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+many wonderful collaborators (Google Research Zurich, Oxford, Assistant, Health, …)

The Reliable Deep Learning Team at Google



Develop models that “know what they don’t know”.

This requires 

robustness to distribution shift and

calibrated uncertainty quantification.

Our mission



    Out-of-distribution (OOD): pTEST(y,x) ≠ pTRAIN(y,x)

● Accuracy of NNs degrades under dataset shift.
● Calibration also degrades under dataset shift.

Why Reliable Deep Learning?

I.I.D test set
Increasing dataset shift

Calibration Error = |Confidence  -  Accuracy|

predicted probability 
of correctness

observed frequency 
of correctness

[See our NeurIPS’2020 tutorial for background]

https://docs.google.com/presentation/d/1savivnNqKtYgPzxrqQU8w_sObx1t0Ahq76gZFNTo960/edit#slide=id.p


[See our NeurIPS’2020 tutorial for background]

Test input may not belong to one of the K training classes.

Need to be able to say “none-of-the-above”.

Why Reliable Deep Learning?

Prediction quality may differ drastically across subgroups.

https://docs.google.com/presentation/d/1savivnNqKtYgPzxrqQU8w_sObx1t0Ahq76gZFNTo960/edit#slide=id.p


Landscape of Tasks

Selective Prediction

● Use uncertainty to decide when to 

trust the model prediction.

● Google Health, Assistant, 

Large model safety

Open Set Recognition

● Test inputs may not belong to one 

of the existing training classes.

● Google Health, Assistant

Sequential Decision-Making

● Active learning

○ ALFA, Image Understanding

● Bayesian optimization

○ Vizier, Sequin

● Exploration in Bandits / RL

○ YouTube, RecSys

Robustness

● Ensure models generalize across 

distribution shifts.

● Covariate shift

○ Waymo, Ads

● Subpopulation shift (ex. fairness)

Adaptation

● Assess ability to adapt to new 
tasks: ex. quickly, not forgetting.

● Few-shot learning
○ ImageNet, GLUE

● Continual learning

Data Uncertainty

● Assess classification over multiple 
ratings, across noise and ambiguity
○ Web-image data
○ Content moderation systems 



Quality of 
uncertainty & 
robustness

Image source: NeurIPS 2020 tutorial on Uncertainty & Robustness

# Parameters
0.1M 1M 10M 100M 10B1B

The uncertainty-robustness frontier

https://slideslive.com/38935801/practical-uncertainty-estimation-outofdistribution-robustness-in-deep-learning


Ensembles improve uncertainty-robustness across the frontier.

[Dusenberry+ 2020][Wen+ 2020]

https://arxiv.org/abs/2005.07186
https://arxiv.org/abs/2002.06715


Large models are SOTA in calibration & OOD detection.

[Minderer+ 2021] [Fort+ 2021]

https://arxiv.org/abs/2106.07998
https://arxiv.org/abs/2106.03004


Goal. Provide an 
experiment template 
for researchers, with 
separate modules to 
use as needed.

Supports JAX, TF, & 
Pytorch!

Infrastructure



Edward2



Edward’s language augments an existing ecosystem with random variables. Each random 
variable x is associated to an array x∗, x∗ ∼ p(x | θ∗).

[Tran+ 2017, Tran+ 2018]

NumPy (+SciPy)TensorFlow (+Distributions)

Language: Random Variables



Edward2 reifies any computable probability distribution as a Python function. Inputs to the 
function represent values the distribution conditions on.

Tracing—a tool in automatic differentiation—lets us manipulate the computation.

Language: Random Variables



The neural network language

Neural networks decompose as a composition of layers.

Layers represent parameterized functions over (lists of) real tensors. They include:

● Initializers. function: shape → array
● Regularizers. function: weights → scalar

There are also higher-order layers (ex. Sequential) and simple ops (ex. Add).



Uncertainty in neural networks

We extend neural networks with random variables as part of any state:

1. Bayesian neural network layers (weights / units)
2. Gaussian process layers (function)
3. Stochastic output layers (output)
4. Reversible layers (input)

Similar ideas in GPflux (2021).

[Tran+ 2019]

https://arxiv.org/abs/2104.05674


Bayesian LSTM



Bayesian LSTM in Edward2



ResNet-50



Bayesian ResNet-50 in Edward2



Uncertainty Baselines



Go to slide deck here.

https://docs.google.com/presentation/d/1sc3wW0IvlQQCnp7FbX2CuPspGDTpnSOH4o591pwFPzs/edit


https://github.com/google/uncertainty-baselines

https://github.com/google/uncertainty-baselines


What is it?
Uncertainty Baselines is:

● Common dataset loaders

● Common models and variants involved in uncertainty research

● Training scripts that use these datasets/models

Our goals is for users to:

● Reproduce our uncertainty research for their benchmarking

● Build off of our work in novel research



Who uses it?
1. Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness
2. Revisiting One-vs-All Classifiers for Predictive Uncertainty and Out-of-Distribution Detection in Neural Networks
3. Measuring Calibration in Deep Learning
4. Refining the variational posterior through iterative optimization
5. Prediction-Time Batch Normalization for Robustness under Covariate Shift
6. Distilling Ensembles Improves Uncertainty Estimates
7. A Simple Fix to Mahalanobis Distance for Improving Near-OOD Detection
8. Exploring the Uncertainty Properties of Neural Networks' Implicit Priors in the Infinite-Width Limit
9. Measuring and Improving Model-Moderator Collaboration using Uncertainty Estimation

10. Soft Calibration Objectives for Neural Networks
11. DEUP: Direct Epistemic Uncertainty Prediction
12. Neural networks with late-phase weights
13. On the Practicality of Deterministic Epistemic Uncertainty
14. FreeTickets: Accurate, Robust and Efficient Deep Ensemble by Training with Dynamic Sparsity

https://proceedings.neurips.cc/paper/2020/file/543e83748234f7cbab21aa0ade66565f-Paper.pdf
https://arxiv.org/abs/2007.05134
https://arxiv.org/abs/1904.01685
http://bayesiandeeplearning.org/2019/papers/8.pdf
https://arxiv.org/abs/2006.10963
https://openreview.net/forum?id=Lzi5IMyJTFX
https://arxiv.org/abs/2106.09022
https://arxiv.org/abs/2010.07355
https://arxiv.org/abs/2107.04212
https://arxiv.org/abs/2108.00106
https://arxiv.org/abs/2102.08501
https://arxiv.org/abs/2007.12927
https://arxiv.org/abs/2107.00649
https://arxiv.org/abs/2106.14568


Who uses it?

Several Google-internal product launches have used Uncertainty Baselines 
for experimenting with ideas on model performance under distribution 

shift



Testing

Testing deep learning code is hard!

● End-to-end tests can be flaky due to non-determinism, driver updates, etc.

● Final convergence tests can take hours/days to complete



Testing

We have wide unit test coverage of all our datasets and models:

● Checks shapes, dtypes, and min/max values of outputs

● Pytype helps catch some mismatches during development too

Quick training tests that run for several steps also useful

● Check loss after several weight updates to ensure pipeline runs end-to-end



Testing

Determinism is key for having useful testing and debugging

Jax and TF have splittable/foldable PRNGs that can be passed to all random code:

● jax.PRNGKey (docs)

● tf.random.experimental.stateless_{fold_in,split}

Our CIFAR deterministic TF baseline uses this for true deterministic!*

*given the same hardware and versions of hardware drivers

https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#random-numbers


Frameworks

Many hot takes on which framework is best!

● Google obviously has a lot of tech built in TF

● PyTorch is a popular favorite externally

● Jax is quickly gaining popularity, especially in Google-adjacent circles



Frameworks

1. Uncertainty Baselines started in TensorFlow 2

2. External collaborators added PyTorch model implementations

a. Easier than rewriting the model library in TF or Jax

3. We have started added more Jax models (JFT)

All use same tf.data pipelines, either directly via tf.Tensors or converting to np.array 
on the CPU before feeding into accelerators



Project structure philosophy

Most codebases agree on having standalone models/datasets that are reusable.

Usually train/eval loops where the differences happen.

● Totally standalone scripts, reimplement train/eval code for every workload

● Some shared train/eval code for common use cases

● Abstract away reusable APIs for train/eval (tf.Estimator)



Project structure philosophy

Most codebases agree on having standalone models/datasets that are reusable.

Usually train/eval loops where the differences happen.

● Totally standalone scripts, reimplement train/eval code for every 
workload

● Some shared train/eval code for common use cases

● Abstract away reusable APIs for train/eval (tf.Estimator)

Important for codebases like Uncertainty Baselines where have widely different 
train/eval loops depending on the experiment!



Project structure philosophy

Totally standalone scripts, reimplement train/eval code for every workload

Pros

● Zero dependencies 
between experiments

● Trivial to take a single 
script and reproduce 
results, less setup

● Cleaner to fork the exact 
experiments you want

● Easier to understand full 
end-to-end train/eval

Cons

● Repeated train code
● More work to add codebase-wide 

upgrades
● More tests to check all 

experiments working



Project structure

● baselines/
○ cifar/

■ deterministic.py
■ experiments/deterministic_tune.p

y
○ diabetic_retinopathy_detection/
○ imagenet/
○ jft/

● uncertainty_baselines/
○ halton.py
○ datasets/

■ cifar.py
■ toxic_comments.py

○ models/
■ resnet50_variational.py
■ vit_gp.py



Project structure

● baselines/
○ cifar/

■ deterministic.py
■ experiments/deterministic_tune.p

y
○ diabetic_retinopathy_detection/
○ imagenet/
○ jft/

● uncertainty_baselines/
○ halton.py
○ datasets/

■ cifar.py
■ toxic_comments.py

○ models/
■ resnet50_variational.py
■ vit_gp.py

baselines/ contains training scripts and 
experiment configs, organized by 

workload



Project structure

● baselines/
○ cifar/

■ deterministic.py
■ experiments/deterministic_tune.p

y
○ diabetic_retinopathy_detection/
○ imagenet/
○ jft/

● uncertainty_baselines/
○ halton.py
○ datasets/

■ cifar.py
■ toxic_comments.py

○ models/
■ resnet50_variational.py
■ vit_gp.py

halton.py contains shuffled 
quasi-random sequence generator for 
reproducible hyperparameter tuning



Project structure

● baselines/
○ cifar/

■ deterministic.py
■ experiments/deterministic_tune.p

y
○ diabetic_retinopathy_detection/
○ imagenet/
○ jft/

● uncertainty_baselines/
○ halton.py
○ datasets/

■ cifar.py
■ toxic_comments.py

○ models/
■ resnet50_variational.py
■ vit_gp.py

datasets/ contains tf.data pipelines 
that produce tf.Tensor or np.array 

batches of data



Project structure

● baselines/
○ cifar/

■ deterministic.py
■ experiments/deterministic_tune.p

y
○ diabetic_retinopathy_detection/
○ imagenet/
○ jft/

● uncertainty_baselines/
○ halton.py
○ datasets/

■ cifar.py
■ toxic_comments.py

○ models/
■ resnet50_variational.py
■ vit_gp.py

models/ contains tf.keras, jax Flax, and 
PyTorch models, with many variants 

containing robustness-improving layers



Datasets

tf.data pipelines supply our data

● Many are hosted in TensorFlow Datasets

● Also have an API for implementing custom or local datasets

● Allows for preprocessing parallelism on CPU

Abstract base class to define API in datasets/base.py

● Only requires a preprocessing fn to be defined for subclasses



Datasets

tf.data pipelines supply our data

Dataset builder object sets up dataset pipeline with all required hyperparameters:
train_builder = ub.datasets.ImageNetDataset(

    split=tfds.Split.TRAIN,

    mixup_params=mixup_params,

    validation_percent=1.0 - FLAGS.train_proportion)

train_ds = train_builder.load(batch_size=bs, strategy=strategy)



Datasets

tf.data pipelines supply our data

Dataset builder object sets up dataset pipeline with all required hyperparameters:
train_builder = ub.datasets.ImageNetDataset(

    split=tfds.Split.TRAIN,

    mixup_params=mixup_params,

    validation_percent=1.0 - FLAGS.train_proportion)

train_ds = train_builder.load(batch_size=bs, strategy=strategy)
For TF multi-host 
training, need to 
pass in the 
DistributionStrategy 
to properly shard 
the dataset across 
hosts



Datasets

tf.data pipelines supply our data

Dataset builder object sets up dataset pipeline with all required hyperparameters:
train_builder = ub.datasets.ImageNetDataset(

    split=tfds.Split.TRAIN,

    mixup_params=mixup_params,

    validation_percent=1.0 - FLAGS.train_proportion)

train_ds = train_builder.load(batch_size=bs, strategy=strategy)

train_iterator = iter(train_ds)

for batch in train_iterator:  # np.array of shape [B, …]

  …



Models

Making a framework-agnostic model API seems like more hassle than worth:

● Device placement, graph compilation, state tracking, autodiff

Instead one function per .py file that returns tf.keras, PyTorch, or Flax model



Metrics

Uncertainty Baselines does not define our own metrics.

Instead use Robustness Metrics, another Google Brain codebase

● Numerous framework-agnostic (all numpy) metrics

● Eval code for running on numerous test sets

General API (defined in their base.py) for a metrics is to define:

● add_predictions and/or add_batch to include model outputs in result

● result to compute final metric value

https://github.com/google-research/robustness_metrics
https://github.com/google-research/robustness_metrics/blob/master/robustness_metrics/metrics/base.py


Experiment configs

Experiment configuration files contain all the hyperparameters, tuning search 
spaces, and/or cloud machine info to reproduce an experiment. Examples

● .sh with command to launch experiment

● absl FLAGS file with all command line flags used

● README files with instructions on how to reproduce

● ???

Critically important to check these into version control!



Experiment configs

Uncertainty Baselines uses .py files that return ml_collections.ConfigDict, a 
lightweight wrapper around a Python dict (example)

● Python file allows for parameterization of experiment configs

● These ConfigDicts consumed by our (soon to be open-sourced) cloud 
launcher, passed to train script as various absl FLAG values

https://github.com/google/uncertainty-baselines/blob/main/baselines/diabetic_retinopathy_detection/experiments/deterministic_tune.py


Hyperparameters

Another area besides train/eval code that codebases differ:

How are hyperparameters managed?

● Python dict
● Dependency injection framework
● Global FLAGS throughout code
● Individual kwargs
● Custom hparams objects
● ???



Hyperparameters

I asked Twitter and got answers involving all of these approaches!

https://twitter.com/zacharynado/status/1433488117302968326


Hyperparameters

Uncertainty Baselines uses individual absl FLAGS for each hyperparameter, and 
passes them around our code as individual keyword arguments.

Pros

● Easier to understand for 
new users trying to rerun 
or fork our code

● Very clear how each 
value is treated

Cons

● Very verbose, but standalone 
train/eval scripts means no 
nested layers of library functions 
making this painful



Thank you!

You can clone or pip install our code to try it,
or open an issue or PR if you want to contribute!


