n3) (and O(n2) memory)
There are many ways to side-step this cost, but one approach is to
consider basis expansions and switching back to the primal form for linear
regression.
Suppose

k(x , x ′) =
m∑
i=1

φi (x)φi (x
′) = φ(x)>φ(x ′)

Then GP regression is equivalent to linear regression with covariates φ(x)

Dual form for regression coefficients costs O(n3),
but primal solution only costs O(m3)

In practice we may use a basis expansion with m << n such that

k(x , x ′) ≈
m∑
i=1

φi (x)φi (x
′)

Computational cost
One difficulty with GP is the computational cost of training them is
O(n3) (and O(n2) memory)
There are many ways to side-step this cost, but one approach is to
consider basis expansions and switching back to the primal form for linear
regression.
Suppose

k(x , x ′) =
m∑
i=1

φi (x)φi (x
′) = φ(x)>φ(x ′)

Then GP regression is equivalent to linear regression with covariates φ(x)

Dual form for regression coefficients costs O(n3),
but primal solution only costs O(m3)

In practice we may use a basis expansion with m << n such that

k(x , x ′) ≈
m∑
i=1

φi (x)φi (x
′)

Choice of basis
There are many choices of basis. Two examples:

Mercer basis: Consider the map

Tk(f)(·) =

∫
X
k(x , ·)f (x)dx

Consider the eigenfunctions of this map, i.e., φ : X 7→ R s.t.
Tk(φ)(·) = λφ(·). Then Mercer’s theorem says that

k(x , x ′) =
∞∑
i=1

λiφi (x)φi (x
′)

The Karhunen-Loeve thm says we can write f (·) ∼ GP(0, k(·, ·)) as

f (x) =
∞∑
i=1

Zi

√
λiφi (x) where Zi

iid∼ N(0, 1)

We can approximate the process (& reduce cost to O(m3)) by
truncating the sum

f (x) =
m∑
i=1

Zi

√
λiφi (x)

The Mercer/KL basis minimizes the mean square truncation error.

Choice of basis
There are many choices of basis. Two examples:

Mercer basis: Consider the map

Tk(f)(·) =

∫
X
k(x , ·)f (x)dx

Consider the eigenfunctions of this map, i.e., φ : X 7→ R s.t.
Tk(φ)(·) = λφ(·). Then Mercer’s theorem says that

k(x , x ′) =
∞∑
i=1

λiφi (x)φi (x
′)

The Karhunen-Loeve thm says we can write f (·) ∼ GP(0, k(·, ·)) as

f (x) =
∞∑
i=1

Zi

√
λiφi (x) where Zi

iid∼ N(0, 1)

We can approximate the process (& reduce cost to O(m3)) by
truncating the sum

f (x) =
m∑
i=1

Zi

√
λiφi (x)

The Mercer/KL basis minimizes the mean square truncation error.

Choice of basis
There are many choices of basis. Two examples:

Mercer basis: Consider the map

Tk(f)(·) =

∫
X
k(x , ·)f (x)dx

Consider the eigenfunctions of this map, i.e., φ : X 7→ R s.t.
Tk(φ)(·) = λφ(·). Then Mercer’s theorem says that

k(x , x ′) =
∞∑
i=1

λiφi (x)φi (x
′)

The Karhunen-Loeve thm says we can write f (·) ∼ GP(0, k(·, ·)) as

f (x) =
∞∑
i=1

Zi

√
λiφi (x) where Zi

iid∼ N(0, 1)

We can approximate the process (& reduce cost to O(m3)) by
truncating the sum

f (x) =
m∑
i=1

Zi

√
λiφi (x)

The Mercer/KL basis minimizes the mean square truncation error.

Choice of basis

There are many choices of basis. Two examples:

Random Fourier features:
Bochner’s theorem says that a stationary kernel can be represented
as a Fourier transform of a distribution

k(x − x ′) =

∫
exp(iw>(x − x ′))p(w)dw = Ew∼p exp(iw>(x − x ′))

≈ 1

m

∑
(cos(w>i x), sin(w>i x))

(
cos(w>i x)
sin(w>i x)

)
if wi ∼ p(·)

by using Euler’s identity and discarding the imaginary part

Using the primal form for linear regression again reduces the
complexity to O(m3).

Recent work by Rudi and Rosasco (2017) shows that using
m =

√
n log(n) features achieve similar performance to using the full

kernel.

Choice of basis

There are many choices of basis. Two examples:

Random Fourier features:
Bochner’s theorem says that a stationary kernel can be represented
as a Fourier transform of a distribution

k(x − x ′) =

∫
exp(iw>(x − x ′))p(w)dw = Ew∼p exp(iw>(x − x ′))

≈ 1

m

∑
(cos(w>i x), sin(w>i x))

(
cos(w>i x)
sin(w>i x)

)
if wi ∼ p(·)

by using Euler’s identity and discarding the imaginary part
Using the primal form for linear regression again reduces the
complexity to O(m3).

Recent work by Rudi and Rosasco (2017) shows that using
m =

√
n log(n) features achieve similar performance to using the full

kernel.

Choice of basis

There are many choices of basis. Two examples:

Random Fourier features:
Bochner’s theorem says that a stationary kernel can be represented
as a Fourier transform of a distribution

k(x − x ′) =

∫
exp(iw>(x − x ′))p(w)dw = Ew∼p exp(iw>(x − x ′))

≈ 1

m

∑
(cos(w>i x), sin(w>i x))

(
cos(w>i x)
sin(w>i x)

)
if wi ∼ p(·)

by using Euler’s identity and discarding the imaginary part
Using the primal form for linear regression again reduces the
complexity to O(m3).

Recent work by Rudi and Rosasco (2017) shows that using
m =

√
n log(n) features achieve similar performance to using the full

kernel.

Conclusions

Once the good china, GPs are now ubiquitous in statistics/ML.

Popularity stems from
I Naturalness of the framework
I Mathematical tractability
I Empirical success

Thank you for listening!

Conclusions

Once the good china, GPs are now ubiquitous in statistics/ML.

Popularity stems from
I Naturalness of the framework
I Mathematical tractability
I Empirical success

Thank you for listening!

References

Rasmussen and Williams. Gaussian processes for machine learning.
MIT press, 2006.

Stein. Interpolation of Spatial Data: Some Theory for Kriging.
Springer, 1999

Kanagawa, Hennig, Sejdinovic, and Sriperumbudur. Gaussian
processes and kernel methods: A review on connections and
equivalences.. arXiv:1807.02582 2018.

