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Outline

What is the scalability issue of Gaussian Process?

Numerical solution

Model/Inference Approximation

Mini-batch Training
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Gaussian Process Regression
Input and Output Data:

y = (y1, . . . , yN), X = (x1, . . . ,xN)>

p(y|f) = N
(
y|f , σ2I

)
, p(f |X) = N (f |0,K(X,X))
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Behind a Gaussian process fit

Maximum likelihood estimate of the hyper-parameters.

θ∗ = arg max
θ

log p(y|X, θ) = arg max
θ

logN
(
y|0,K + σ2I

)
Prediction on a test point given the observed data and the optimized
hyper-parameters.

p(f∗|X∗,y,X, θ) =

N
(
f∗|K∗(K + σ2I)−1y,K∗∗ −K∗(K + σ2I)−1K>∗

)
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How to implement the log-likelihood (1)

Compute the covariance matrix K:

K =

k(x1,x1) · · · k(x1,xN)
...

. . .
...

k(xN ,x1) · · · k(xN ,xN)


where k(xi,xj) = γ exp

(
− 1

2l2
(xi − xj)

>(xi − xj)
)

The complexity is O(N2Q).
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How to implement the log-likelihood (2)

Plug in the log-pdf of multi-variate normal distribution:

log p(y|X) = logN
(
y|0,K + σ2I

)
=− 1

2
log |2π(K + σ2I)| − 1

2
y>(K + σ2I)−1y

=− N

2
N log 2π −

∑
i

logLii −
1

2
||L−1y||2

Take a Cholesky decomposition: L = chol(K + σ2I), such that K + σ2I = LL>.

The computational complexity is O(N3 +N2 +N). Therefore, the overall
complexity including the computation of K is O(N3).
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A quick profiling (N=1000, Q=10)

Line # Time(ms) % Time Line Contents

2 def log_likelihood(kern, X, Y, sigma2):

3 6.0 0.0 N = X.shape[0]

4 55595.0 58.7 K = kern.K(X)

5 4369.0 4.6 Ky = K + np.eye(N)*sigma2

6 30012.0 31.7 L = np.linalg.cholesky(Ky)

7 4361.0 4.6 LinvY = dtrtrs(L, Y, lower=1)[0]

8 49.0 0.1 logL = N*np.log(2*np.pi)/-2.

9 82.0 0.1 logL += np.square(LinvY).sum()/-2.

10 208.0 0.2 logL += -np.log(np.diag(L)).sum()

11 2.0 0.0 return logL
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Empirical analysis of computational time
I collect the run time for N = {10, 100, 500, 1000, 1500, 2000}.
They take 1.3ms, 8.5ms, 28ms, 0.12s, 0.29s, 0.76s.

0 500 1000 1500 2000 2500

data size (N)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
ti

m
e

(s
ec

on
d

)
Mean

Data

Confidence

Zhenwen Dai (Spotify) Scalability of Gaussian Process 13 September 2022 @GPSS 2022 8 / 53



What if we have 1 million data points?

The mean of predicted computational time is 9.4× 107 seconds ≈ 2.98 years.
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Well, it is only a matrix inversion.

The cubic complexity O(N3) mainly comes from y>(K + σ2I)−1y.

There must be some Numerical Linear Algebra algorithms to speed it up!?
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Quadratic Optimization Formulation

Consider the problem:
v = K̂−1y, K̂ = K + σ2I

Rewrite it as a linear system:
K̂v − y = 0

This can be formulated as a quadratic optimization:

v∗ = arg min
v

v>K̂v − v>y
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Conjugate Gradient Method (1)

Conjugate Gradient (CG) method is an efficient solver
for the quadratic problem:

v∗ = arg min
v

v>K̂v − v>y

Solve it by finding n linearly independent vectors
{d1,dN} such that:

v∗ = v0 + α1d1 + . . .+ αNdN
Conjugate Gradient (CG)

Figure taken from [Davies, 2015]
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Conjugate Gradient Method (2)

CG is an iterative algorithm.

CG recovers the exact solution after N iterations.

We get an approximate solution with #iterations
<< N .

Each iteration is O(N2).

Conjugate Gradient:

d0 = u0 = y − K̂v0

αi =
u>i u

d>i K̂di

vi+1 = vi + αidi

ui+1 = ui − αiK̂di

βi+1 =
u>i+1ui+1

u>i ui

di+1 = ui+1 + βi+1di
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Convergence and Preconditioning

Numerical stability and rate of convergence of CG are
sensitive to the condition number:

κ(K̂) =
λmax(K̂)

λmin(K̂)

Improve the condition number by solving:

P−1K̂v −P−1y = 0

Ideally P−1 = K̂−1 so that κ(P−1K̂) = 1.

Preconditioning

Figure taken from [Davies, 2015]
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Example of CG

Example from [Davies, 2015].

Estimate the posterior mean of GP.

5 separate runs (N = 415)

CG is implemented in GPyTorch
[Gardner et al., 2018].
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O(N 2) is still slow!

Gaussian Process Model/Inference Approximation
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Big data (?)

lots of data 6= complex function

In real world problems, we often collect a lot of data for modeling relatively simple
relations.
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Data subsampling?

Real data often do not evenly distributed.

We tend to get a lot of data on common cases and very few data on rare cases.
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Covariance matrix of redundant data

With redundant data, the covariance matrix becomes low rank.

What about low rank approximation?
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Low-rank approximation

Let’s recall the log-likelihood of GP:

log p(y|X) = logN
(
y|0,K + σ2I

)
,

where K is the covariance matrix computed from X according to the kernel
function k(·, ·) and σ2 is the variance of the Gaussian noise distribution.

Assume K to be low rank.

This leads to Nyström approximation by Williams and Seeger [Williams and Seeger,
2001].
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Approximation by subset

Let’s randomly pick a subset from the training data: Z ∈ RM×Q.

Approximate the covariance matrix K by K̃.

K̃ = KzK
−1
zz K

>
z , where Kz = K(X,Z) and Kzz = K(Z,Z).

Note that K̃ ∈ RN×N , Kz ∈ RN×M and Kzz ∈ RM×M .

The log-likelihood is approximated by

log p(y|X, θ) ≈ logN
(
y|0,KzK

−1
zz K

>
z + σ2I

)
.
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Nyström approximation example

The covariance matrix with Nyström approximation using 5 random data points:
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Nyström approximation example

Compute tr
(
K− K̃

)
with different M .
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Nyström approximation implementation

The näıve formulation does not bring any computational benefits.

L̃ = −1

2
log |2π(K̃ + σ2I)| − 1

2
y>(K̃ + σ2I)−1y

K̃ + σ2I is a N ×N matrix!
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Efficient computation using Woodbury formula

Rewrite the log-likelihood

L̃ = −1

2
log |2π(K̃ + σ2I)| − 1

2
y>(K̃ + σ2I)−1y

by applying the Woodbury formula:

(KzK
−1
zz K

>
z + σ2I)−1 = σ−2I− σ−4Kz(Kzz + σ−2K>z Kz)

−1K>z

Note that (Kzz + σ−2K>z Kz) ∈ RM×M .

The computational complexity reduces to O(NM2).
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Nyström approximation summary

The approximation is directly done on the covariance matrix without the concept of
pseudo data.

The approximation becomes exact if the whole data set is taken, i.e.,
KK−1K> = K.

The subset selection is done randomly.
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Examples of Nyström approximation (1)

Exact GP

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
−10

−5

0

5

10

15

20

Mean

Data

Confidence

Nyström GP (Full Rank)
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Examples of Nyström approximation (2)

Nyström GP (M = 10)
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Nyström GP (M = 10)
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N = 100
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Issues with random sampling

Performance can be bad if unlucky.

Areas with lots of data get more samples.

Can we do better?
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Take a step back

In the log-likelihood of GP

log p(y|X) = logN
(
y|0,K + σ2I

)
,

the covariance K is computed using the kernel function k(·, ·) on the inputs X.

Let’s construct the Nyström approximation differently.
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Pseudo data

Imagine that there are a set of additional data points Z = (z1, . . . , zM)>.

z lies in the same space as x does.

The corresponding outputs u = (u1, . . . , uM) are unknown.

Z and u are referred to as pseudo data.

Z are referred to as inducing inputs.

u are referred to as inducing variables.
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Pseudo data approximation

With pseudo data Z and u,

the covariance of u, Kuu, can be computed k(·, ·) on the inputs Z.

The cross covariance between f and u, Kff , can be computed as well.

We can construct a similar approximation: K̃ = KfuK
−1
uuK

>
fu.
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Optimizing the pseudo data locations

How does it differ from Nyström approximation?

The inducing inputs are explicitly parameterized by Z.

Search for the optimal Z via optimization:

Z∗ = arg max
Z

logN
(
y|0,KfuK

−1
uuK

>
fu + σ2I

)
.

Does it work? Not really.
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Deterministic Training Conditional (DTC)

This formulation is known as
Deterministic Training Conditional
(DTC).

Five inducing points moves out of
scope.

Overfits: Its logL is −156.73, while
the logL of exact GP is −167.36.

GP-DTC (M = 10)
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Deterministic Training Conditional (DTC) (2)

The inducing inputs adds a lot of
parameters to the model.

This model behaves much more like
parametric model.

The original DTC method [Seeger
et al., 2003] greedily selects a subset
of training data as the inducing
points.

GP-DTC (M = 10)
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Take a different approach

Assume the pseudo data follow the same distribution as the observed data.

In other words, f and u jointly follows the same GP:

p(f ,u|X,Z).

Compared to the original GP, the prior distribution is not changed because

p(f |X) =

∫
p(f ,u|X,Z)du.

Alternatively, the prior distribution can be written as

p(f ,u|X,Z) = p(f |u,X,Z)p(u|Z).
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Variational Sparse Gaussian Process (1)

Titsias [2009] introduces a variational approach for sparse GP.

It follows the same concept of pseudo data:

p(y|X) =

∫
f ,u

p(y|f)p(f |u,X,Z)p(u|Z)

where p(u|Z) = N (u|0,Kuu),
p(f |u,X,Z) = N

(
f |KfuK

−1
uuu,Kff −KfuK

−1
uuK

>
fu

)
.
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Variational Sparse Gaussian Process (2)

Instead of approximate the model, Titsias [2009] derives a variational lower bound.

Normally, a variational lower bound of a marginal likelihood looks like

log p(y|X) = log

∫
f ,u

p(y|f)p(f |u,X,Z)p(u|Z)

≥
∫
f ,u

q(f ,u) log
p(y|f)p(f |u,X,Z)p(u|Z)

q(f ,u)
.
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Special Variational Posterior

Titsias [2009] defines an unusual variational posterior:

q(f ,u) = p(f |u,X,Z)q(u), where q(u) = N (u|µ,Σ) .

Plug it into the lower bound:

L =

∫
f ,u

p(f |u,X,Z)q(u) log
p(y|f)(((((((

p(f |u,X,Z)p(u|Z)

(((((((
p(f |u,X,Z)q(u)

= 〈log p(y|f)〉p(f |u,X,Z)q(u) − KL (q(u) ‖ p(u|Z))

=
〈
logN

(
y|KfuK

−1
uuu, σ

2I
)〉

q(u)
− KL (q(u) ‖ p(u|Z))
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Special Variational Posterior

There is no inversion of any big covariance matrices in the first term:

−N
2

log 2πσ2 − 1

2σ2

〈
(KfuK

−1
uuu− y)>(KfuK

−1
uuu− y)

〉
q(u)

The overall complexity of the lower bound is O(NM2).
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Tighten the Bound

Find the optimal parameters of q(u):

µ∗,Σ∗ = arg max
µ,Σ

L(µ,Σ).

Make the bound as tight as possible by plugging in µ∗ and Σ∗:

L = logN
(
y|0,KfuK

−1
uuK

>
fu + σ2I

)
− 1

2σ2
tr
(
Kff −KfuK

−1
uuK

>
fu

)
.

The 1st term is the same as in the Nyström approximation.

The overall complexity of the lower bound remains O(NM2).
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Variational sparse GP

Note that L is not a valid log-pdf,
∫
y

exp(L(y)) ≤ 1, due to the trace term.

As inducing points are variational parameters, optimizing the inducing inputs Z
always leads to a better bound.

The model does not “overfit” with too many inducing points.
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Limitations of Sparse GP

Variational sparse GP has computational complexity O(NM2).

The computation becomes infeasible under two scenarios:

The number of data points N is very high, e.g., millions of data points.

The function is very complex, which requires tens of thousands of inducing points.
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Mini-batch Learning (1)

Mini-batch learning allows DNNs to be trained on millions of data points.

Given a set of inputs and labels, D = {xi, yi}Ni=1, (xi, yi) ∼ p(x, y), the true loss
function is defined as

ctrue =

∫
l(fθ(x), y)p(x, y)dxdy ≈ 1

N

N∑
i=1

l(fθ(x), y) = c,

where fθ(·) is DNN and l(·, ·) is the loss function.

Gradient descent (GD) updates the parameters by

θt+1 = θt − η
dc

dθ
.
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Mini-batch Learning (2)

Mini-batch learning approximates the loss by subsampling the data,

cMB =
1

B

∑
xi,yi∼p̃(x,y)

l(fθ(xi), yi).

Stochastic gradient descent (SGD) updates the parameters by

θt+1 = θt − η
dcMB

dθ
.

Can mini-batch learning be applied to GPs as well?
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Mini-batch Learning for GPs

Mini-batch learning relies on the objective being an expectation w.r.t. the data,
i.e., 〈l(fθ(x), y)〉p(x,y).

The log-marginal likelihood of GP:

logN
(
y|0,K + σ2I

)
The variational lower bound of sparse GP:

logN
(
y|0,KfuK

−1
uuK

>
fu + σ2I

)
− 1

2σ2
tr
(
Kff −KfuK

−1
uuK

>
fu

)
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“Uncollapsed” Lower Bound

Hensman et al. [2013] discovers that the “uncollapsed” variational lower bound of
sparse GP can be used for mini-batch learning.

The “uncollapsed” variational lower bound of sparse GP:

L = 〈log p(y|f)〉p(f |u,X,Z)q(u) − KL (q(u) ‖ p(u))

The 2nd term, KL (q(u) ‖ p(u)), does not depend on the data.
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“Uncollapsed” Lower Bound

In the 1st term, as p(y|f) = N (y|f , σ2I),

log p(y|f) =
N∑
n=1

logN
(
yn|fn, σ2

)
Denote q(f |X,Z) =

∫
p(f |u,X,Z)q(u)du.

〈log p(y|f)〉q(f |X,Z) =

〈
N∑
n=1

logN
(
yn|fn, σ2

)〉
q(f |X,Z)

=
N∑
n=1

〈
logN

(
yn|fn, σ2

)〉
q(fn|xn,Z)
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Stochastic Variational GP (SVGP)

The resulting lower bound can be written as the sum over the data,

L =
N∑
n=1

〈
logN

(
yn|fn, σ2

)〉
q(fn|xn,Z)

− KL (q(u) ‖ p(u))

≈N
B

∑
xi,yi∼p̃(x,y)

〈
logN

(
yi|fi, σ2

)〉
q(fi|xi,Z)

− N

B
KL (q(u) ‖ p(u)) = LMB

This allows us to do mini-batch learning with SGD,

θt+1 = θt − η
dLMB

dθ
.
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2D Synthetic Data

Figure 4: Convergence of the SVIGP algorithm on the
two dimensional toy data

land-registry-monthly-price-paid-data/, which
covers England and Wales, and filtered for apart-
ments. This resulted in a data set with 75,000 entries,
which we cross referenced against a postcode database
to get lattitude and longitude, on which we regressed
the normalised logarithm of the apartment prices.

Randomly selecting 10,000 data as a test set, we build
a GP as described with a covariance function k(·, ·)
consisting of four parts: two squared exponential co-
variances, initialised with di↵erent length scales were
used to account for national and regional variations in
property prices, a constant (or ’bias’) term allowed for
non-zero mean data, and a noise variance accounted
for variation that could not be modelled using simply
latitude and longitude.

We selected 800 inducing input sites using a k-means
algorithm, and optimised the parameters of the co-
variance function alongside the variational parameters.
We performed some manual tuning of the learning
rates: empirically we found that the step length should
be much higher for the variational parameters of q(u)
than for the values of the covariance function parame-
ters. We used 0.01 and 1 ⇥ 10�5. Also, we included a
momentum term for the covariance function parame-
ters (set to 0.9). We tried including momentum terms
for the variational parameters, but we found this hin-
dered performance. A large mini-batch size (1000) re-
duced the stochasticity of the gradient computations.
We judged that the algorithm had converged after 750
iterations, as the stochastic estimate of the marginal
lower bound on the marginal likelihood failed to in-
crease further.

For comparison to our model, we constructed a se-
ries of GPs on subsets of the training data. Splitting
the data into sets of 500, 800, 1000 and 1200, we fit-

Figure 5: Variability of apartment price (logarithmi-
cally!) throughout England and Wales.

ted a GP with the same covariance function as our
stochastic GP. Parameters of the covariance function
were optimised using type-II maximum likelihood for
each batch. Table 1 reports the mean squared error in
our model’s prediction of the held out prices, as well
as the same for the random sub-set approach (along
with two standard deviations of the inter-sub-set vari-
ability).

Table 1: Mean squared errors in predicting the log-
apartment prices across England and Wales by latti-
tude and longitude

Mean square Error

SVIGP 0.426
Random sub-set (N=500) 0.522 +/- 0.018
Random sub-set (N=800) 0.510 +/- 0.015
Random sub-set (N=1000) 0.503 +/- 0.011
Random sub-set (N=1200) 0.502 +/- 1.012

4.3 Airline Delays

The second large scale dataset we considered consists
of flight arrival and departure times for every commer-
cial flight in the USA from January 2008 to April 2008.
This dataset contains extensive information about al-
most 2 million flights, including the delay (in minutes)
in reaching the destination. The average delay of a
flight in the first 4 months of 2008 was of 30 minutes.
Of course, much better estimates can be given by ex-
ploiting the enourmous wealth of data available, but
rich models are often overlooked in these cases due
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Airline Delay Data

Flight delays for every commercial flight in the USA from January to April 2008.
700,000 train, 100,000 test

Figure 7: Root mean squared errors in predicting flight delays using information about the flight.

to be covered. Distance and airtime should in theory
be correlated, but they have very di↵erent relevances.
This can be intuitively explained by considering that
on longer flights it’s easier to make up for delays at
departure.

5 Discussion

We have presented a method for inference in Gaussian
process models using stochastic variational inference.
These expressions allow for the transfer of a multitude
of Gaussian process techniques to big data.

We note several interesting results. First, the our
derivation disusses the bound on p(y |u) in detail,
showing that it becomes tight when Z = X.

Also, we have that there is a unique solution for the pa-
rameters of q(u) such that the bound associated with
the standard variational sparse GP [Titsias, 2009] is
recovered.

Further, since the complexity of our model is now
O(m3) rather than O(nm2), we are free to increase
m to much greater values than the sparse GP repre-
sentation. The e↵ect of this is that we can have much
richer models: for a squared exponential covariance
function, we have far more basis-functions with which
to model the data. In our UK apartment price exam-
ple, we had no di�culty setting m to 800, much higher
than experience tells us is feasible with the sparse GP.

The ability to increase the number of inducing vari-
ables and the applicability to unlimited data make our
method suitable for multiple output GPs [Álvarez and
Lawrence, 2011]. We have also briefly discussed how

this framework fits with other Gaussian process based
models such as the GPLVM and GP classification. We
leave the details of these implementations to future
work.

In all our experiments our algorithm was run on a
single CPU using the GPy Gaussian process toolkit
https://github.com/SheffieldML/GPy.
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Mauricio A. Álvarez and Neil D. Lawrence. Compu-
tationally e�cient convolved multiple output Gaus-
sian processes. Journal of Machine Learning Re-
search, 12:1425–1466, May 2011.
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Figure 8: Root mean square errors for models with
di↵erent numbers of inducing variables.

Figure 9: Automatic relevance determination param-
eters for the features used for predicting flight delays.

runs.

One of the main advantages of the approach presented
here is that the computational complexity is indepen-
dent from the number of samples n. This allowed us
to use a much larger number of inducing inputs than
has traditionally been possible. Conventional sparse
GPs have a computational complexity of O(nm2), so
for large n the typical upper bound for m is between 50
and 100. The impact on the prediction performance is
quite significant, as highlighted in Figure 8, where we
fit several SVI GPs using di↵erent numbers of inducing
inputs.

Looking at the inverse lengthscales in Figure 9, it’s
possible to get a better idea of the relevance of the
di↵erent features available in this dataset. The most
relevant variable turned out to be the time of departure
of the flight, closely followed by the distance that needs
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The pros and cons of SVGP

Pros

With mini-batch learning, the computational complexity reduces from O(NM2) to
O(M3).

Cons

The variational distribution q(u) needs to be explicitly optimized.

The number of variational parameters increase from MQ to (2M +M2)Q.

Optimization relies on SGD methods and the methods like L-BFGS are no longer
applicable.

It can be challenging to initialize q(u).
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Questions?
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