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Outline

Part 1: Extension to non-Gaussian likelihoods

For non Gaussian observations, the posterior is intractable, we need 
approximations!

Part 2: Scaling up Gaussian process regression

Or how to bypass the O(N³) computational bottleneck









Objective for hyperparameter optimization





PART 1 - Extension to non-Gaussian likelihoods



Motivation
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Beyond Gaussian regression …

Classification Robust Regression



GP classification: the generative model
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GP classification: the generative model

f(x) ∈ ℝ



GP classification: the generative model

σ(f(x)) ∈ [0, 1] 

𝛔  = link function



GP classification: the generative model

y(x) ∈ {0, 1} 



GP classification: inference

y(x*) ∈ {0, 1} 



Non Gaussian likelihoods - what happens to the posterior?
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Non Gaussian likelihoods - what happens to the posterior?

Not a standard 
distribution!
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Non Gaussian likelihoods - what happens to the posterior?
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Why is it a problem?

For learning

For inference

For predictions (or any posterior expectation)



How to approximate the intractable posterior? 

Parametric approximations 

Most common: approximate the posterior as a Gaussian

● Laplace approximation
● Variational inference
● Expectation propagation

Stochastic approximations

Draw samples from the posterior

Monte carlo Markov chains - I won’t cover today



Why gaussian approximations to the posterior

Posterior approximation

For predictions (or any posterior expectation)



Laplace approximation: the idea

log



Laplace approximation: the idea

Posterior



Laplace approximation: the idea
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Laplace approximation: the idea



Laplace Approximate: the maths



Laplace Approximation: pros and cons

fast and easy to implement ✘

Poor posterior if mode is not representative ✓

 



Variational inference

Turning inference into an optimization problem

Tractable set

A “distance”

Intractable 
target

Searching for the best Gaussian approximation for the KL divergence



Variational inference
A lower bound to the marginal likelihood

A bound related to the objective

constant



Variational inference



Properties

- A lower bound to the log marginal likelihood ✓
- Inference + learning with a single objective  ✓
- Mode matching behavior ✘
- Some theoretical guarantees ✓

Variational inference: pros and cons



Variational inference: details and extensions

● Different parameterizations and optimization schemes
● VI can be adapted to more complex likelihoods
● Using different divergences (instead of the KL)



PART 2 - Scaling up Gaussian process regression



Reminder : Gaussian Process Regression

Problem: Cubic scaling of computation

inverse!



Two main families of approximations

● Conjugate gradient methods

Approximate the computations 

● Inducing point methods (a.k.a sparse methods)

Approximate the posterior (by one simpler to compute)



Conjugate Gradient methods
Expression of the Log marginal likelihood and its gradient

Replace    (matrix inverse) x (vector)           by               a few  (matrix) x (vector)
                            O(N³)                                                           O(KN²)    K<<N



Conjugate Gradient methods

(Matrix inverse) x (vector)

Minimizing a quadratic form

Following a gradient based procedure



Conjugate Gradient methods: Idea

Basis of conjugate vectors

Compute the coefficients

How to find the basis of conjugate vectors?



Conjugate Gradient methods: Iterative procedure

Initialize

First iteration: follow the gradient

Next iteration

Gram-Schmidt
orthogonalization

Carry until gradient small enough

Hopefully stops after K<<N iterations



Conjugate gradient methods

● Efficient methods to approximate the log det and trace terms + parallelization
● Efficiency depends on conditioning of A : preconditioning helps
● In practice O(N²) is still big!



Inducing point: intuition

Gaussian Process regression: posterior mean

Getting rid of the redundant information

From non-parametric (N) back to parametric (M)

IDEA: Inference on f(z) instead of f(x)



Inducing point: variational approach

Reminder of the objective

O(M³  +  NM²) O(N³  +  N)

Choice of Q:                      q(f(z)) instead of q(f(x)) 



Inducing point: variational approach

Reminder of the objective

Choice of Q:                      q(f(z)) instead of q(f(x)) 

Hensman et al, AISTATS 2015



Inducing points: going further

● Gaussian case: closed form solution for q* and L(q*)

O(NM² + M³)

O(NbatchM² + M³)

● Interdomain approach: other choice for u=ϕ(f)

● Mini-batching: stochastic evaluation of the loss



Mixing the two parts?

Computationally efficiency 
+

 Non conjugacy



Questions ?
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