

Unsupervised and Composite Gaussian Processes

Carl Henrik Ek - che29@cam.ac.uk

15th of September, 2021

http://carlhenrik.com

15/09/2021

- ${\mathcal F}$ space of functions
- ${\mathcal A}$ learning algorithm
- $\mathcal{S} = \{(x_1, y_1), \ldots, (x_N, y_N)\}$
- $S \sim P(X \times Y)$
- $\ell(\mathcal{A}_{\mathcal{F}}(\mathcal{S}), x, y)$ loss function

$$e(\mathcal{S}, \mathcal{A}, \mathcal{F}) = \mathbb{E}_{P(\{\mathcal{X}, \mathcal{Y}\})} \left[\ell(\mathcal{A}_{\mathcal{F}}(\mathcal{S}), x, y) \right]$$

$$e(\mathcal{S}, \mathcal{A}, \mathcal{F}) = \mathbb{E}_{P(\{\mathcal{X}, \mathcal{Y}\})} \left[\ell(\mathcal{A}_{\mathcal{F}}(\mathcal{S}), x, y) \right]$$
$$\approx \frac{1}{M} \sum_{n=1}^{M} \ell(\mathcal{A}_{\mathcal{F}}(\mathcal{S}), x_n, y_n)$$

We can come up with a combination of $\{S, A, F\}$ that makes e(S, A, F) take an arbitrary value

Data and Knowledge

Assumptions: Algorithms

Statistical Learning

 $\boldsymbol{\mathcal{A}_{\mathcal{F}}(\mathcal{S})}$

Assumptions: Biased Sample

Statistical Learning

 $\mathcal{A}_{\mathcal{F}}(\mathcal{S})$

Assumptions: Hypothesis space

Statistical Learning $\mathcal{A}_{\mathcal{F}}(\mathcal{S})$

• There seems to be a narrative that the more *flexible* a model is the better it is

- There seems to be a narrative that the more *flexible* a model is the better it is
 - This is not true

- There seems to be a narrative that the more *flexible* a model is the better it is
 - This is not true
- The best possible model has infinite support (nothing is excluded) but very focused mass

- There seems to be a narrative that the more *flexible* a model is the better it is
 - This is not true
- The best possible model has infinite support (nothing is excluded) but very focused mass
- Your solution can only ever be interpreted in the light of your assumptions

Conditional Gaussians

$$p(x_1, x_2)$$
 $p(x_1) = \int p(x_1, x_2) dx$ $p(x_1|x_2) = \frac{p(x_1, x_2)}{p(x_2)}$

Gaussian Identities

Unsupervised Gaussian Processes

p(y|x)

p(y)

Priors

$$p(y) = \int p(y|f)p(f|x)p(x)\mathrm{d}f\mathrm{d}x$$

- 1. Priors that makes sense
 - p(f) describes our belief/assumptions and defines our notion of complexity in the function
 - p(x) expresses our belief/assumptions and defines our notion of complexity in the latent space
- 2. Now lets churn the handle

Relationship between x and data

$$p(y) = \int p(y|f)p(f|x)p(x)dfdx$$

• GP prior

$$p(f|x) \sim \mathcal{N}(0, K) \propto e^{-\frac{1}{2}(f^{\mathrm{T}K^{-1}f})}$$
$$K_{ij} = e^{-(x_i - x_j)^{\mathrm{T}}M^{\mathrm{T}}M(x_i - x_j)}$$

Relationship between x and data

$$p(y) = \int p(y|f)p(f|x)p(x)dfdx$$

• GP prior

$$p(f|x) \sim \mathcal{N}(0, K) \propto e^{-\frac{1}{2}(f^{\mathrm{T}}K^{-1}f)}$$
$$K_{ij} = e^{-(x_i - x_j)^{\mathrm{T}}M^{\mathrm{T}}M(x_i - x_j)}$$

• Likelihood

$$p(y|f) \sim N(y|f,\beta) \propto e^{-\frac{1}{2\beta}\operatorname{tr}(y-f)^{\mathrm{T}}(y-f)}$$

Laplace Integration

"Nature laughs at the difficulties of integrations" - Simon Laplace

Approximate Inference

$$p(y) = \int p(y \mid x) p(x) \mathrm{d}x$$

Variational Bayes

p(y)

Variational Bayes

 $\log p(y)$

$$\log p(y) = \log p(y) + \int \log \frac{p(x|y)}{p(x|y)} dx$$

$$\log p(y) = \log p(y) + \int \log \frac{p(x|y)}{p(x|y)} dx$$
$$= \int q(x) \log p(y) dx + \int q(x) \log \frac{p(x|y)}{p(x|y)} dx$$

$$\log p(y) = \log p(y) + \int \log \frac{p(x|y)}{p(x|y)} dx$$
$$= \int q(x) \log p(y) dx + \int q(x) \log \frac{p(x|y)}{p(x|y)} dx$$
$$= \int q(x) \log \frac{p(x|y)p(y)}{p(x|y)} dx$$

$$\log p(y) = \log p(y) + \int \log \frac{p(x|y)}{p(x|y)} dx$$
$$= \int q(x) \log p(y) dx + \int q(x) \log \frac{p(x|y)}{p(x|y)} dx$$
$$= \int q(x) \log \frac{p(x|y)p(y)}{p(x|y)} dx = \int q(x) \log \frac{p(x,y)}{p(x|y)} dx$$

$$\log p(y) = \log p(y) + \int \log \frac{p(x|y)}{p(x|y)} dx$$
$$= \int q(x) \log p(y) dx + \int q(x) \log \frac{p(x|y)}{p(x|y)} dx$$
$$= \int q(x) \log \frac{p(x|y)p(y)}{p(x|y)} dx = \int q(x) \log \frac{p(x,y)}{p(x|y)} dx$$
$$= \int q(x) \log \frac{q(x)}{q(x)} dx + \int q(x) \log p(x,y) dx + \int q(x) \log \frac{1}{p(x|y)} dx$$

$$\log p(y) = \log p(y) + \int \log \frac{p(x|y)}{p(x|y)} dx$$
$$= \int q(x) \log p(y) dx + \int q(x) \log \frac{p(x|y)}{p(x|y)} dx$$
$$= \int q(x) \log \frac{p(x|y)p(y)}{p(x|y)} dx = \int q(x) \log \frac{p(x,y)}{p(x|y)} dx$$
$$= \int q(x) \log \frac{q(x)}{q(x)} dx + \int q(x) \log p(x,y) dx + \int q(x) \log \frac{1}{p(x|y)} dx$$

$$= \int q(x) \log \frac{1}{q(x)} dx + \int q(x) \log p(x, y) dx + \int q(x) \log \frac{q(x)}{p(x|y)} dx$$

Jensen Inequality

$$\int \log(x)p(x)dx \ge \log\left(\int xp(x)dx\right)$$

moving the log outside the the integral is a lower-bound on the integral

 $\int q(x) \log \frac{q(x)}{p(x|y)} \mathrm{d}x$

$\int q(x) \log rac{q(x)}{p(x|y)} \mathrm{d}x = -\int q(x) \log rac{p(x|y)}{q(x)} \mathrm{d}x$

$$\int q(x) \log \frac{q(x)}{p(x|y)} dx = -\int q(x) \log \frac{p(x|y)}{q(x)} dx$$
$$\geq -\log \int p(x|y) dx$$
$$= -\log 1 = 0$$

 $\int q(x) \log \frac{q(x)}{p(x|y)} \mathrm{d}x$

$$\int q(x) \log \frac{q(x)}{p(x|y)} \mathrm{d}x = \{ \text{Lets assume that } q(x) = p(x|y) \}$$

$$\int q(x) \log \frac{q(x)}{p(x|y)} dx = \{ \text{Lets assume that } q(x) = p(x|y) \}$$
$$= \int p(x|y) \log \underbrace{\frac{p(x|y)}{p(x|y)}}_{=1} dx$$

$$\int q(x) \log \frac{q(x)}{p(x|y)} dx = \{ \text{Lets assume that } q(x) = p(x|y) \}$$
$$= \int p(x|y) \log \underbrace{\frac{p(x|y)}{p(x|y)}}_{=1} dx$$
$$= 0$$

$$KL(q(x)||p(x|y)) = \int q(x) \log rac{q(x)}{p(x|y)} \mathrm{d}x$$

- Measure of divergence between distributions
- Not a metric (not symmetric)
- $KL(q(x)||p(x|y)) = 0 \Leftrightarrow q(x) = p(x|y)$
- $KL(q(x)||p(x|y)) \ge 0$

$$\log p(y) = \int q(x) \log \frac{1}{q(x)} dx + \int q(x) \log p(x, y) dx + \int q(x) \log \frac{q(x)}{p(x|y)} dx$$
$$\geq -\int q(x) \log q(x) dx + \int q(x) \log p(x, y) dx$$

- The Evidence Lower BOnd
- Tight if q(x) = p(x|y)

Deterministic Approximation

$$\log p(y) \ge -\int q(x)\log q(x)dx + \int q(x)\log p(x,y)dx$$
$$= \mathbb{E}_{q(x)} \left[\log p(x,y)\right] - H(q(x)) = \mathcal{L}(q(x))$$

- if we maximise the ELBO we,
 - find an approximate posterior
 - lower bound the marginal likelihood
- maximising p(y) is learning
- finding $q(x) \approx p(x|y)$ is prediction

$$\mathcal{L}(q(x)) = \mathbb{E}_{q(x)} \left[\log p(x, y) \right] - H(q(x))$$

- We have to be able to compute an expectation over the joint distribution
- The second term should be trivial

$$\mathcal{L} = \int_{x} q(x) \log \left(\frac{p(y, f, x)}{q(x)} \right)$$

$$\mathcal{L} = \int_{x} q(x) \log \left(\frac{p(y, f, x)}{q(x)} \right)$$
$$= \int_{x} q(x) \log \left(\frac{p(y \mid f) p(f \mid x) p(x))}{q(x)} \right)$$

$$\mathcal{L} = \int_{x} q(x) \log \left(\frac{p(y, f, x)}{q(x)} \right)$$

= $\int_{x} q(x) \log \left(\frac{p(y \mid f) p(f \mid x) p(x))}{q(x)} \right)$
= $\int_{x} q(x) \log p(y \mid f) p(f \mid x) - \int_{x} q(x) \log \frac{q(x)}{p(x)}$

$$\mathcal{L} = \int_{x} q(x) \log \left(\frac{p(y, f, x)}{q(x)} \right)$$

= $\int_{x} q(x) \log \left(\frac{p(y \mid f) p(f \mid x) p(x)}{q(x)} \right)$
= $\int_{x} q(x) \log p(y \mid f) p(f \mid x) - \int_{x} q(x) \log \frac{q(x)}{p(x)}$
= $\tilde{\mathcal{L}} - \mathrm{KL}(q(x) \parallel p(x))$

$$\tilde{\mathcal{L}} = \int q(x) \log p(y|f) p(f|x) \mathrm{d}f \mathrm{d}x$$

- Has not eliviate the problem at all, \boldsymbol{x} still needs to go through \boldsymbol{f} to reach the data
- Idea of sparse approximations²

²Candela et al., 2005

$p(f, u \mid x, z)$

- Add another set of samples from the same prior
- Conditional distribution

³Titsias et al., 2010

$$p(f, u \mid x, z) = p(f \mid u, x, z)p(u \mid z)$$

- Add another set of samples from the same prior
- Conditional distribution

³Titsias et al., 2010

$$p(f, u \mid x, z) = p(f \mid u, x, z)p(u \mid z)$$

= $\mathcal{N}(f \mid K_{fu}K_{uu}^{-1}u, K_{ff} - K_{fu}K_{uu}^{-1}K_{uf})\mathcal{N}(u \mid \mathbf{0}, K_{uu})$

- Add another set of samples from the same prior
- Conditional distribution

³Titsias et al., 2010

$p(y, f, u, x \mid z) = p(y \mid f)p(f \mid u, x)p(u \mid z)p(x)$

- we have done nothing to the model, just project an additional set of marginals from the GP
- *however* we will now interpret *u* and *z* not as random variables but variational parameters
- i.e. the variational distribution $q(\cdot)$ is parametrised by these

• Variational distributions are approximations to intractable posteriors,

$$\begin{split} q(u) &\approx p(u \mid y, x, z, f) \\ q(f) &\approx p(f \mid u, x, z, y) \\ q(x) &\approx p(x \mid y) \end{split}$$

Variational distributions are approximations to intractable posteriors,

$$\begin{split} q(u) &\approx p(u \mid y, x, z, f) \\ q(f) &\approx p(f \mid u, x, z, y) \\ q(x) &\approx p(x \mid y) \end{split}$$

• Bound is tight if u completely represents f i.e. u is sufficient statistics for f

$$q(f) \approx p(f \mid u, x, z, y) = p(f \mid u, x, z)$$

$$\tilde{\mathcal{L}} = \int_{x, f, u} q(f) q(u) q(x) \log \frac{p(y, f, y \mid x, z)}{q(f)q(u)}$$

$$\begin{split} \tilde{\mathcal{L}} &= \int_{x,f,u} q(f)q(u)q(x) \mathrm{log} \frac{p(y,f,y \mid x,z)}{q(f)q(u)} \\ &= \int_{x,f,u} q(f)q(u)q(x) \mathrm{log} \frac{p(y \mid f)p(f \mid u,x,z)p(u \mid z)}{q(f)q(u)} \end{split}$$

• Assume that u is sufficient statistics of f

$$q(f) = p(f \mid u, x, z)$$

$$\tilde{\mathcal{L}} = \int_{x,f,u} q(f)q(u)q(x)\log\frac{p(y\mid f)p(f\mid u, x, z)p(u\mid z)}{q(f)q(u)}$$

$$\begin{split} \tilde{\mathcal{L}} &= \int_{x,f,u} q(f)q(u)q(x) \mathrm{log} \frac{p(y \mid f)p(f \mid u, x, z)p(u \mid z)}{q(f)q(u)} \\ &= \int_{x,f,u} p(f \mid u, x, z)q(u)q(x) \mathrm{log} \frac{p(y \mid f)p(f \mid u, x, z)p(u \mid z)}{p(f \mid u, x, z)q(u)} \end{split}$$

$$\begin{split} \tilde{\mathcal{L}} &= \int_{x,f,u} q(f)q(u)q(x) \mathrm{log} \frac{p(y \mid f)p(f \mid u, x, z)p(u \mid z)}{q(f)q(u)} \\ &= \int_{x,f,u} p(f \mid u, x, z)q(u)q(x) \mathrm{log} \frac{p(y \mid f)p(f \mid u, x, z)p(u \mid z)}{p(f \mid u, x, z)q(u)} \end{split}$$

$$\begin{split} \tilde{\mathcal{L}} &= \int_{x,f,u} q(f)q(u)q(x) \mathrm{log} \frac{p(y \mid f)p(f \mid u, x, z)p(u \mid z)}{q(f)q(u)} \\ &= \int_{x,f,u} p(f \mid u, x, z)q(u)q(x) \mathrm{log} \frac{p(y \mid f)p(f \mid u, x, z)p(u \mid z)}{p(f \mid u, x, z)q(u)} \\ &= \int_{x,f,u} p(f \mid u, x, z)q(u)q(x) \mathrm{log} \frac{p(y \mid f)p(u \mid z)}{q(u)} \end{split}$$

$$\begin{split} \tilde{\mathcal{L}} &= \int_{x,f,u} q(f)q(u)q(x) \log \frac{p(y \mid f)p(f \mid u, x, z)p(u \mid z)}{q(f)q(u)} \\ &= \int_{x,f,u} p(f \mid u, x, z)q(u)q(x) \log \frac{p(y \mid f)p(f \mid u, x, z)p(u \mid z)}{p(f \mid u, x, z)q(u)} \\ &= \int_{x,f,u} p(f \mid u, x, z)q(u)q(x) \log \frac{p(y \mid f)p(u \mid z)}{q(u)} \\ &= \mathbb{E}_{p(f \mid u, x, z)}[p(y \mid f)] - \mathrm{KL}(q(u) \parallel p(u \mid z)) \end{split}$$

 $\mathcal{L} = \mathbb{E}_{p(f|u,x,z)}[p(y \mid f)] - \mathrm{KL}(q(u) \parallel p(u \mid z)) - \mathrm{KL}(q(x) \parallel p(x))$

- Expectation tractable (for some co-variances)
- Allows us to place priors and not "regularisers" over the latent representation
- Stochastic inference Hensman et al., 2013
- Importantly p(x) only appears in $KL(\cdot \parallel \cdot)$ term!

Latent Space Priors

 $p(x) \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})$

$$k(\mathbf{x}_i, \mathbf{x}_j) = \sigma e^{-\sum_d^D \alpha_d \cdot (x_{i,d} - x_{j,d})^2}$$

GPy

Code

Dynamic Prior

$$p(x \mid t) = \mathcal{N}(\mu_t, K_t)$$

Composite Gaussian Processes

Composite Gaussian Processes ⁴

$$y = f^{(k)}(f^{(k-1)}(\cdots f^{(2)}(f^{(1)}(x))))$$

⁴Damianou et al., 2013

Composite Models

What is a composite function?

What Does Compositions Do?

$$\mathsf{Im}(f)[\mathcal{X}] = \{f(x) \mid x \in \mathcal{X}\}$$
$$\mathsf{Kern}(f)[\mathcal{X}] = \{(x, x') \mid f(x) = f(x'), \ (x, x') \in \mathcal{X} \times \mathcal{X}\}$$

What Does Compositions Do?

$$\operatorname{Kern}(f_1) \subseteq \operatorname{Kern}(f_{k-1} \circ \ldots \circ f_2 \circ f_1) \subseteq \operatorname{Kern}(f_k \circ f_{k-1} \circ \ldots \circ f_2 \circ f_1)$$
$$\operatorname{Im}(f_k \circ f_{k-1} \circ \ldots \circ f_2 \circ f_1) \subseteq \operatorname{Im}(f_k \circ f_{k-1} \circ \ldots \circ f_2) \subseteq \ldots \subseteq \operatorname{Im}(f_k)$$

Why do we want composite functions?

Why do we want composite functions?

Why do we want composite functions?

Because we want to hang out with the cool kids

Deep Learning is a bit like smoking, you know that its wrong but you do it anyway because you want to look cool.

– Fantomens Djungelordspråk

DGP vs DNN Neal, 1996

• Approximate Posterior

$$p(f \mid u, x, z, y) \approx q(f) = p(f \mid u, x, z)$$
$$= \mathcal{N}(f \mid K_{fu}K_{uu}^{-1}u, K_{ff} - K_{fu}K_{uu}^{-1}K_{uf})$$

• Linear Mapping

$$\mathbb{E}[f(x)] = K_{fu} K_{uu}^{-1} u = b^T c_u(x)$$
$$c_u(x) = k(x, u)$$

Composite GP predictive mean

$$\mathbb{E}[f_{DGP}(x)] = B_L^{\mathrm{T}} c_{u_L}(\cdots B_2^{\mathrm{T}} c_{u_2}(B_1^{\mathrm{T}}(x)))$$

Neural Network forward pass

$$f_{NN}(x) = V_L^{\mathrm{T}} \sigma(W_L \cdots V_2^{\mathrm{T}} \sigma(W_2 V_1^{\mathrm{T}} \sigma(W_1 x)))$$

$$c_u(\cdot) \sim \sigma(W \cdot)$$

- Define an equivalence between activation functions and co-variance
- Interdomain Gaussian Processes Lázaro-Gredilla et al., 2009

⁵Dutordoir et al., 2021a.

• Gaussian process

$$\underset{\theta}{\operatorname{argmax}} \underbrace{\int p(y \mid f_L) p(f_L \mid f_{L-1}) \cdots p(f_2 \mid f_1) p(f_1) \mathrm{d}f_{L,L-1,\dots,2,1}}_{p_{\theta}(y)}$$

• Neural Network

 $\mathop{\mathrm{arxmax}}_{W,V,\theta} \ \ell(W,V,\theta)$

Composite GP Step

Composite GP Step

Learning

Learning

"A theory that explains everything, explains nothing" - Karl Popper The Logic of Scientific Discovery
Approximate Inference

• Sufficient statistics

$$q(\mathbf{F})q(\mathbf{U})q(\mathbf{X}) = p(\mathbf{F}|\mathbf{Y}, \mathbf{U}, \mathbf{X}, \mathbf{Z})q(\mathbf{U})q(\mathbf{X})$$

$$= p(\mathbf{F}|\mathbf{U},\mathbf{X},\mathbf{Z})q(\mathbf{U})q(\mathbf{X})$$

• Mean-Field

$$q(\mathbf{U}) = \prod_{i}^{L} q(\mathbf{U}_{i})$$

Composite Uncertainty

Composite Uncertainty

The Effect of Independence

Often when people talk about the limitations of variational inference, they really mean the limitations of mean-field. - Danilo J. Rezende (on twitter)

⁶Ustyuzhaninov et al., 2020.

"Multi-Modality"⁷

⁷Ustyuzhaninov et al., 2020.

Code

[]python Initialise a 4-layer model consisting of NN layers and GP layers model = Sequential ([Dense (...) , Convolution (...) , GPLayer (...) , GPLayer (...)]) model.compile(loss=LikelihoodLoss(Gaussian ()), optimizer ="Adam") Fitting callbacks = [ReduceLROnPlateau (), TensorBoard (), ModelCheckpoint ()] model.fit(X, Y, callbacks =callbacks) Evaluating model.predict(X)

GPFlux Dutordoir et al., 2021b

• Unsupervised learning⁸ is very hard.

 $^{^{8}\}mbox{I}$ would argue that there is no such thing

- Unsupervised learning⁸ is very hard.
 - Its actually not, its really really easy.

⁸I would argue that there is no such thing

- Unsupervised learning⁸ is very hard.
 - Its actually not, its really really easy.
- Relevant assumptions needed to learn anything useful

 $^{^{\}rm 8}{\rm I}$ would argue that there is no such thing

- Unsupervised learning⁸ is very hard.
 - Its actually not, its really really easy.
- Relevant assumptions needed to learn anything useful
- Strong assumptions needed to learn anything from "sensible" amounts of data

 $^{^{8}\}mbox{I}$ would argue that there is no such thing

- Unsupervised learning⁸ is very hard.
 - Its actually not, its really really easy.
- Relevant assumptions needed to learn anything useful
- Strong assumptions needed to learn anything from "sensible" amounts of data
- Stochastic processes such as GPs provide strong, interpretative assumptions that aligns well to our intuitions allowing us to make relevant assumptions

⁸I would argue that there is no such thing

• Composite functions cannot model more things

- Composite functions cannot model more things
- However, they can easily warp the input space to model less things

- Composite functions cannot model more things
- However, they can easily warp the input space to model less things
- This leads to high requirements on data

"Bayesian Neural Networks"

$$y = f(x, \mathbf{W})$$
$$w \sim \mathcal{N}(0, I)$$

Bayesian Superiority

 Compositions are good parametrisations for learning parameters⁹

⁹Neural Networks (Maybe) Evolved to Make Adam The Best Optimizer

- Compositions are good parametrisations for learning parameters⁹
- Adding probabilities to regularise the learning makes sense

⁹Neural Networks (Maybe) Evolved to Make Adam The Best Optimizer

- Compositions are good parametrisations for learning parameters⁹
- Adding probabilities to regularise the learning makes sense
- But the posterior can only be interpreted in light of the prior

⁹Neural Networks (Maybe) Evolved to Make Adam The Best Optimizer

- Compositions are good parametrisations for learning parameters⁹
- Adding probabilities to regularise the learning makes sense
- But the posterior can only be interpreted in light of the prior
- And uncertainties are composite themselves

⁹Neural Networks (Maybe) Evolved to Make Adam The Best Optimizer

• Can you ever defend a composite model if your knowledge is not composite?

- Can you ever defend a composite model if your knowledge is not composite?
 - k(f(x), f(x')), k([x, z], [x, z'])

- Can you ever defend a composite model if your knowledge is not composite?
 - k(f(x), f(x')), k([x, z], [x, z'])
- Current "frameworks" doesn't allow for compartmentalisations

- Can you ever defend a composite model if your knowledge is not composite?
 - k(f(x), f(x')), k([x, z], [x, z'])
- Current "frameworks" doesn't allow for compartmentalisations
 - what is a composite probability?

- Can you ever defend a composite model if your knowledge is not composite?
 - k(f(x), f(x')), k([x, z], [x, z'])
- Current "frameworks" doesn't allow for compartmentalisations
 - what is a composite probability?
 - what is a composite function prior?

eof

Reference

References

- Candela, Joaquin Quiñonero and Carl Edward Rasmussen (2005). "A Unifying View of Sparse Approximate Gaussian Process Regression". In: *Journal of Machine Learning Research* 6, pp. 1939–1959.
- Damianou, Andreas C (Feb. 2015). "Deep Gaussian Processes and Variational Propagation of Uncertainty". PhD thesis. University of Sheffield.

References ii

- Damianou, Andreas C and Neil D Lawrence (2013). "Deep Gaussian Processes". In: International Conference on Airtificial Inteligence and Statistical Learning, pp. 207–215.
- Dutordoir, Vincent et al. (2021a). "Deep Neural Networks As Point Estimates for Deep Gaussian Processes". In: *CoRR*.
- Dutordoir, Vincent et al. (2021b). "Gpflux: a Library for Deep Gaussian Processes". In: *CoRR*.
- 📔 Hensman, James, N Fusi, and Neil D Lawrence (2013).
 - "Gaussian Processes for Big Data". In: *Uncertainty in Artificial Intelligence*.

References iii

- Lázaro-Gredilla, Miguel and Aníbal Figueiras-Vidal (2009).
 "Inter-domain Gaussian Processes for Sparse Inference using Inducing Features". In: Advances in Neural Information Processing Systems. Ed. by Y. Bengio et al. Vol. 22. Curran Associates, Inc.
- Neal, Radford M (1996). Bayesian Learning for Neural Networks. Vol. 8. New York: Springer-Verlag.
- Popper, K.R. (1959). The Logic of Scientific Discovery. ISSR library. Routledge.
- Titsias, Michalis and Neil D Lawrence (2010). "Bayesian Gaussian Process Latent Variable Model". In: International Conference on Airtificial Inteligence and Statistical Learning, pp. 844–851.

Ustyuzhaninov, Ivan et al. (2020). "Compositional uncertainty in deep Gaussian processes". In: Proceedings of the Thirty-Sixth Conference on Uncertainty in Artificial Intelligence, UAI 2020, virtual online, August 3-6, 2020. Ed. by Ryan P. Adams and Vibhav Gogate. Vol. 124. Proceedings of Machine Learning Research. AUAI Press, pp. 480–489.