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Motivation

– We want to use Gaussian processes to model spatio-temporal phenomena

– However the computational burden of GPs can make this difficult

– Two popular methods to handle this are sparse GPs and state-space GPs

– But sparse GPs over smooth on large datasets and state-space GPs can computationally
struggle with a large number of spatial points

– In this work we effectively combine both methods to attempt to get the best of both
worlds!
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Overview - TLDR

– Propose a Sparse Variational GP that
scales linearly in the number of
temporal points

– The approximate posterior is
represented as a state-space model

– The full ELBO can be computed
efficiently through Kalman filtering
and smoothing

– Recover the standard SVGP posterior
at a fraction of the computational
cost 20
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Gaussian Processes

5 / 57



Gaussian Processes - Example
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Figure: Observations corrupted by Gaussian noise.
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Gaussian Processes - Example
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Figure: GP posterior fit.
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Gaussian Processes

– Gaussian Processes are priors over functions, Rasmussen and Williams [2006]

– Infinite-dimensional extensions of multivariate Gaussians

– Fully defined by a mean and kernel function

f ∼ GP(µ(X),K(X)) (1)

– Let X ∈ RN×D ,Y ∈ RN×1 be input-output observations

– Inference follows standard Bayesian machinery

p(f |Y,X)︸ ︷︷ ︸
Posterior

∝ p(Y | f)︸ ︷︷ ︸
Likelihood

p(f)︸︷︷︸
Prior

(2)

– Inference and training has a O(N3) computational complexity
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Sparse Variational GPs
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Sparse Variational GPs - Example
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Variational Sparse GPs
– Augment the prior with inducing points and inducing locations Z ∈ RM×D , M << N

p(f,u) = p(f | u) p(u) (3)

with
p(u) = N(u | 0,K(Z,Z)), p(f | u) = N(f |K(X,Z)K(Z,Z)−1u,Q) (4)

and
Q = K(X,X)−K(X,Z)K(Z,Z)−1K(Z,X) (5)

– VI provide a way to learn the inducing points!

– Minimise the distance between approximate posterior q(f,u) and the true p(f,u |Y)

argmin
q(f,u)

KL [ q(f,u) || p(f,u |Y) ] → argmax
q(f,u)

Eq(f,u)

[
log

p(Y | f)p(f | u)p(u)
q(f | u)q(u)

]

– But p(f | u) is N dimensional → cubic computational complexity!
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Variational Sparse GPs

– For computational efficient inference Titsias [2009] proposed to define as:

q(f,u) = p(f | u) q(u)

where q(u) = N ( u | m, S ) is a free-form Gaussian:

elbo = Eq(f,u)

[
log

p(Y | f)����p(f | u) p(u)
����p(f | u) q(u)

]
(6)

– Hensman et al. [2013] extended this to the stochastic VI case:

elbo =
N

∑
n

Eq(fn) [log p(Yn | fn)]−KL [q(u)||p(u)] (7)

– Computable in O(NM2 +M3) or O(M3) with mini-batching
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The Problem with SVGP for Time Series
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Sparse Variational Gaussian Processes: The Problem

- With a low number of inducing points the GP cannot capture the structure

Small M

→
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- Assumed that M << N, which is not always appropriate!
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State-Space GPs
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State Space GPs - Temporal Setting

For Markov kernels a GP f is the solution to a LTI-SDE, Särkkä and Solin [2019]:

f (t) ∼ GP(0,Kt),

Yk ∼ p(Yk | f (tk))
⇒

f̄k = Ak f̄k−1 + qk−1,

Yk ∼ p(Yk |H f̄k)

where k represents time and f̄k ∈ Rd is a vector of derivatives of f, and qk ∼ N(0,Qk)
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Yk ∼ p(Yk |H f̄k)

where k represents time and f̄k ∈ Rd is a vector of derivatives of f, and qk ∼ N(0,Qk)

This can be efficiently solved in O(Ntd
3) through Kalman filtering and smoothing:
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State Space GPs - Matérn-3/2

– Matérn-3/2 covariance is:

Kt(t, t
′) = σ2

(
1+

√
3 | t − t ′ |

ℓ

)
exp

(
−
√
3 | t − t ′ |

ℓ

)
(8)

– Which has the following SDE representation

A =

(
0 1
−λ2 −2λ

)
,L =

(
0
1

)
,P∞ =

(
σ2 0
0 λ2σ2

)
(9)

where λ =
√
3/ℓ.
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Spatio-temporal State Space GPs

– Let the data lie on a spatio-temporal grid and the GP kernel be separable with a Markov
kernel on time. Let Nt be the number of temporal locations and Ns the number of spatial
then:

– X =
[
(t, xs)

]Nt

t=1
– K (x, x) = Ks(xs , xs) ·Kt(t, t)

– Then the GP has the following SDE representation:

f̄k = [f̄k,s ]
Ns
s (10)

and
A = I⊗At , L = I⊗ Lt , H = I⊗Ht , Q = Ks ⊗Qt (11)

– We again just run a Kalman filter and smoother but now in O(Nt(Ns · d)3)!
– Equivalent to a batch GP with a Kronecer structured kernel Ks ⊗Kt
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The Problem with State-space GPs for
Spatial Data
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- The run time is O(Nt(Ns · d)3)
- Cubic is the size of the state!

- Limits the number of spatial points and
Markov kernels that can be used
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Natural Gradients as Conjugate Operations
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Optimising a Variational Approximate Posterior

– Recall that the variational lower bound is

elbo = L =
N

∑
n

Eq(fn) [log p(Yn | fn)]−KL [q(u)||p(u)] (12)

– And we want to solve
argmax

q(u)
L (13)

– We can update the parameters of q(u) using gradient descent:

λ← λ + β
∂elbo

∂λ
(14)

– But this depends on the parameterisation used for q(u)
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Different Parameterisations of q(u)

A Gaussian distribution q(u) = N(u |m,S) can be parameterised in different ways:

θ = (m,S), (15)

λ = (S−1m,−1

2
S−1), (16)

µ = (m,mm⊤ + S), (17)

where θ are the moment parameters, λ are the natural parameters, and µ are the expectation
parameters. To make it clear when are talking about the prior vs approximate posterior we use
η to denote the natural parameters of the model prior p(u).
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Natural Gradients

Figure: From Salimbeni et al. [2018]
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Natural Gradients - (1)

The natural gradient (g̃(λ)) is a direction of steepest descent:

g̃(λ) = lim
ϵ→0

argmaxL(λ + dλ) s.t. Dkld (q(u | λ), q(u | λ + dλ)) < ϵ (18)

where the distance function is the (symmetric) kld divergence

Dkld (q(u | λ), q(u | λ′)) = E q(u | λ)

[
log

q(u | λ)
q(u | λ′)

]
+ E q(u | λ′)

[
log

q(u | λ′)
q(u | λ)

]
. (19)

(See Amari [1998], Hoffman et al. [2013])
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Natural Gradients - (2)

The Natural Gradient simplifies to the preconditioned standard gradient:

g̃(λ) =

[
I (λT )−1

∂L
∂λT

]T
=

∂L
∂λ

I (λ)−1 (20)

Using the properties of the multivariate Gaussian this further simplifies. The Fisher
information matrix is

I(λ) = E

[
(

∂log p(x | λ)
∂λ

)(
∂log p(x | λ)

∂λ
)T
]
=

d2A(λ)

dλ2 =
∂E [T (x) ]

∂λ
=

∂µ

∂λ
(21)

And applying chain rule on Eq. (20):

g̃(θ) =
∂L
∂λ

(
∂µ

∂λ
)−1 =

∂L
∂µ

∂µ

∂λ
(

∂µ

∂λ
)−1 =

∂L
∂µ

(22)

(See Hensman et al. [2012], Khan and Rue [2021])
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(See Hensman et al. [2012], Khan and Rue [2021])
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Natural Gradients - (3)

– The natural gradient update is given by:

λ← λ + β g̃(λ) = λ + β
∂L
∂µ

(23)

– Compared to the ‘standard’ gradient

λ = λ + β
∂L
∂λ

(24)

– Take a gradient w.r.t. to µ not λ
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Conjugate Natural Gradients

The natural gradient update is:

λ = λ + β
∂L
∂µ

= λ + β
∂ell

∂µ
− β

∂kld

∂µ

(25)

Which simplifies to:

λ = (1− β) λ̃0 + β
∂ell

∂µ︸ ︷︷ ︸
Likelihood

+ η︸︷︷︸
Prior

= λ̃ + η

(26)

which is a Bayesian update from the model prior (η) with an (approximate likelihood)

parameterised by λ̃.
(See Khan and Lin [2017], Hamelijnck et al. [2021])
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Natural Gradients - Key Points

28 / 57



Natural Gradients - Key Points

- A natural gradient can be computed by a (conjugate) Bayesian update!

λ̃ = (1− β)λ̃0 + β
∂ell

∂µ

λ← λ̃ + η

(27)

- The approximate likelihood is only updated additively by ∂ell
∂µ

- Reparameterise λ̃→
[
Ỹ, Ṽ

]
then for the svgp the natural gradient update can be

written as:

q(u) ∝ N(Ỹ | u, Ṽ)p(u) (28)
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Spatio-Temporal Variational gps
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st-vgp - Game Plan
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st-vgp - Game Plan

– We are going to define the inducing points on a spatio-temporal grid

– This causes the marginal q(fn) to only depend on the spatial inducing points

– The natural gradients approximate likelihood (N(Ỹ | u, Ṽ)) is now block diagonal

q(u) ∝ N(Ỹ | u, Ṽ)p(u) =

[
Nt

∏
t

N(Ỹt | ut , Ṽt,t)

]
p(u) (29)

– We can then compute q(u), and additionally the full elbo , using a state-space gp!
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Spatial Sparsity

- We define a spatial sparsity as inducing points lying on spatio-temporal grid

Inducing Points

Time →
- Assume X is also on a grid then:

KXX = K
(t)
tt ⊗K

(s)
SS , KXZ = K

(t)
tt ⊗K

(s)
SZs

, KZZ = K
(t)
tt ⊗K

(s)
ZsZs

(30)

- The inducing points only affect the spatial kernels!
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Kronecker Structured Marginals
- Recall the svgp elbo :

elbo =
N

∑
n

Eq(fn) [log p(Yn | fn)]−KL [q(u)||p(u)] (31)

- The marginal q(f) =
∫
p(f | u)q(u)du is Kronecker Structured

- Starting with the mean:

mf = KX,ZK
−1
Z,Zm

= (K
(t)
t,t ⊗K

(s)
s,Zs

)(K
−(t)
t,t ⊗K

−(s)
Zs,Zs

)m

= (K
(t)
t,tK

−(t)
t,t )⊗ (K

(s)
s,Zs

K
−(s)
Zs,Zs

)m

= (I⊗K
(s)
s,Zs

K
−(s)
Zs,Zs

)m

(32)

- The term (I⊗K
(s)
s,Zs

K
−(s)
Zs,Zs

) is block diagonal hence mf ,n only depends on the inducing
points in its spatial slice!
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Natural Gradients with Spatial Sparsity - (1)

– Recall that a natural gradient is given by:

λ̃ = (1− β) λ̃0 + β
∂ell

∂µ

λ← λ̃ + η

(33)

– Expanding out the ell term:

∂ell

∂µ
=

N

∑
n

∂E q(fn) [ log p(Yn | fn) ]
∂µ

(34)

– q(fn) only depends on the inducing points in the same time slice as Xn

– Hence ∂ell
∂µ is block-diagonal!
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Natural Gradients with Spatial Sparsity - (2)

- The approximate likelihood natural parameters are updated additively:

λ̃ = (1− β) λ̃0 + β
∂ell

∂µ

λ← λ̃ + η

(35)

- Hence λ̃ is also block diagonal!

- Natural gradient is equivalent to a Bayesian update with block-diagonal noise:

q(u) ∝ N(Ỹ | u, Ṽ)p(u) =
Nt

∏
t

N(Ỹt | ut , Ṽt)p(u) (36)

- Standard gp update!
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st-vgp Variational Lower Bound

- Reparameterize the approximate likelihood: λ̃→
[
Ỹ, Ṽ

]
:

q(u) =
N(Ỹ | u, Ṽ)p(u)
N(Ỹ | 0, Ṽ+K)

(37)

- Following Chang et al. [2020], substitute this into the elbo :

Lst-vgp = Eq(f,u)

[
log

p(Y | f)����p(f | u)���p(u)
∫

N(Ỹ | u, Ṽ) p(u)du

N(Ỹ | u, Ṽ)����p(f | u)���p(u)

]
= Eq(f)

[
log p(Y | f)

]
−Eq(u)

[
logN(Ỹ | u, Ṽ+K)

]
+ Eq(u)

[
logN(Ỹ | u, Ṽ)

]
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]
+ Eq(u)

[
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(37)

- Following Chang et al. [2020], substitute this into the elbo :

Lst-vgp = Eq(f,u)

[
log

p(Y | f)����p(f | u)���p(u)
∫
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Ỹ, Ṽ
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N(Ỹ | u, Ṽ) p(u)du
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Efficient Computation through State-space gps

– Rewrite q(u) as the solution to an lti-sde (Särkkä and Solin [2019])

– Compute q(u) through Kalman filtering and Smoothing – O(Nt(Ms · d)3)
– Compute full ELBO:

L = Eq(f)

[
log p(Y | f)

]
O(N(Ms·d)3)

+Eq(u)

[
logN(Ỹ | u, Ṽ+K)

]
O(Nt (Ms·d)3)

−Eq(u)

[
logN(Ỹ | u, Ṽ)

]
O(Nt (Ms·d)3)

(38)

– Can be computed in order O(N(Ms · d)3)
– Equivalent to an SVGP with inducing points at every time point but only requires
computation that is linear w.r.t. time!
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Experiments
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Experiment: Equivalence to SVGP

0 100 200 300 400 500
2
0
0
0
0

4
0
0
0
0
Iteration number

−
e
l
b
o

ST-SVGP - Z Held
svgp - Z Held
ST-SVGP - Z Trained
svgp - Z Trained

Train Z Model RMSE NLPD

× ST-SVGP 3.02 ± 0.13 1.72 ± 0.04
× svgp 3.02 ± 0.13 1.72 ± 0.04
✓ ST-SVGP 2.79 ± 0.15 1.64 ± 0.04
✓ svgp 2.94 ± 0.12 1.65 ± 0.05
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Experiment: PM10 in London - 1

- Spatio-temporal PM10 data across London

2019-01-01 2019-04-01

0

50

PM10 - Hackney - Old Street (HK6)

0

50

S
T
-S
V
G
P

2019-02-05 2019-02-10 2019-02-15 2019-02-20 2019-02-25

0

50

sv
g
p

- ST-SVGP with ≈ 60K inducing points has the same computational cost of SVGP with
2, 000
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Experiment: PM10 in London - 2

Model (batch size) Time (CPU) Time (GPU) RMSE NLPD

ST-SVGP 16.79 ± 0.63 4.47 ± 0.01 9.96 ± 0.56 8.29 ± 0.80
MF-ST-SVGP 13.74 ± 0.49 0.85 ± 0.01 10.42 ± 0.63 8.52 ± 0.91
svgp -2000 (600) 20.21 ± 0.28 0.17 ± 0.00 15.46 ± 0.44 12.93 ± 0.95
svgp -2500 (800) 40.90 ± 1.11 0.25 ± 0.00 15.53 ± 1.09 13.48 ± 1.85
svgp -5000 (2000) — 1.19 ± 0.00 14.20 ± 0.44 12.73 ± 0.73
svgp -8000 (3000) — 4.09 ± 0.01 13.83 ± 0.47 12.40 ± 0.75
SKI 23.36 ± 1.01 3.61 ± 0.01 12.01 ± 0.55 10.32 ± 0.79
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Extensions
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Spatial Mini Batching
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Spatial Minibatching

- We have computed everything as if X also lies on a spatiotemporal grid

- However we only really require that X has data at the same temporal points since we
compute the required marginals at each time point independently!

- Hence we can easily minibatch in space

Eq(f)

[
log p(Y | f)

]
=

Nt

∑
t

Ns

∑
s

[
log p(Yt,s | ft,s)

]
≈

Nt

∑
t

Ns

B

B

∑
b

[
log p(Yt,b | ft,b)

] (39)

- Computational complexity O(N (Ms · d)3)→ O(Nt (Ms · d)3)
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Ensuring PSD Updates
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Ensuring PSD Updates

- So far we have assumed that the natural gradient always results in a positive semi-definite
update, however, this is not always the case

- Beyond Gaussian likelihoods we need a way to ensure our update is valid (beyond using a
small learning rate)

- We can use an approximation to the natural gradient that is very similar to the
Gauss-Newton approximation

- See Wilkinson et al. [2021], Khan and Rue [2021].
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Derivative Observations
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Derivative Observations

- We can write a GP prior over a latent function and its various derivatives as

p(f(x),∇s f(x),∇t f(x),∇st f(x)) = N
(
F | 0, ∇K∇T

)
(40)

- When the kernel is separable and data lies on a grid we can write

p(∇ f(X)) = N
(
f | 0, K∇t (X,X)⊗K∇s (X,X)

)
. (41)

where

K∇· =

[
K K∇T

·
∇·K ∇·K∇T

·

]
(42)

- Which can immediately be written as a state-space GP when the time kernel is Markov

- Can easily extend to solving linear and non-linear PDEs through the collocation method
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Future Work
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Future Work

- State Dimension - Ultimately, the bottleneck is still the state-dimension size. We can
use less inducing points, but then we over smooth!

- Alternative reduced-rank methods? Ensemble methods?

- Model Constructions - There are lots of exciting model constructions to extend this
framework to Deep GPs and Multi-fidelity GPs, physics-informed GPs, etc

- Natural Gradient Approximations - In general, the natural gradient approximation
discussed is effective, however, there needs to be a proper evaluation of different
approximation methods
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Conclusion

– We have introduced st-vgp which is a variational svgp with a computational
complexity that is linear w.r.t. to time.

– This is done within a natural gradient framework where we represent the approximate
posterior with a state-space gp

– Future work could include exploring approximations to the spatial dimension to further
improve the computation complexities
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Conclusion

- Thank you for listening!

- Code and link to paper: https://github.com/AaltoML/spatio-temporal-GPs
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José M Bernardo and Adrian F. M Smith. Bayesian theory. Wiley, 2004.

Paul E. Chang, William J. Wilkinson, Mohammad Emtiyaz Khan, and Arno Solin. Fast
variational learning in state-space Gaussian process models. In 30th IEEE International
Workshop on Machine Learning for Signal Processing (MLSP), pages 1–6, Espoo, Finland,
2020. IEEE.

Oliver Hamelijnck, William J. Wilkinson, Niki Andreas Loppi, Arno Solin, and Theodoros
Damoulas. Spatio-temporal variational gaussian processes. In A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing
Systems, 2021.

James Hensman, Magnus Rattray, and Neil D. Lawrence. Fast variational inference in the
conjugate exponential family. In Advances in Neural Information Processing Systems 25
(NIPS), pages 2888–2896. Curran Associates Inc., 2012.

55 / 57



References II
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kld Gradients

- We wish to compute:
∂kld

∂µ
=

[
∂kld
∂m − 2 ∂kld

∂S m
∂kld

∂S

]
(43)

where kld = 1
2

[
log |K| − log |S| −M +mTK−1m+ Tr

[
K−1S

]]
- The required gradients are:

∂kld

∂m
= K−1m,

∂kld

∂S
= −1

2
S−1 +

1

2
K−1 (44)

- Leading to:
∂kld

∂µ
=

[
+S−1m

− 1
2S
−1 + 1

2K
−1

]
(45)
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cvi Update Equations
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cvi Equations - (1)

- Initialise natural parameters as a Bayesian update:

λ1 = λ̃0 + η (46)

where η1 =
[
0,− 1

2K
]
and λ̃1 are the initial parameters. This implies:

λ1 =

[
S−1m,−1

2
S−1,

]
(47)
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cvi Equations - (2)

- The natural gradient update is:

λ2 = λ1 + β
∂L
∂µ

(48)

- Substituting L = ell − kld and simplifying:

λ2 = λ1 + β
∂ell

∂µ
+ β

[ −S−1m
+ 1

2S
−1 − 1

2K
−1

]
(49)

- Rewrite λ2 = (1− β) λ2 + β λ and substitute in:

λ2 = (1− β) λ1 + β

[
S−1m
− 1

2S
−1

]
+ β

∂ell

∂µ
+ β

[ −S−1m
+ 1

2S
−1 − 1

2K
−1

]
(50)
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cvi Equations - (3)

- Substitute λ2 = λ̃0 + η and simplify:

λ2 = (1− β) λ1 + β
∂ell

∂µ
+ β

[
���
S−1m
����− 1

2S
−1

]
+ β

[
����−S−1m+ 0

����+ 1
2S
−1 − 1

2K
−1

]
= (1− β) λ̃0 + β

∂ell

∂µ
+ (1− β) η+ β η

= (1− β) λ̃0 + β
∂ell

∂µ︸ ︷︷ ︸
λ̃1

+η

= λ̃1 + η with λ̃1 = (1− β) λ̃0 + β
∂ell

∂µ
.

(51)

- Which recovers the cvi update equations.
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Exponential Family - (1)

A distribution is in the Exponential Family if it can be written as:

p(x | θ) = h(x)E [ η(θ) · T (x)− A(θ) ] (52)

A Gaussian distribution q(u) = N(u |m,S) is part of the exponential family with:

h(x) = (2π)−D/2

T (x) =
(
x , xxT

)
η(θ) =

(
S−1m,−1

2
S−1

)
A(θ) = log

[∫
h(x)E [ η(θ) · T (x) ] dx

]
(53)
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Exponential Family - (2)

A Gaussian distribution q(u) = N(u |m,S) can be parameterised in different ways:

θ = (m,S), (54)

λ = (S−1m,−1

2
S−1), (55)

µ = (m,mm⊤ + S), (56)

where θ are the moment parameters, λ are the natural parameters, and µ are the expectation
parameters.
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Properties of the Multivariate Gaussian

Property

In the exponential family the gradient of the log normaliser (A) is equal to the expectation
parameter:

∂A(λ)

∂λ
= E [T (x) ] = µ (57)

Property

When parameterised using natural parameters, conjugate inference in a Gaussian model can be
written as:

λ(post) = λ(lik) + η(prior) (58)

(See Bernardo and Smith [2004] etc)
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