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Bayesian Inverse Problems
Mathematical formulation

An inverse problem is concerned with determining causal factors from
observed results.

In mathematical terms, we want to determine system inputs based on
(partial and noisy) observations of system outputs.

We are interested in the following inverse problem: given observational
data y ∈ Rdy , determine model parameters u ∈ U ⊆ Rdu such that

y = G(u) + η,

where η represents observational noise, due to for example
measurement error.

Inverse problems appear in many applications areas including medical
and astronomical imaging, geophysics, climate and weather . . .
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Bayesian inverse problems
Example problem in geophysics

Goal: reconstruct the hydraulic conductivity k of the subsurface given
noisy measurements of the water pressure {p(xi)}.
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Bayesian inverse problems
Example problem in geophysics

Goal: reconstruct the hydraulic conductivity k of the subsurface given
noisy measurements of the water pressure {p(xi)}.

Unknown u ∈ Rdu : coefficients in a basis expansion

k(x;u) = φ0(x) +

du∑
j=1

ujφj(x),

where {φj}duj=1 are linearly independent and φ0 is s.t. k is positive.

Map G: implicitly defined by u 7→ {p(xi;u)}dyi=1, where p is the
solution of

−∇ · (k(x;u)∇p(x;u)) = g(x).

(This equation comes from Darcy’s law plus conservation of mass:
conductivity k, pressure head p, sources/sinks g.)

Observations: y = {p(xi;u) + ηi}
dy
i=1 ∈ Rdy .
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Bayesian Inverse Problems
Mathematical Formulation

Recall: We are interested in the following inverse problem: given
observational data y ∈ Rdy , determine model parameters
u ∈ U ⊆ Rdu such that

y = G(u) + η,

where η represents observational noise, due to for example
measurement error.

Simply ”inverting G” is not possible, since

I we do not know the value of η, and

I the problem is typically ill-posed and/or ill-conditioned.
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Bayesian Inverse Problems
Mathematical Formulation [Kaipio, Somersalo ’04] [Stuart ’10]

The Bayesian approach treats u, y and η as random variables.

We choose a prior measure µ0 on u with density π0.

Under the measurement model y = G(u) + η with η ∼ N(0,Γ), we
have y|u ∼ N(G(u),Γ), and the likelihood of the data y is

P(y|u) h exp
(
− 1

2
‖y − G(u)‖2Γ−1

)
=: exp

(
− Φ(u)

)
.

Using Bayes’ Theorem, we obtain the posterior measure µy on u|y
with density πy, given by

πy(u) =
1

Z
exp

(
− Φ(u)

)
π0(u),

(dµy
dµ0

(u) =
1

Z
exp

(
− Φ(u)

))
where Z =

∫
U exp

(
− Φ(u)

)
π0(u)du = Eπ0

(
exp

(
− Φ(u)

))
.

A. Teckentrup (Edinburgh) GP in BIP and MCMC September 15, 2022 7 / 28



Bayesian Inverse Problems
Mathematical Formulation [Kaipio, Somersalo ’04] [Stuart ’10]

The Bayesian approach treats u, y and η as random variables.

We choose a prior measure µ0 on u with density π0.

Under the measurement model y = G(u) + η with η ∼ N(0,Γ), we
have y|u ∼ N(G(u),Γ), and the likelihood of the data y is

P(y|u) h exp
(
− 1

2
‖y − G(u)‖2Γ−1

)
=: exp

(
− Φ(u)

)
.

Using Bayes’ Theorem, we obtain the posterior measure µy on u|y
with density πy, given by

πy(u) =
1

Z
exp

(
− Φ(u)

)
π0(u),

(dµy
dµ0

(u) =
1

Z
exp

(
− Φ(u)

))
where Z =

∫
U exp

(
− Φ(u)

)
π0(u)du = Eπ0

(
exp

(
− Φ(u)

))
.

A. Teckentrup (Edinburgh) GP in BIP and MCMC September 15, 2022 7 / 28



Bayesian Inverse Problems
Mathematical Formulation [Kaipio, Somersalo ’04] [Stuart ’10]

The Bayesian approach treats u, y and η as random variables.

We choose a prior measure µ0 on u with density π0.

Under the measurement model y = G(u) + η with η ∼ N(0,Γ), we
have y|u ∼ N(G(u),Γ), and the likelihood of the data y is

P(y|u) h exp
(
− 1

2
‖y − G(u)‖2Γ−1

)
=: exp

(
− Φ(u)

)
.

Using Bayes’ Theorem, we obtain the posterior measure µy on u|y
with density πy, given by

πy(u) =
1

Z
exp

(
− Φ(u)

)
π0(u),

(dµy
dµ0

(u) =
1

Z
exp

(
− Φ(u)

))
where Z =

∫
U exp

(
− Φ(u)

)
π0(u)du = Eπ0

(
exp

(
− Φ(u)

))
.

A. Teckentrup (Edinburgh) GP in BIP and MCMC September 15, 2022 7 / 28



Bayesian Inverse Problems
Mathematical Formulation [Kaipio, Somersalo ’04] [Stuart ’10]

The Bayesian approach treats u, y and η as random variables.

We choose a prior measure µ0 on u with density π0.

Under the measurement model y = G(u) + η with η ∼ N(0,Γ), we
have y|u ∼ N(G(u),Γ), and the likelihood of the data y is

P(y|u) h exp
(
− 1

2
‖y − G(u)‖2Γ−1

)
=: exp

(
− Φ(u)

)
.

Using Bayes’ Theorem, we obtain the posterior measure µy on u|y
with density πy, given by

πy(u) =
1

Z
exp

(
− Φ(u)

)
π0(u),

(dµy
dµ0

(u) =
1

Z
exp

(
− Φ(u)

))
where Z =

∫
U exp

(
− Φ(u)

)
π0(u)du = Eπ0

(
exp

(
− Φ(u)

))
.

A. Teckentrup (Edinburgh) GP in BIP and MCMC September 15, 2022 7 / 28



Bayesian Inverse Problems
Computational Challenges

The goal of simulations is usually

I to sample from the posterior πy, e.g. using Markov chain Monte Carlo
(MCMC) methods, or

I to compute the maximum a-posteriori (MAP) estimate

uMAP := argmax πy(u).

MCMC requires repeated evaluation of the likelihood exp
(
− Φ(u)

)
,

often 104 − 106 evaluations in practical applications.

The computation of exp
(
−Φ(u)

)
is typically very costly, for example

if G involves the solution of a partial differential equation.

To make computations feasible, we approximate Φ (or G) by a
surrogate model (emulator, reduced order model, ...).
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Gaussian process regression
Surrogate models

There are many choices of surrogate models, including

I projection-based reduced order models [Arridge et al ’06],

I generalised Polynomial Chaos [Marzouk, Najm, Rahn ’07],

I sparse grid collocation [Marzouk, Xiu ’09],

I . . .

We will use Gaussian process regression [Sacks et al ’89].

I This can be used as a black-box methodology, based on N runs of G.

I But aspects of the physical model (e.g. the PDE) can also be
incorporated.

I Gaussian process regression is a Bayesian procedure, which allows for
uncertainty quantification. ← important later on!

A. Teckentrup (Edinburgh) GP in BIP and MCMC September 15, 2022 9 / 28



Gaussian process regression
Surrogate models

There are many choices of surrogate models, including

I projection-based reduced order models [Arridge et al ’06],

I generalised Polynomial Chaos [Marzouk, Najm, Rahn ’07],

I sparse grid collocation [Marzouk, Xiu ’09],

I . . .

We will use Gaussian process regression [Sacks et al ’89].

I This can be used as a black-box methodology, based on N runs of G.

I But aspects of the physical model (e.g. the PDE) can also be
incorporated.

I Gaussian process regression is a Bayesian procedure, which allows for
uncertainty quantification. ← important later on!

A. Teckentrup (Edinburgh) GP in BIP and MCMC September 15, 2022 9 / 28



Gaussian process regression
Surrogate models

There are many choices of surrogate models, including

I projection-based reduced order models [Arridge et al ’06],

I generalised Polynomial Chaos [Marzouk, Najm, Rahn ’07],

I sparse grid collocation [Marzouk, Xiu ’09],

I . . .

We will use Gaussian process regression [Sacks et al ’89].

I This can be used as a black-box methodology, based on N runs of G.

I But aspects of the physical model (e.g. the PDE) can also be
incorporated.

I Gaussian process regression is a Bayesian procedure, which allows for
uncertainty quantification. ← important later on!

A. Teckentrup (Edinburgh) GP in BIP and MCMC September 15, 2022 9 / 28



Gaussian process regression
Set-up [Rasmussen, Williams ’06]

Gaussian process regression is a Bayesian methodology to emulate a
function f : U → R, e.g. f = Φ or f = Gj , j = 1, . . . , dy.

We put a Gaussian process prior GP(0, k) on f , where k is chosen to
reflect properties of f .
For {ui}mi=1 ⊆ U , the random variables {f(ui)}mi=1 follow a joint Gaussian

distribution with E[f(ui)] = 0 and C[f(ui), f(uj)] = k(ui, uj).

Sample paths Mean and standard deviation
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Gaussian process regression
Predictive distribution [Rasmussen, Williams ’06]

The Gaussian process posterior fN ∼ GP(mf
N , kN ) on f |d is obtained

by conditioning the prior on function values d = {un, f(un)}Nn=1:

mf
N (u) = k(u,DN )TK(DN , DN )−1f(DN ),

kN (u, u′) = k(u, u′)− k(u,DN )TK(DN , DN )−1k(u′, DN ),

where DN = {un}Nn=1, k(u,DN ) = [k(u, u1), . . . , k(u, uN )] ∈ RN and

K(DN , DN ) ∈ RN×N is the matrix with ijth entry equal to k(ui, uj).

Sample paths Mean and standard deviation
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Gaussian process regression
Predictive distribution [Rasmussen, Williams ’06]

The predictive mean mf
N is a linear combination of kernel functions:

mf
N (u) =

N∑
n=1

αnk(u, un), for known α ∈ RN ,

and can be evaluated cheaply for a given u ∈ U .

Computing α has cost O(N3), but N is typically small!

Example: 1d diffusion equation with du = 2 and N = 20

PDE solve in Firedrake Predictive mean

0.3s 0.00007s

The predictive mean mf
N is an interpolant of f , and for isotropic

kernels k(u, u′) = k(‖u− u′‖2), a radial basis function interpolant.

The predictive process fN is a random interpolant of f , reflecting the
uncertainty in f(u) away from the design points DN = {un}Nn=1.
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Approximations of the Posterior
Bayesian posterior with Gaussian process regression

Recall: πy(u) = 1
Z exp

(
− 1

2‖y − G(u)‖2Γ−1

)
π0(u)

For the remainder of the talk, assume that we approximate G by
Gaussian process regression. Similar results hold for Φ.

Since the surrogate model GN is stochastic, a deterministic
approximation of πy is obtained:

I by taking the mean-based approximation, or

πy
N,mean(u) =

1

Zmean
N

exp
(
− 1

2
‖y −mGN (u)‖2Γ−1

)
π0(u),

I by taking the marginal approximation

πy
N,marg(u) =

1

E(Zrand
N )

E
(

exp
(
− 1

2
‖y − GN (u)‖2Γ−1

))
π0(u).
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Approximations of the Posterior
Convergence as N →∞ [Stuart, T ’18], [Lie, Sullivan, T ’18], [T 20]

Both approximations converge to the true posterior πy as N →∞.
Example: 1d diffusion equation with du = 3
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Left: Mean-based approximation. Right: Marginal approximation.

Error in Hellinger distance depends on
∥∥G −mGN∥∥L2(U ;Rdy )

and∥∥∥∥E (‖G −mGN‖1+δ
) 1

1+δ

∥∥∥∥
L2(U)

for any δ > 0, respectively.
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Approximations of the Posterior
Mean-based and marginal approximations [Bai, T, Zygalakis in prep]

For small N , the difference
between πyN,mean and πyN,marg

can be significant.

Only πyN,marg uses the
uncertainty in GN , modelling the
error in the surrogate model.

Using πyN,mean can lead to
biased predictions with high
confidence.

Example: 1d diffusion equation with
du = 2 and N = 20
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Approximations of the Posterior
Marginal likelihood [Bai, T, Zygalakis in prep]

With GN ∼ GP(mGN , kN ), we can analytically compute the marginal
likelihood E

(
exp

(
− 1

2‖y − GN (u)‖2Γ−1

))
.

We have GN (u) = mGN (u) + ξ, with ξ ∼ N(0, kN (u, u)). Hence

E
(

exp
(
− 1

2
‖y − GN (u)‖2Γ−1

))

=
1√

(2π)dy det (Σ(u))

∫
Rdy

exp

(
−
||y −mGN (u)− ξ||2Γ−1

2

)
exp

(
−
||ξ||2Σ−1(u)

2

)
dξ

∝ 1√
det (Γ + Σ(u))

exp

(
−
||y −mGN (u)||2(Γ+Σ(u))−1

2

)
,

where Σ(u) = kN (u, u).
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Approximations of the Posterior
Variance inflation

Compared to the mean-based likelihood

1√
det (Γ)

exp

(
−
||y −mGN (u)||2Γ−1

2

)
,

the marginal likelihood

1√
det (Γ + Σ(u))

exp

(
−
||y −mGN (u)||2(Γ+Σ(u))−1

2

)
,

is a form of variance inflation.
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Approximations of the Posterior
Variance inflation

Variance inflation is an emerging tool to improve Bayesian inference
in complex models, see e.g. [Conrad et al ’17], [Calvetti et al ’18],
[Cui, Fox, Neumayer ’20].

It is closely related to the well-established inclusion of modelling error
[Kennedy, O’Hagan ’01]:

y = G(u) + η + η̃,

with η̃ ∼ N(m,C).

Using Gaussian process regression, we have

I a parameter-dependent variance inflation Σ(u), rather than assuming
that the error in mGN (u) is independent of u.

I the variance Σ(u) easily computed.

I a model for Σ(u) that is readily tuned.
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Using Gaussian process regression, we have

I a parameter-dependent variance inflation Σ(u), rather than assuming
that the error in mGN (u) is independent of u.

I the variance Σ(u) easily computed.

I a model for Σ(u) that is readily tuned.
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Markov chain Monte Carlo methods

In practice, we need to use sampling methods such as MCMC to
sample from target density π = πyN,mean or π = πyN,marg.

ALGORITHM 1. (Metropolis Hastings)

Choose u(1) with π(u(1)) > 0.

At state u(i), sample a proposal u′ from density q(u′ |u(i)).

Accept sample u′ with probability

α(u′ |u(i)) = min

(
1,

π(u′) q(u(i) |u′)
π(u(i)) q(u′ |u(i))

)
,

i.e. u(i+1) = u′ with probability α(u′ |u(i)); otherwise stay at
u(i+1) = u(i).

The proposal density q is chosen to be easy to sample from.

The accept/reject step is added in order to obtain samples from π.

Knowledge of the normalising constant Z of π is not required.
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Approximations of the Posterior
MALA proposals [Roberts, Tweedie ’96], [Bai, T, Zygalakis in prep]

In inverse problems, we often have high dimensional parameters u,
and we require a an efficient choice of proposals such as MALA:

u′ = u(i) + β∇ log π(u(i)) +
√

2βξi, where ξi ∼ N (0, I)

For π = πyN,mean and π = πyN,marg, the gradient of the log-likelihood
exists provided k(·, un) is differentiable. For common choices of k,

e.g. k(u, u′) = σ2 exp(−‖u−u
′‖22

λ ), the gradient can be computed
explicitly.

Some priors, such as the
uniform prior, require smoothing
using MoreauYoshida
regularisation [Pereyra ’16].
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Incorporating PDE constraints
Spatial correlation [Bai, T, Zygalakis in prep]

So far, we have general G.

Since, G : U → Rdy , we have to
choose a prior GP(0, k), with
k : U × U → Rdy×dy .

The easiest choice is
k(u, u) = k̃(u, u′)I, with
k̃ : U × U → R, which
corresponds to approximating
each entry independently.
→ orange line

But in the PDE application,

G(u) = {p(xi;u)}dyi=1, so we
expect entries to be correlated.

Example: 1d diffusion equation with
du = 2 and N = 20
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Incorporating PDE constraints
Spatial correlation [Bai, T, Zygalakis in prep]

To include spatial correlation, we first define a GP prior on the PDE
solution:

p(x, u) ∼ GP(0, k1(u, u′)k2(x, x′)).

A prior in observation space is then obtained:

{p(xi;u)}dyi=1 = G(u) ∼ GP(0, k1(u, u′)K2),

where K2 ∈ Rdy×dy has entries (K2)ij = k2(xi, xj). (This works for
any linear observation operator.)

We can use a standard kernel such as k2(x, x′) = σ2 exp(−‖x−x
′‖22

λ ).
→ green line

We can instead also use kernels from physics-informed Gaussian
process regression, see e.g. the survey [Swiler et al ’20].

Introducing spatial correlation changes kN , but not mGN !
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Incorporating PDE constraints
Further constraints [Bai, T, Zygalakis in prep]

Physics-informed Gaussian process regression can incorporate a
variety of constraints, e.g. boundary conditions, monotonicity,
divergence-free fields, . . . .

In 1d, boundary conditions can be incorporated easily by adding
additional entries to G. (Extrapolation vs interpolation!)

For linear PDEs Lu p(x;u) = g(x), such as the diffusion equation
with Lu p(x;u) = −∇ · (k(x;u)∇p(x;u)), we can also incorporate Lu
[Raissi, Perdikaris, Karniadakis ’17]:

I Suppose we also have available data ỹ = {g(x̃j) + η̃j}
dỹ

j=1.

I We put a joint Gaussian process prior on p and g by first putting a
prior on p. The corresponding prior on g = Lu p then follows.

I Then we follow the same procedure as before to obtain a prior on
{p(xi;u), g(x̃j)}.
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Incorporating PDE constraints
Further constraints [Bai, T, Zygalakis in prep]

Marginal approximations with and without spatial correlation.
Example: 1d diffusion equation with du = 2 and N = 20
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Conclusions

We discussed how surrogate models can be used to obtain
computationally cheaper approximations to Bayesian posterior
distributions.

Gaussian process regression is a popular choice of surrogate model. It
can be used as a black-box model, or we can incorporate information
about the model (e.g. PDE constraints).

The predictive variance in Gaussian process regression can be used to
define the marginal approximation, which is better suited for Bayesian
inference in complex models.
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