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The Bayesian paradigm

Bayesian inference is concerned with modeling and updating degree of
belief about an unknown quantity via probability statements.

For example, we may not know η but we may have some prior knowledge
about, e.g., its range, most probable values, even before any data is
collected,

η ∼ π(η)

We seek to update our prior knowledge by conditioning on any new
information, d , e.g., field data, model evaluations, via Bayes’ Rule,

π(η | d) = p(d | η)π(η)∫
p(d | η)π(η) dη

∝ p(d | η)π(η)

Slide 2/18 — September 15, 2022



s tate - s pace approx imate ode so lver s ok sana chkrebt i i

The inverse problem

We wish to estimate the unknown parameters, θ ∈ Θ, from observations,

y(xi ) = A {u(xi , θ)}+ ε(xi ), xi ∈ X , i = 1, . . . ,T ,

of the deterministic state u(xi , θ) transformed via an observation process
A, and contaminated with stochastic noise ε.

Likelihood function involves the unknown explicit solution, u(xi , θ). This
is termed the forward model.

The classical approach constructs a surrogate model by replacing u with
an approximate numerical solution, uN , discretized over a grid/mesh of
size N. We wish to characterize the uncertainty in this approximation.
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Motivation: the need for numerical uncertainty quantification in the
forward problem
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Motivation

When the solution to the system equations is not known in closed form
we may wish to replace numerical approximation with a stochastic
process reflecting probable trajectories for the solution.

Density-weighted numerical solutions from
nine different numerical solvers for a model

of squared dark matter density

Time evolution of vorticity from the
discretized Navier-Stokes equations on a
torus with periodic boundary conditions
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Motivation

Do numerical error bounds correctly characterize uncertainty when the
solution is geometrically constrained?

1000 draws for Lorenz63 system at four fixed time points
(fixed initial states and model parameters in the chaotic regime).

1000 draws for Lorenz63 system at four fixed time points
(fixed initial states and model parameters in the chaotic regime).

1000 samples for the uncertainty model over three states of the Lorenz63 system
(fixed initial states and model parameters in the chaotic regime).
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Ultimate goal is inference on θ

We can incorporate this uncertainty about the exact solution within a
Bayesian Hierarchical Model

[y | u, θ] ∝ ρ {y − A (u)}

[u | θ] = a probability model representing uncertainty
in the solution given discretization of size N

[θ] = π(θ).

Probabilistic numerical methods provide a model for the uncertainty
arising from discretization of a fixed but unknown solution.

Slide 7/18 — September 15, 2022



s tate - s pace approx imate ode so lver s ok sana chkrebt i i

Probability Modeling for Discretization Uncertainty
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The unknown ODE solution - what we know

For fixed θ, consider the ODE initial value problem,{
Du = f (t, u) , t ∈ (0, L],
u = u1, t = 0,

• u1 is a vector of initial states,

• D is a linear differential operator,

• f : [0, L]×Rp → Rp is Lipschitz continuous in the second argument.

What we know a priori about the unique solution:

• Boundary constraints, precision (e.g. stable, stiff, chaotic),
smoothness of u(t)

• For t1 < t2, the solution u(t2) is a function of u(t1) that does not
depend on u(τ), τ ∈ [0, t1)
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Prior model over ODE solution [Skilling 1991]

Gaussian process (GP) prior for the solution and its time derivative given
fixed hyperparameters (m0

t ,m
0, α, λ) is,

(
Du(tk)
u(tℓ)

)
∼ GP

{(
Dm0(tk)
m0(tℓ)

)
,

(
DC 0(tk , tk)D

∗ DC 0(tk , tℓ)
C 0(tℓ, tk)D

∗ C 0(tℓ, tℓ)

)}
,

Five samples from the prior process: state (left) and first derivative (right){
d
dt2

u2 = sin(2t)− u, t ∈ [0, 10],
d
dt u(0) = 0, u(0) = −1,
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Bayesian(ish) ODE solvers

[Cockayne, Oates, Sullivan, Girolami, 2017]

• Exact Bayesian collocation-based approach

• Pros: conditioning on exact solution evaluations (or arbitrarily close
in practice)

• Cons: speed, direct sampling infeasible except when the ODE
admits a solvable Lie algebra [Wang, Cockayne, Oates, 2018]

[Skilling, 1991], [Hennig and Hauberg, 2014]

• Extrapolate, condition on predictive mean to update GP
(approximate)

• Pros: posterior is a GP - fast, simple, intuitive

• Cons: posterior is a GP - cannot easily be restricted to a manifold
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Bayesian(ish) ODE solvers

[Chkrebtii, 2014], [Chkrebtii, Campbell, Calderhead, Girolami 2016]
• State-space based approach is also approximate
• Cons: requires eliciting an error model and hyperparameters
• Pros: admits uncertainty estimates that are non-Gaussian
• Pros: Cost proportional to numerical solver & fully parallelizable

1000 draws for Lorenz63 system at four fixed time points

(fixed initial states and model parameters in the chaotic regime).
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State-space probabilistic ODE solver

[Chkrebtii, 2014], [Chkrebtii, Campbell, Calderhead, Girolami 2016]

Discretize time domain by an ordered grid {si}i=1,...,N . ODE is
interrogated sequentially at these grid points by generating auxiliary pairs
of state and derivative evaluations:

Ai =
{
ui−1
i := ui−1(si ), fi := f (si , u

i−1
i )

}
, i = 1, . . . ,N.

Posterior density over the state u evaluated at time s ∈ [0, L] is,

π(u | f (·), u1, θ,N) =

∫
π(u,A1:N | f (·), u1, θ,N) dA1:N

∝
∫

p (u | f1:N , u1)
N∏
i=1

{
p
(
fi | ui−1

i

)
p
(
ui−1
i | f1:i−1, u1

) }
dA1:N .
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State-space probabilistic ODE solvers

Probabilistic analogue of linearization is the error model,

fi := f (si , u
i−1(si )) = Du(si ) + ξ(si ), i = 1, . . . ,N,

the term ξ ∼ N (0,Q(si , si )) represents solution uncertainty. Updates are:

(
Du(tk)
u(tℓ)

∣∣∣∣ f1:i) ∼ GP
{(

Dmi (tk)
mi (tℓ)

)
,

(
DC i (tk , tk)D

∗ DC i (tk , tℓ)
C i (tℓ, tk)D

∗ C i (tℓ, tℓ)

)}
,

where means and covariances can be defined recursively as,

mi (t) = mi−1(t) + K i (t, si )
{
fi − Dmi−1(si )

}
,

C i (tk , tℓ) = C i−1(tk , tℓ)− K i (tk , si )DC
i−1(si , tℓ),

K i (t, si ) = C i−1(t, si )D
∗ (Q(si , si ) + DC i−1(si , si )D

∗)−1
.
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Example - simple ODE initial value problem

Five draws from the updated process for the state (left) and first derivative (right)

{
d
dt2

u2 = sin(2t)− u, t ∈ [0, 10],
d
dt u(0) = 0, u(0) = −1,
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Uncertainty decreases with grid size

Kuramoto-Sivashinsky model of a reaction-diffusion system discretized with 1000, 2000, and
3000 equally spaced points respectively,{

∂
∂t

u = −u ∂
∂x

u − ∂2

∂x2
u − ∂4

∂x4
u, x ∈ [0, 32π], t ∈ (0, 150]

u = cos
(

x
16

)
{1 + sin

(
x
16

)
}, x ∈ [0, 32π], t = 0.
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Some related work

[Chkrebtii, Campbell, 2019]
Propose to adaptively select the discretization grid for the state-space
probabilistic method by solving a design problem.

[Wang, Cockayne, Chkrebtii, Sullivan, Oates, 2021]
Develop a forward-in-time, continuous-in-space (FTCS) approach to
solving nonlinear PDEs.
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