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Motivation



Conjugate Gaussian inference has been widely exploited in probabilistic numerics (PN), being the basis
of methods developed for

▶ linear algebra [e.g. Cockayne et al., 2019, Bartels et al., 2019, Wenger and Hennig, 2020, Hennig, 2015, Reid et al.,

2020, Schäfer et al., 2021, Bartels and Hennig, 2016, Cockayne et al., 2021]

▶ cubature [e.g. Diaconis, 1988, O’Hagan, 1992, Fisher et al., 2020, Prüher and Särkkä, 2016, Gessner et al., 2020,

Karvonen et al., 2019, Chai and Garnett, 2019, Jagadeeswaran and Hickernell, 2019, Karvonen and Särkkä, 2017,

Karvonen et al., 2018, Osborne et al., 2012, Xi et al., 2018, Briol et al., 2015, Gunter et al., 2014, Kennedy, 1998,

O’Hagan, 1991, Larkin, 1972, Rasmussen and Ghahramani, 2003, Briol et al., 2019]

▶ optimisation [e.g. Mockus, 1977, Mockus et al., 1978, Mockus, 1989, Snoek et al., 2012, Hennig and Kiefel, 2013,

Mahsereci and Hennig, 2015]

▶ differential equations [e.g. Skilling, 1992, Chkrebtii et al., 2016, Schober et al., 2019, Teymur et al., 2016, 2018,

Hennig and Hauberg, 2013, Kersting and Hennig, 2016, Schober et al., 2014, Owhadi, 2015, Tronarp et al., 2019, Wang

et al., 2018, Cockayne et al., 2017, Chkrebtii and Campbell, 2019, Owhadi and Scovel, 2019, Kersting et al., 2020, Wang

et al., 2021, Bosch et al., 2021]

Principal limitations of current PN:

▶ nonlinear information pose a major technical challenge to this approach, due to the absence of
explicit conditioning formulae, so the current scope of PN is limited.

▶ lack of important functionalities, such as adaptivity, numerical well-conditioning, efficient use of
computational resource, etc.
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What is Linear Information?

▶ State of the universe: x = (x(t))t∈T , x ∈ X
▶ Information: A : X → Rn, some n ∈ {1, 2, . . . }
▶ Quantity of interest: Q : X → Rm, some m ∈ {1, 2, . . . } ∪ {∞}

e.g. for numerical integration we might have

Q(x) =

∫ 1

0

x(t) dt, A(x) = [x(0), x(h), x(2h), . . . , x(1)] .

Linear information enables us to use a conjugate Gaussian framework:

1. Select a Gaussian process (X (t))t∈T to represent epistemic uncertainty in (x(t))t∈T .

2. Compute the conditional

X |(A = a) ∼ GP(mX |a, kX |a)

mX |a(t) = At′k(t, t
′)[AtAt′k(t, t

′)]−1a

kX |a(t, t
′) = k(t, t′)− At′k(t, t

′)[AtAt′k(t, t
′)]−1Atk(t, t

′)

3. Push the remaining uncertainty through Q.
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What is Nonlinear Information?

Using the same notation, consider instead

Mx = b, x = (x1, . . . , xd)
⊤ ∈ Rd .

The matrix-vector products computed in the popular conjugate gradient method are

⟨s(1), b⟩, s(1) = b

⟨s(2), b⟩, s(2) = cubic in b

⟨s(3), b⟩, s(3) = ninth powers of b

...
...

So it seems natural to let

A(x) =

 ⟨s(1),Mx⟩
⟨s(2),Mx⟩

...


... but this is nonlinear information!

This problem is not easily fixed.



What is Nonlinear Information?

Using the same notation, consider instead

Mx = b, x = (x1, . . . , xd)
⊤ ∈ Rd .

The matrix-vector products computed in the popular conjugate gradient method are

⟨s(1), b⟩, s(1) = b

⟨s(2), b⟩, s(2) = cubic in b

⟨s(3), b⟩, s(3) = ninth powers of b

...
...

So it seems natural to let

A(x) =

 ⟨s(1),Mx⟩
⟨s(2),Mx⟩

...


... but this is nonlinear information!

This problem is not easily fixed.



What is Nonlinear Information?

Using the same notation, consider instead

Mx = b, x = (x1, . . . , xd)
⊤ ∈ Rd .

The matrix-vector products computed in the popular conjugate gradient method are

⟨s(1),Mx⟩, s(1) = b

⟨s(2),Mx⟩, s(2) = cubic in b

⟨s(3),Mx⟩, s(3) = ninth powers of b

...
...

So it seems natural to let

A(x) =

 ⟨s(1),Mx⟩
⟨s(2),Mx⟩

...


... but this is nonlinear information!

This problem is not easily fixed.



What is Nonlinear Information?

Using the same notation, consider instead

Mx = b, x = (x1, . . . , xd)
⊤ ∈ Rd .

The matrix-vector products computed in the popular conjugate gradient method are

⟨s(1),Mx⟩, s(1) = b

⟨s(2),Mx⟩, s(2) = cubic in b

⟨s(3),Mx⟩, s(3) = ninth powers of b

...
...

So it seems natural to let

A(x) =

 ⟨s(1),Mx⟩
⟨s(2),Mx⟩

...


... but this is nonlinear information!

This problem is not easily fixed.



What is Nonlinear Information?

Using the same notation, consider instead

Mx = b, x = (x1, . . . , xd)
⊤ ∈ Rd .

The matrix-vector products computed in the popular conjugate gradient method are

⟨s(1),Mx⟩, s(1) = Mx

⟨s(2),Mx⟩, s(2) = cubic in x

⟨s(3),Mx⟩, s(3) = ninth powers of x

...
...

So it seems natural to let

A(x) =

 ⟨s(1),Mx⟩
⟨s(2),Mx⟩

...


... but this is nonlinear information!

This problem is not easily fixed.



What is Nonlinear Information?

Using the same notation, consider instead

Mx = b, x = (x1, . . . , xd)
⊤ ∈ Rd .

The matrix-vector products computed in the popular conjugate gradient method are

⟨s(1),Mx⟩, s(1) = Mx

⟨s(2),Mx⟩, s(2) = cubic in x

⟨s(3),Mx⟩, s(3) = ninth powers of x

...
...

So it seems natural to let

A(x) =

 ⟨s(1),Mx⟩
⟨s(2),Mx⟩

...


... but this is nonlinear information!

This problem is not easily fixed.



Aim of the Talk

Aim: A pragmatic solution that enables state-of-the-art numerical algorithms to be immediately
exploited in the context of PN.

Key Idea: Predict the limit of a sequence of increasingly accurate approximations produced by a
traditional numerical method.

Bonus: A statistical perspective on Richardson extrapolation.

GPs: For concreteness, we will predict using GPs, but other predictive models could be used.

Compared to PN:

(✓) applicable to nonlinear information

(✓) state-of-the-art performance and functionality (in principle, at least)

(✓) provably higher order of convergence relative to a single application of the numerical method

(✗) multiple realisations of a numerical method are required

(✗) a joint statistical model has to be built for not just the quantity of interest but also for the error
associated with the output of a traditional numerical method.
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Richardson Extrapolation

Consider the simplest setting

q(h)︸︷︷︸
numerical method

= q∗︸︷︷︸
quantity of interest

+ Chα +O(hα+1)︸ ︷︷ ︸
error of the numerical method

where

▶ C ∈ R (may be unknown)

▶ α > 0 (known, and called the order of the method)

▶ the cost of computing q(h) increases as h ↓ 0

Proposition

Fix γ ∈ (0, 1) and let qγ(h) denote the height at which a straight line drawn through the points
(hα, q(h)) and ((γh)α, q(γh)) intersects the vertical axis in R2. Then qγ is a numerical method of
order α+ 1.

Proof: Equation of a line:
y − y1
x − x1

=
y2 − y1
x2 − x1
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Consider the simplest setting
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numerical method
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Fix γ ∈ (0, 1) and let qγ(h) denote the height at which a straight line drawn through the points
(hα, q(h)) and ((γh)α, q(γh)) intersects the vertical axis in R2. Then qγ is a numerical method of
order α+ 1.

Proof: Equation of a line:
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Richardson Extrapolation, Ct’d

Could go further and fit an order p − 1 polynomial to p distinct points

{(hα
i , q(hi ))}pi=1,

then extrapolate this to h = 0, to give an estimate for the quantity of interest with error O(hα+p).

Problem: Higher-order polynomial extrapolation can be unstable [Runge, 1901].

Proposed Solutions: Bulirsch and Stoer [1964] propose instead a rational function interpolant. This
allows both greater expressiveness and robustness than polynomial interpolation [though not
necessarily as efficiently; Press et al., 2007]. Other so-called extrapolation methods in numerical
analysis; a comprehensive historical survey can be found in Joyce [1971].

Uncertainty Quantification: Our aim is to develop an extrapolation method that provides
probabilistic uncertainty quantification, leading to what we call Black Box Probabilistic Numerics
(BBPN in the sequel).
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Figure: Richardson extrapolation for the Riemann sum method (left) and BBPN (right).



Methodology



Notation and Setup

Idea: Model q(h) as a stochastic process Q(h), rather than fit a deterministic interpolant.

=⇒ The distribution of Q(0) is the epistemic uncertainty in the quantity of interest q(0).

Linear: Conjugate Gaussian inference can be performed in black box probabilistic numerics (BBPN),
since one needs only to construct an interpolant.

Problem: How to formulate this in the abstract?

Definition (Traditional numerical method)

A traditional numerical method is defined as a map q : [0, h0)×T → R, for some h0 > 0 such that, for
all t ∈ T , the function h 7→ q(h, t) is continuous at 0 with limit q(0, t) = q∗(t).

▶ the index t could be spatio-temporal, discrete, or even an unstructured set
▶ the index h will depend on the numerical method, e.g.

▶ an error tolerance that is user-specified
▶ h = 1/κ with κ an iteration count

but for simplicity we consider a single scalar h index.
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Black Box Probabilistic Numerics

BBPN begins with a prior stochastic process Q and constrains this prior using data

D := {(hi , ti,j , q(hi , ti,j)) : i = 1, . . . , n; j = 1, . . . ,mi}

at resolutions h1 > · · · > hn > 0 and distinct ordinates ti,1, . . . , ti,mi ∈ T .

The stochastic process obtained by conditioning Q on the dataset D, denoted Q|D, implies a marginal
distribution for Q(0, ·), which we interpret as a statistical prediction for the unknown quantity of
interest q∗(·).
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Gaussian Process Model

Our goal is to specify a stochastic process model Q(h, t) that behaves in a desirable way under
extrapolation to h = 0.

To this end, we decompose

Q(h, t) = Q∗(t) + E(h, t)

where

▶ Q∗(t) is a prior model for the unknown quantity of interest q∗(t);

▶ E(h, t) is a prior model for the error of the numerical method.

It will be assumed that Q∗ and E are Gaussian and independent (written Q∗ ⊥⊥ E , meaning that prior
belief about the quantity of interest is independent of prior belief regarding the performance of the
numerical method).

Compared to the aforementioned PN methods, a prior model for the error E is an additional
requirement in BBPN.

Problem: The error E(h, t) is known to vanish as h → 0, meaning that a stationary GP model for
E(h, t), and hence for Q(h, t), is inappropriate for UQ.
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Gaussian Process Model

Prior for Q∗: In the absence of detailed prior belief about q∗, we consider the following default prior
model:

Q∗(t) = Z · b(t) + G(t), b(t) = (b1(t), . . . , bv (t))
⊤

Z = (Z1, . . . ,Zv )
⊤ ∼ N (0, σ2I ), Z ⊥⊥ G

G ∼ GP(0, σ2ρGkG ),

▶ σ2, ρG > 0 control the UQ and are to be estimated

▶ the basis b will be problem-specific and could be a polynomial basis, Fourier basis, or any number
of other bases depending on context.

▶ The case v = 1 with a constant intercept is closely related to ordinary kriging and the case v > 1
is closely related to universal kriging [Stein, 2012, p. 8].

▶ Using the notation t = (t1, . . . , tp), we consider a tensor product covariance model
kG (t, t

′) =
∏p

i=1 kG ,i (ti , t
′
i ), kG ,i (ti , t

′
i ) = ϕi (∥ti − t′i ∥/ℓt,i ), for some radial basis functions ϕi ,

scaled to satisfy ϕi (0) = 1, and additional length-scale parameters ℓt,i > 0 to be estimated.
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Gaussian Process Model

Prior for E : The process E(h, t) is a model for the numerical error q(h, t)− q∗(t), t > 0, which may
be highly structured. A flexible prior model is therefore required, and here is our default:

E(h, t) = hαẼ(h, t),

Ẽ ∼ GP(0, σ2ρEkẼ ),

▶ ρE > 0 is a parameter to be estimated

▶ kẼ (h, t) = ψ (|h − h′|/ℓh) · kG (t, t′), for a radial basis function ψ, scaled to satisfy ψ(0) = 1, and
a length-scale parameter ℓh > 0 to be estimated.

▶ =⇒ kE ((h, t), (h
′, t′)) = (hh′)αkẼ (h, t)

Overall prior for Q: Our default model can be interpreted as universal kriging over T , with a
covariance adjusted by a multiplicative error arising from non-zero values of h:

kQ((h, t), (h
′, t′)) = σ2

{
b(t) · b(t′) + ρGkG (t, t

′)

(
1 + ρE

kE ((h, t), (h
′, t′))

kG (t, t′)

)}
,

where kE/kG is a kernel only depending on h.
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Overall prior for Q: Our default model can be interpreted as universal kriging over T , with a
covariance adjusted by a multiplicative error arising from non-zero values of h:

kQ((h, t), (h
′, t′)) = σ2

{
b(t) · b(t′) + ρGkG (t, t

′)

(
1 + ρE

kE ((h, t), (h
′, t′))

kG (t, t′)

)}
,

where kE/kG is a kernel only depending on h.



Gaussian Process Model

Prior for E : The process E(h, t) is a model for the numerical error q(h, t)− q∗(t), t > 0, which may
be highly structured. A flexible prior model is therefore required, and here is our default:

E(h, t) = hαẼ(h, t),
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▶ kẼ (h, t) = ψ (|h − h′|/ℓh) · kG (t, t′), for a radial basis function ψ, scaled to satisfy ψ(0) = 1, and
a length-scale parameter ℓh > 0 to be estimated.

▶ =⇒ kE ((h, t), (h
′, t′)) = (hh′)αkẼ (h, t)
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BBPN as an Extrapolation Method

The GP specification just described is not arbitrary; it ensures that the higher-order convergence
property of Richardson extrapolation (RE) is realised in BBPN.

Proposition

(In the same setting as the earlier Proposition.) Suppose ψ is Lipschitz1. Then

|q∗ − E[Q(0)|Dh]| = O(hα+1)

as h → 0.

▶ Can be extended to higher orders, like classical RE.

▶ Generalisation to general t ∈ T still a work in progress (thoughts welcome!)

1e.g. Matérn covariance function of smoothness at least 1/2 is Lipschitz.
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Uncertainty Quantification

The free parameters of our GP model are

θ = {σ2, ρG , ρE , ℓh, ℓt,i , i = 1, . . . , p}

and will be set using the maximum likelihood:

(✓) no degrees of freedom (such as the number of folds of cross-validation) permits a more objective
empirical assessment.

(✓) σ2
ML has a closed form expression in terms of the remaining parameters.

(✓) gradients with respect to the remaining 3 + p parameters can be derived and exploited.

(✗) optimisation can be difficult when p ≫ 1.

(✗) over-confident UQ at finite sample sizes [Karvonen and Oates, 2022].

Further remarks:

▶ GP interpolation, as with classical RE, is not parameterisation invariant.

▶ RE presupposes that the order α must be known a priori. However if α is not known, the
probabilistic perspective affords us the opportunity to learn α as an additional parameter in the
statistical model—a procedure with no classical analogue.
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Experimental Assessment



Set-Up

Kernels: Matérn(1/2) kernels were used for ϕi and ψ, imposing a minimal continuity assumption on
q without additional levels of smoothness being assumed.

Performance Metrics: The error of the point estimate (mean), is denoted

W := ∥E[Q(0, ·)|D]− q∗(·)∥,

where the norm is taken over t ∈ T ′ where T ′ is either T itself or a set of representative elements
from T .

The surprise is denoted

S2 := ∥C[Q(0, ·)|D]−1/2(E[Q(0, ·)|D)]− q∗(·))∥,

where C[Q(0, ·)|D] denotes the posterior covariance matrix.

Note that if q∗ ∼ Q(0, ·)|D, then S2 ∼ χ2
|T ′|, enabling calibration of UQ to be assessed.
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Ordinary Differential Equations

Consider the following Lotka–Volterra initial value problem (IVP), a popular test case in PN:

dy

dt
= f (t, y) =

[
0.5y1 − 0.05y1y2
−0.5y2 + 0.05y1y2

]
, y(0) =

[
20
20

]
The aim in what follows is to approximate the quantity of interest q∗ = y(tend) for tend = 20.

Methods considered: Chkr. [Chkrebtii et al., 2016]; Conr. O1 [Conrad et al., 2016]; Teym. O2
[Teymur et al., 2016]; Scho. O1 [Schober et al., 2019]; Tron. O2 [Tronarp et al., 2019]; Bosch O2
[Bosch et al., 2021]; and BBPN O1 & O2.

The differing character of existing PN methods makes direct comparisons challenging, particularly if we
are to account for computational cost:

▶ Chkr., Conr. O1, and Teym. O2 require parallel simulations to produce empirical credible sets,
and thus have a significant computational cost.

▶ Scho. O1, Tron. O2, and Bosch O2 are based on Gaussian filtering and are less computationally
demanding, though provide less expressive UQ.

▶ BBPN used the final states produced by either Euler (O1) or Adams–Bashforth (O2), at
resolutions hi = 2−i .

However, each algorithm has a recognisable discretisation parameter h, so it remains instructive to
study their h → 0 limit. (For BBPN, h is the finest resolution considered.)
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Figure: Top: Output from three existing PN algorithms Chkrebtii et al. [2016], Teymur et al. [2016], Schober
et al. [2019] and BBPN. Bottom left: The error log2 W at the final time point tend = 20, as a function of the
time step size h. Bottom right: The surprise log2 S at tend = 20, with the central 95% probability band of a χ2

2
random variable shaded.



Ordinary Differential Equations

In this experiment:

(✓) BBPN is observed to be calibrated.

(✓) BBPN (O2) provides the most accurate approximation among all methods that are calibrated.

(✓) BBPN accelerates the convergence of the Euler method from first order to second order, akin to
RE.

(∼) The computational cost of BBPN was intermediate between the filtering approach of Schober
et al. [2019] and the sampling approaches of Chkrebtii et al. [2016] and Teymur et al. [2016].
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Eigenvalue Problems

The calculation of eigenvalues is an important numerical task that had yet to receive attention in PN.

Consider the QR algorithm applued to the following family of sparse matrices that arise as the discrete
Laplace operator in the solution of the Poisson equation by a finite difference method with a five-point
stencil:

A =


B −I
−I B −I

. . .
. . . −I
−I B

 , B =


4 −1
−1 4 −1

. . .
. . . −1
−1 4

 ,

where B is an l × l matrix and A is an ml ×ml matrix, and we aim to recover the largest few
eigenvalues of the matrices considered.

For BBPN we took:

▶ h = 1/κ, where κ is the number of iterations performed.

▶ the order α is unknown and we append it to θ as an additional parameter to be estimated using
maximum likelihood.

▶ eigenvalues are modelled as a priori independent (but this might be näıve).
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Figure: QR algorithm. All plots show red shaded ±2σ credible intervals, numerical data as black circles, and
true eigenvalues as blue stars. A total of κ = 5 (left) and 15 (centre) iterations were used.

(✓) No additional computational cost to BBPN, since the dataset is generated during a single run of
an iterative numerical method.

(✓) Overhead due to fitting the GP is negligible in this experiment.
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Importance of a Non-Stationary GP: Recall that α is inferred in these simulations - the maximum
likelihood values were, respectively, 1.0186 and 1.0167.

Contrast with a stationary GP model (i.e. α = 0):

Figure: Comparison of stationary (left) and non-stationary (right) covariance functions for the GP used to model
output from the QR algorithm.



Partial Differential Equations

Consider the chaotic Kuramoto–Sivashinsky equation [Kuramoto, 1978, Sivashinsky, 1977]

∂tu + ∂4
xu + ∂2

xu + u∂xu = 0,

with initial condition u(x , 0) = exp(−0.01x2) and periodic boundary conditions on the domain
0 ≤ x ≤ 1.

▶ (apologies - the notation t has been re-purposed!)

▶ aim to compute q∗(x) = u(x , 200) over the domain x ∈ [0, 1].

▶ BBPN was applied to three sequences of five runs of the popular fourth-order time-differencing
ETD RK4 numerical scheme [Kassam and Trefethen, 2005], with minimum temporal step size
h = δt and, for simplicity, a fixed spatial step size δx = 0.001 throughout.
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Figure: Partial differential equations. Left: Solution to the Kuramoto–Sivashinsky equation. Right:
Approximation of the solution at the final time point (t = 200) using BBPN, based on time step sizes
h ∈ {0.002, 0.005, 0.01}. Posterior mean (blue) and credible regions (shaded) are displayed. A reference solution
(dashed black) is obtained by taking h = 0.0005.
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Conclusion

This talk presented black box probabilistic numerics, a simple yet powerful framework that bridges the
gap between existing PN methods and the numerical state-of-the-art.

The main drawbacks, compared to existing PN:

(✗) a possibly increased computational cost.

(✗) the additional requirement to model the error of a traditional numerical method.

Avenues for further research:

▶ the use of more flexible and/or computationally cheaper alternatives to GPs.

▶ experimental design to sequentially select resolutions hi given an overall computational budget.
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