Challenges in building widely applicable GP software

Aki Vehtari

Aalto University A! Finnish Center for Artificial Intelligence FCAI Stan G

Aki.Vehtari@aalto.fi - @avehtari

Aki.Vehtari@aalto.fi - @avehtari

- The first Gaussian process software packages I used
 - FBM by Radford Neal
 - Netlab by Christopher Bishop and Ian Nabney

- The first Gaussian process software packages I used
 - FBM by Radford Neal
 - Netlab by Christopher Bishop and Ian Nabney
- I lead the development of GPstuff software (Matlab/Octave)
 - developed methods and published on GPs and approximate inference, model selection and applications

- The first Gaussian process software packages I used
 - FBM by Radford Neal
 - Netlab by Christopher Bishop and Ian Nabney
- I lead the development of GPstuff software (Matlab/Octave)
 - developed methods and published on GPs and approximate inference, model selection and applications
- I'm part of Stan development team
 - probabilistic programming framework (language, autodiff, inference engine, interfaces, ecosystem)

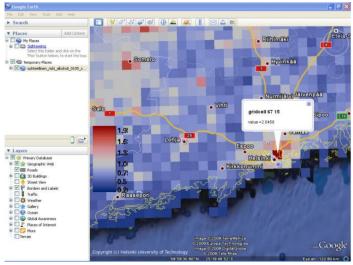
- The first Gaussian process software packages I used
 - FBM by Radford Neal
 - Netlab by Christopher Bishop and Ian Nabney
- I lead the development of GPstuff software (Matlab/Octave)
 - developed methods and published on GPs and approximate inference, model selection and applications
- I'm part of Stan development team
 - probabilistic programming framework (language, autodiff, inference engine, interfaces, ecosystem)
 - GPs support is not a priority, but will get eventually better

- predicting concrete quality
- spatial epidemiology
- cancer recurrence risk prediction
- finding minimum energy paths and saddle points
- ABC / likelihood free inference
- medicine dosage design

• predicting concrete quality

- spatial epidemiology
- cancer recurrence risk prediction
- finding minimum energy paths and saddle points
- ABC / likelihood free inference
- medicine dosage design

- predicting concrete quality
- spatial epidemiology



cancer recurrence risk prediction

Aki.Vehtari@aalto.fi - @avehtari

- predicting concrete quality
- spatial epidemiology
- cancer recurrence risk prediction

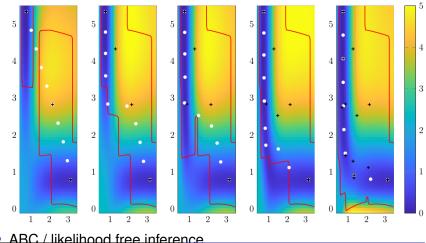


Aki.Vehtari@aalto.fi - @avehtari

- predicting concrete quality
- spatial epidemiology
- cancer recurrence risk prediction
- finding minimum energy paths and saddle points

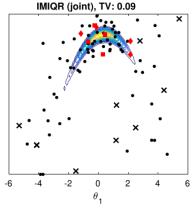
- ABC / likelihood free inference
- medicine dosage design

- predicting concrete quality
- spatial epidemiology
- cancer recurrence risk prediction
- finding minimum energy paths and saddle points



Aki.Vehtari@aalto.fi – @avehtari

- predicting concrete quality
- spatial epidemiology
- cancer recurrence risk prediction
- finding minimum energy paths and saddle points
- ABC / likelihood free inference



medicine dosage design

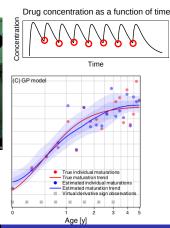
Aki.Vehtari@aalto.fi - @avehtari

- predicting concrete quality
- spatial epidemiology
- cancer recurrence risk prediction
- finding minimum energy paths and saddle points
- ABC / likelihood free inference
- medicine dosage design

Drug concentration as a function of time

Time

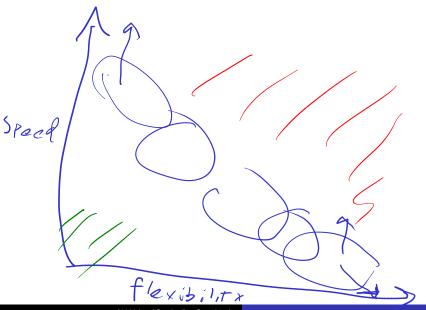
- predicting concrete quality
- spatial epidemiology
- cancer recurrence risk prediction
- finding minimum energy paths and saddle points
- ABC / likelihood free inference
- medicine dosage design



Some other software

- GPML
- GPy
- GPFlow
- GPtorch
- PyMC3
- TensorFlow probabilities
- Pyro
- Turing.JL
- INLA
- mgcv

https://en.wikipedia.org/wiki/Comparison_of_Gaussian_ process_software



Aki.Vehtari@aalto.fi - @avehtari

• Direct implementation for Gaussian-GP $O(n^3)$

- Direct implementation for Gaussian-GP $O(n^3)$
- Faster with specific algorithms, e.g.

- Direct implementation for Gaussian-GP $O(n^3)$
- Faster with specific algorithms, e.g.
 - 1D equispaced grid $O(n \log n)$
 - 1D Kalman filtering/smoothing O(n)
 - 1-4D basis functions

- Direct implementation for Gaussian-GP $O(n^3)$
- Faster with specific algorithms, e.g.
 - 1D equispaced grid $O(n \log n)$
 - 1D Kalman filtering/smoothing O(n)
 - 1–4D basis functions
 - Kroenecker

- Direct implementation for Gaussian-GR $O(n^3)$
- Faster with specific algorithms, e.g.
 - 1D equispaced grid $O(n \log n)$
 - 1D Kalman filtering/smoothing O(n)
 - 1–4D basis functions
 - Kroenecker
 - compact covariance function and sparse matrices?
 - sparse precision matrices
 - low dimensional local/hierarchical covariance approximations

- Direct implementation for Gaussian-GP $O(n^3)$
- Faster with specific algorithms, e.g.
 - 1D equispaced grid $O(n \log n)$
 - 1D Kalman filtering/smoothing O(n)
 - 1–4D basis functions
 - Kroenecker
 - compact covariance function and sparse matrices
 - sparse precision matrices
 - low dimensional local/hierarchical covariance approximations
 - inducing point approaches

- Direct implementation for Gaussian-GP $O(n^3)$
- Faster with specific algorithms, e.g.
 - 1D equispaced grid $O(n \log n)$
 - 1D Kalman filtering/smoothing O(n)
 - 1–4D basis functions
 - Kroenecker
 - compact covariance function and sparse matrices
 - sparse precision matrices
 - low dimensional local/hierarchical covariance approximations
 - inducing point approaches
- Which approximation to use depends on e.g. stationarity, relative correlation length, combination of covariance functions

- The full joint posterior has difficult geometry
 - MCMC is likely to be slow
 - distributional approximations are likely to be bad
- The conditional distribution for latent values is easier
 - integrate out the latent variables using approximations
 - Laplace, EP, variational
 - if big data, maximizing marginal likelihood is ok
- Things get more difficult on the next slide

 $f \sim G = G = \left(O = K \left(x, y, \phi \right) \right)$ $g \sim P(f, \phi)$

Flexibility

- Different observation models
 - exponential family easy

Flexibility

- Different observation models
 - exponential family easy
 - non-exponential family varyingly difficult

Flexibility

- Different observation models
 - exponential family easy
 - non-exponential family varyingly difficult
 - observation models depending on multiple latent values
 - observation models depending on multiple observations
 - censored data
 - multioutput
 - derivative observations

Flexibility vs complexity

- Combinatorial explosion if all features need to work together
 - \oslash approximate computation related to covariance matrix
 - Capproximate integration (latent or joint)
 - Q different observation models
 - ______different priors
 - \bigcirc combine with other models like ODEs

• How about Turing complete probabilistic programming language, autodiff and automatic inference?

- How about Turing complete probabilistic programming language, autodiff and automatic inference?
- Speed in autodiff systems is not automatic!

- How about Turing complete probabilistic programming language, autodiff and automatic inference?
- Speed in autodiff systems is not automatic!
 - what is a node in autodiff?
 - forward, reverse, mixed, adjoints, etc.

- How about Turing complete probabilistic programming language, autodiff and automatic inference?
- Speed in autodiff systems is not automatic!
 - what is a node in autodiff?
 - forward, reverse, mixed, adjoints, etc.
- Inference speed depends on
 - computational cost of single (marginal) log density
 - difficult posterior geometries require more (marginal) log density evluations
 - integration vs maximzing marginal likelihood

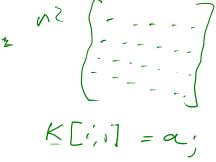
• For 1D-3D we recommend basis functions

>

- For 1D-3D we recommend basis functions
- Kalman filtering/smoothing exists, but slow without explicit derivatives

- For 1D-3D we recommend basis functions
- Kalman filtering/smoothing exists, but slow without explicit derivatives
- For small data covariance matrix approach with $O(n^3)$ feasible

- For 1D-3D we recommend basis functions
- Kalman filtering/smoothing exists, but slow without explicit derivatives
- For small data covariance matrix approach with $O(n^3)$ feasible
- Matrix variable coming soon



- For 1D-3D we recommend basis functions
- Kalman filtering/smoothing exists, but slow without explicit derivatives
- For small data covariance matrix approach with *O*(*n*³) feasible
- Matrix variable coming soon
- Sparse matrices coming

- For 1D-3D we recommend basis functions
- Kalman filtering/smoothing exists, but slow without explicit derivatives
- For small data covariance matrix approach with *O*(*n*³) feasible
- Matrix variable coming soon
- Sparse matrices coming
- Laplace integration over the latents work in progress

- For 1D-3D we recommend basis functions
- Kalman filtering/smoothing exists, but slow without explicit derivatives
- For small data covariance matrix approach with *O*(*n*³) feasible
- Matrix variable coming soon
- Sparse matrices coming
- Laplace integration over the latents work in progress
- Even with these, Stan (or other generic PPL frameworks) is not competing with specialized software

Conclusion

- Very unlikely that one software would be best for everything
- Tradeoff between flexibility, speed, and additional implementation effort
- Prediction: There will be improvements in modularity and interoperability