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Learning Theory

• F space of functions

• A learning algorithm

• S = {(x1, y1), . . . , (xN , yN )}
• S ∼ P (X × Y)
• `(AF (S), x, y) loss function
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Statistical Learning

e(S,A,F) = EP ({X ,Y}) [`(AF (S), x, y)]
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Statistical Learning

e(S,A,F) = EP ({X ,Y}) [`(AF (S), x, y)]

≈ 1

M

M∑
n=1

`(AF (S), xn, yn)
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No Free Lunch

We can come up with a combination of {S,A,F} that makes
e(S,A,F) take an arbitary value
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Example
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Data and Knowledge
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Assumptions: Algorithms

Statistical Learning

AF (S)

8



Assumptions: Biased Sample

Statistical Learning

AF (S)
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Assumptions: Hypothesis space

Statistical Learning

AF (S)
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The No Free Lunch

• There seems to be a narrative that the more flexible a model
is the better it is

• This is not true

• The best possible model has infinite support (nothing is
excluded) but very focused mass

• Your solution can only ever be interpreted in the light of your
assumptions
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Gaussian Processes
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Conditional Gaussians
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Gaussian Processes
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Gaussian Processes
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The Gaussian Identities

p(x1, x2) p(x1) =

∫
p(x1, x2)dx p(x1|x2) =

p(x1, x2)

p(x2)

Gaussian Identities
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Unsupervised Gaussian Processes



Unsupervised Learning

yi

fi θ

x

D

p(y|x)

yi

fi θ

x

D

p(y)
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Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Priors
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Priors

p(y) =

∫
p(y|f)p(f |x)p(x)dfdx

1. Priors that makes sense

p(f) describes our belief/assumptions and defines our
notion of complexity in the function

p(x) expresses our belief/assumptions and defines our
notion of complexity in the latent space

2. Now lets churn the handle
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Relationship between x and data

p(y) =

∫
p(y|f)p(f |x)p(x)dfdx

• GP prior
p(f |x) ∼ N (0,K) ∝ e− 1

2
(fTK−1f)

Kij = e−(xi−xj)
TMTM(xi−xj)

• Likelihood

p(y|f) ∼ N(y|f, β) ∝ e−
1
2β

tr(y−f)T(y−f)
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Laplace Integration

"Nature laughs at the difficulties of integrations"
– Simon Laplace
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Approximate Inference



Machine Learning

p(y) =

∫
p(y | x)p(x)dx
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Lower Bound

x

y y

x

y

p(y) =

∫
x
p(y|x)p(x) = p(y|x)p(x)

p(x|y)

x

y

θ

qθ(x) ≈ p(x|y)
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Variational Bayes

p(y)
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Variational Bayes

log p(y)

36



Variational Bayes

log p(y) = log p(y) +
∫

log
p(x|y)
p(x|y)dx
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Variational Bayes

log p(y) = log p(y) +
∫

log
p(x|y)
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=

∫
q(x)log p(y)dx+

∫
q(x)log

p(x|y)
p(x|y)dx
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Jensen Inequality

∫
log(x)p(x)dx ≥ log

(∫
xp(x)dx

)
moving the log outside the the integral is a lower-bound on the
integral
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The "posterior" term

∫
q(x) log

q(x)

p(x|y)dx
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The "posterior" term

∫
q(x) log

q(x)

p(x|y)dx = −
∫
q(x) log

p(x|y)
q(x)

dx
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The "posterior" term

∫
q(x) log

q(x)

p(x|y)dx = −
∫
q(x) log

p(x|y)
q(x)

dx

≥ −log
∫
p(x|y)dx

= −log1 = 0
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The "posterior" term
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q(x) log
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The "posterior" term

∫
q(x) log

q(x)

p(x|y)dx = {Lets assume that q(x) = p(x|y)}
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The "posterior" term

∫
q(x) log

q(x)

p(x|y)dx = {Lets assume that q(x) = p(x|y)}

=

∫
p(x|y) log

p(x|y)
p(x|y)︸ ︷︷ ︸

=1

dx

= 0

39



Kullback-Leibler Divergence

KL(q(x)||p(x|y)) =
∫
q(x) log

q(x)

p(x|y)dx

• Measure of divergence between distributions

• Not a metric (not symmetric)

• KL(q(x)||p(x|y)) = 0⇔ q(x) = p(x|y)
• KL(q(x)||p(x|y)) ≥ 0
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Variational Bayes

log p(y) =
∫
q(x)log

1

q(x)
dx+

∫
q(x)log p(x, y)dx+

∫
q(x) log

q(x)

p(x|y)dx

≥ −
∫
q(x)log q(x)dx+

∫
q(x)log p(x, y)dx

• The Evidence Lower BOnd

• Tight if q(x) = p(x|y)
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Deterministic Approximation

log p(y)

L(q)

KL(q||p)
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ELBO

log p(y) ≥ −
∫
q(x)log q(x)dx+

∫
q(x)log p(x, y)dx

= Eq(x) [log p(x, y)]−H(q(x)) = L(q(x))

• if we maximise the ELBO we,
• find an approximate posterior
• lower bound the marginal likelihood

• maximising p(y) is learning

• finding q(x) ≈ p(x|y) is prediction
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How to choose Q?

L(q(x)) = Eq(x) [log p(x, y)]−H(q(x))

• We have to be able to compute an expectation over the joint
distribution

• The second term should be trivial
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Lower Bound1

L =

∫
x
q(x)log

(
p(y, f, x)

q(x)

)

1Damianou, 2015
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Lower Bound

L̃ =

∫
q(x) log p(y|f)p(f |x)dfdx

• Has not eliviate the problem at all, x still needs to go through
f to reach the data

• Idea of sparse approximations2

2Candela et al., 2005
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Lower Bound 3

p(f, u | x, z)

• Add another set of samples from the same prior

• Conditional distribution

3Titsias et al., 2010
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Lower Bound 3

p(f, u | x, z) = p(f | u, x, z)p(u | z)

• Add another set of samples from the same prior
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Lower Bound 3

p(f, u | x, z) = p(f | u, x, z)p(u | z)
= N (f | KfuK

−1
uu u,Kff −KfuK

−1
uuKuf )N (u | 0,Kuu)

• Add another set of samples from the same prior

• Conditional distribution

3Titsias et al., 2010
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Lower Bound

p(y, f, u, x | z) = p(y | f)p(f | u, x)p(u | z)p(x)

• we have done nothing to the model, just project an additional
set of marginals from the GP

• however we will now interpret u and z not as random
variables but variational parameters

• i.e. the variational distribution q(·) is parametrised by these
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Lower Bound

• Variational distributions are approximations to intractable
posteriors,

q(u) ≈ p(u | y, x, z, f)
q(f) ≈ p(f | u, x, z, y)
q(x) ≈ p(x | y)

• Bound is tight if u completely represents f i.e. u is sufficient
statistics for f

q(f) ≈ p(f | u, x, z, y) = p(f | u, x, z)
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Lower Bound

L̃ =

∫
x,f,u

q(f)q(u)q(x)log
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• Assume that u is sufficient statistics of f
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Lower Bound

L = Ep(f |u,x,z)[p(y | f)]−KL(q(u) ‖ p(u | z))−KL(q(x) ‖ p(x))

• Expectation tractable (for some co-variances)

• Allows us to place priors and not "regularisers" over the latent
representation

• Stochastic inference Hensman et al., 2013

• Importantly p(x) only appears in KL(· ‖ ·) term!
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Latent Space Priors

p(x) ∼ N (0, I)
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Automatic Relevance Determination

k(xi,xj) = σe−
∑D
d αd·(xi,d−xj,d)2

GPy

Code

[]python RBF(...,ARD=True) Matern32(...,ARD=True)
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Dynamic Prior

p(x | t) = N (µt,Kt)
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Composite Gaussian Processes

yi

fi θ

x

D yi

f (2) θ2

f (1) θ1

x

yi

f (k) θk

f (2) θ2

f (1) θ1

x
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Composite Gaussian Processes 4

yf (k)f (k−1)f (2)f (1)

y = f (k)(f (k−1)(· · · f (2)(f (1)(x))))

4Damianou et al., 2013
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Composite Models



yf (k)f (k−1)f (2)f (1)
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yf (k)f (k−1)f (2)f (1)
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yf (k)f (k−1)f (2)f (1)
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yf (k)f (k−1)f (2)f (1)
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Neural Networks

x ∈ Rd

z1 = σ(W1x)

z2 = σ((W2V
>
1 )h1)

z3 = σ((W3V
>
2 )h2)

y = V >
3 z3
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What is a composite function?
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What Does Compositions Do?

Im(f)[X ] = {f(x) | x ∈ X}
Kern(f)[X ] = {(x, x′) | f(x) = f(x′), (x, x′) ∈ X × X}
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What Does Compositions Do?

Kern(f1) ⊆ Kern(fk−1 ◦ . . .◦f2 ◦f1) ⊆ Kern(fk ◦fk−1 ◦ . . .◦f2 ◦f1)
Im(fk ◦fk−1 ◦ . . .◦f2 ◦f1) ⊆ Im(fk ◦fk−1 ◦ . . .◦f2) ⊆ . . . ⊆ Im(fk)
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Why do we want composite functions?
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Why do we want composite functions?
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Why do we want composite functions?
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Because we want to hang out with the cool kids

Deep Learning is a bit like smoking, you know that its
wrong but you do it anyway because you want to look
cool.
– Fantomens Djungelordspråk
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DGP vs DNN Neal, 1996

x ∈ Rd

z1 = cu1(x)

h1 = B>
1 z1

z2 = cu2(h1)

h2 = B>
2 z2

z3 = cu3(h2)

y = b>3 z3

x ∈ Rd

z1 = σ(W1x)

z2 = σ((W2V
>
1 )h1)

z3 = σ((W3V
>
2 )h2)

y = V >
3 z3
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Posterior

• Approximate Posterior

p(f | u, x, z, y) ≈ q(f) = p(f | u, x, z)
= N (f | KfuK

−1
uu u,Kff −KfuK

−1
uuKuf )

• Linear Mapping

E[f(x)] = KfuK
−1
uu u = bT cu(x)

cu(x) = k(x, u)
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Prediction

Composite GP predictive mean

E[fDGP (x)] = BT
LcuL(· · ·BT

2 cu2(B
T
1 (x)))

Neural Network forward pass

fNN (x) = V T
L σ(WL · · ·V T

2 σ(W2V
T
1 σ(W1x)))
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"Activations"
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DNNs as point estimates for DGPs5

cu(·) ∼ σ(W ·)

• Define an equivalence between activation functions and
co-variance

• Interdomain Gaussian Processes Lázaro-Gredilla et al., 2009

5Dutordoir et al., 2021a.
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Same Same
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Learning

• Gaussian process

argmax
θ

∫
p(y | fL)p(fL | fL−1) · · · p(f2 | f1)p(f1)dfL,L−1,...,2,1︸ ︷︷ ︸

pθ(y)

• Neural Network
arxmax
W,V,θ

`(W,V, θ)
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Composite GP Step
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Composite GP Step

73



Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions
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Composite Gaussian Processes
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Composite Gaussian Processes
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Composite Gaussian Processes
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Composite Gaussian Processes
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Learning
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Learning
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Is this useful?

"A theory that explains everything, explains nothing"
– Karl Popper The Logic of Scientific Discovery

97



Approximate Inference

• Sufficient statistics

q(F)q(U)q(X) = p(F|Y,U,X,Z)q(U)q(X)

= p(F|U,X,Z)q(U)q(X)

• Mean-Field

q(U) =
L∏
i

q(Ui)

Y

fL

fL−1

f1

x

u1

uL−1

uL
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Composite Uncertainty
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Composite Uncertainty
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The Effect of Independence
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Motivation

Often when people talk about the limitations of variational
inference, they really mean the limitations of mean-field.
– Danilo J. Rezende (on twitter)

102



Results6

6Ustyuzhaninov et al., 2020.
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"Multi-Modality"7
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7Ustyuzhaninov et al., 2020.
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Software

Code

[]python Initialise a 4-layer model consisting of NN lay-
ers and GP layers model = Sequential ([ Dense (...) ,
Convolution (...) , GPLayer (...) , GPLayer (...) ])
model.compile(loss=LikelihoodLoss(Gaussian ()), optimizer
="Adam") Fitting callbacks = [ReduceLROnPlateau (), Ten-
sorBoard (), ModelCheckpoint ()] model.fit(X, Y, callbacks
=callbacks ) Evaluating model.predict(X)

GPFlux Dutordoir et al., 2021b
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Summary

• Unsupervised learning8 is very hard.

• Its actually not, its really really easy.

• Relevant assumptions needed to learn anything useful

• Strong assumptions needed to learn anything from "sensible"
amounts of data

• Stochastic processes such as GPs provide strong,
interpretative assumptions that aligns well to our intuitions
allowing us to make relevant assumptions

8I would argue that there is no such thing
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Summary II

• Composite functions cannot model more things

• However, they can easily warp the input space to model less
things

• This leads to high requirements on data
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"Bayesian Neural Networks"

y = f(x,W)

w ∼ N (0, I)

x

y
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Bayesian Superiority
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Thoughts

• Compositions are good parametrisations for learning
parameters9

• Adding probabilities to regularise the learning makes sense

• But the posterior can only be interpreted in light of the prior

• And uncertainties are composite themselves

9Neural Networks (Maybe) Evolved to Make Adam The Best Optimizer
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Thoughts

• Can you ever defend a composite model if your knowledge is
not composite?

• k(f(x), f(x′)), k([x, z], [x, z′])

• Current "frameworks" doesn’t allow for
compartmentalisations

• what is a composite probability?
• what is a composite function prior?
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eof
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