Spatio-Temporal Variational Gaussian Processes

Oliver Hamelijnck* 1 William J. Wilkinson* 2 Niki Andreas Loppi ${ }^{3}$ Arno Solin ${ }^{2}$ Theodoros Damoulas ${ }^{1}$
${ }^{1}$ University of Warwick, The Alan Turing Institute
${ }^{2}$ Aalto University
${ }^{3}$ Nvidia

NeurIPS 2021

Aalto University
The
Alan Turing Institute

Motivation

- We want to use Gaussian processes to model spatio-temporal phenomena
- However the computational burden of GPs can make this difficult
- Two popular methods to handle this are sparse GPs and state-space GPs
- But sparse GPs over smooth on large datasets and state-space GPs can computationally struggle with a large number of spatial points
- In this work we effectively combine both methods to attempt to get the best of both worlds!

Motivation

- We want to use Gaussian processes to model spatio-temporal phenomena
- However the computational burden of GPs can make this difficult
- Two popular methods to handle this are sparse GPs and state-space GPs
- But sparse GPs over smooth on large datasets and state-space GPs can computationally struggle with a large number of spatial points
- In this work we effectively combine both methods to attempt to get the best of both worlds!

Motivation

- We want to use Gaussian processes to model spatio-temporal phenomena
- However the computational burden of GPs can make this difficult
- Two popular methods to handle this are sparse GPs and state-space GPs
- But sparse GPs over smooth on large datasets and state-space GPs can computationally struggle with a large number of spatial points
- In this work we effectively combine both methods to attempt to get the best of both worlds!

Motivation

- We want to use Gaussian processes to model spatio-temporal phenomena
- However the computational burden of GPs can make this difficult
- Two popular methods to handle this are sparse GPs and state-space GPs
- But sparse GPs over smooth on large datasets and state-space GPs can computationally struggle with a large number of spatial points
- In this work we effectively combine both methods to attempt to get the best of both worlds!

Motivation

- We want to use Gaussian processes to model spatio-temporal phenomena
- However the computational burden of GPs can make this difficult
- Two popular methods to handle this are sparse GPs and state-space GPs
- But sparse GPs over smooth on large datasets and state-space GPs can computationally struggle with a large number of spatial points
- In this work we effectively combine both methods to attempt to get the best of both worlds!

Overview - TLDR

- Propose a Sparse Variational GP that scales linearly in the number of temporal points
- The approximate posterior is represented as a state-space model
- The full FIBO can be computed efficiently through Kalman filtering and smoothing
- Recover the standard SVGP posterior at a fraction of the computational cost

Overview - TLDR

- Propose a Sparse Variational GP that scales linearly in the number of temporal points
- The approximate posterior is represented as a state-space model
- The full ELBO can be computed efficiently through Kalman filtering and smoothing
- Recover the standard SVGP posterior at a fraction of the computational cost

Overview - TLDR

- Propose a Sparse Variational GP that scales linearly in the number of temporal points
- The approximate posterior is represented as a state-space model
- The full ELBO can be computed efficiently through Kalman filtering and smoothing
- Recover the standard SVGP posterior at a fraction of the computational cost

Overview - TLDR

- Propose a Sparse Variational GP that scales linearly in the number of temporal points
- The approximate posterior is represented as a state-space model
- The full ELBO can be computed efficiently through Kalman filtering and smoothing
- Recover the standard SVGP posterior at a fraction of the computational cost

Talk Outline

- Gaussian Processes
- Sparse Variational Gaussian Processes
- State Space Gaussian Processes
- Natural Gradients as Conjugate Operations
- Spatio-temporal Variational GPs
- Experiments
- Conclusion

Gaussian Processes

Gaussian Processes - Example

Figure: Observations corrupted by Gaussian noise.

Gaussian Processes - Example

Figure: GP posterior fit.

Gaussian Processes

- Gaussian Processes are priors over functions, Rasmussen and Williams [2006]
- Infinite-dimensional extensions of multivariate Gaussians
- Fully defined by a mean and kernel function

$$
\begin{equation*}
\boldsymbol{f} \sim \mathcal{G} \mathcal{P}(\mu(\mathbf{X}), \mathrm{K}(\mathrm{X})) \tag{1}
\end{equation*}
$$

- Let $\mathbf{X} \in \mathbb{R}^{N \times D}, \mathbf{Y} \in \mathbb{R}^{N \times 1}$ be input-output observations
- Inference follows standard Bayesian machinery

- Inference and training has a $\mathcal{O}\left(N^{3}\right)$ computational complexity

Gaussian Processes

- Gaussian Processes are priors over functions, Rasmussen and Williams [2006]
- Infinite-dimensional extensions of multivariate Gaussians
- Fully defined by a mean and kernel function

$$
\mathbf{f} \sim \mathcal{G} \mathcal{P}(\mu(\mathbf{X}), \mathbf{K}(\mathbf{X}))
$$

- Let $\mathbf{X} \in \mathbb{R}^{N \times D}, \mathbf{Y} \in \mathbb{R}^{N \times 1}$ be input-output observations
- Inference follows standard Bayesian machinery

- Inference and training has a $\mathcal{O}\left(N^{3}\right)$ computational complexity

Gaussian Processes

- Gaussian Processes are priors over functions, Rasmussen and Williams [2006]
- Infinite-dimensional extensions of multivariate Gaussians
- Fully defined by a mean and kernel function

$$
\begin{equation*}
\mathbf{f} \sim \mathcal{G} \mathcal{P}(\mu(\mathbf{X}), \mathbf{K}(\mathbf{X})) \tag{1}
\end{equation*}
$$

- Let $\mathbf{X} \in \mathbb{R}^{N \times D}, \mathbf{Y} \in \mathbb{R}^{N \times 1}$ be input-output observations
- Inference follows standard Bayesian machinery

$$
\begin{equation*}
\underbrace{p(\mathbf{f} \mid \mathbf{Y}, \mathbf{X})}_{\text {Posterior }} \propto \underbrace{p(\mathbf{Y} \mid \mathbf{f})}_{\text {Likelihood }} \underbrace{p(\mathbf{f})}_{\text {Prior }} \tag{2}
\end{equation*}
$$

- Inference and training has a $\mathcal{O}\left(N^{3}\right)$ computational complexity

Gaussian Processes

- Gaussian Processes are priors over functions, Rasmussen and Williams [2006]
- Infinite-dimensional extensions of multivariate Gaussians
- Fully defined by a mean and kernel function

$$
\begin{equation*}
\mathbf{f} \sim \mathcal{G} \mathcal{P}(\mu(\mathbf{X}), \mathbf{K}(\mathbf{X})) \tag{1}
\end{equation*}
$$

- Let $\mathbf{X} \in \mathbb{R}^{N \times D}, \mathbf{Y} \in \mathbb{R}^{N \times 1}$ be input-output observations
- Inference follows standard Bayesian machinery

- Inference and training has a $\mathcal{O}\left(N^{3}\right)$ computational complexity

Gaussian Processes

- Gaussian Processes are priors over functions, Rasmussen and Williams [2006]
- Infinite-dimensional extensions of multivariate Gaussians
- Fully defined by a mean and kernel function

$$
\begin{equation*}
\mathbf{f} \sim \mathcal{G} \mathcal{P}(\mu(\mathbf{X}), \mathbf{K}(\mathbf{X})) \tag{1}
\end{equation*}
$$

- Let $\mathbf{X} \in \mathbb{R}^{N \times D}, \mathbf{Y} \in \mathbb{R}^{N \times 1}$ be input-output observations
- Inference follows standard Bayesian machinery

$$
\begin{equation*}
\underbrace{p(\mathbf{f} \mid \mathbf{Y}, \mathbf{X})}_{\text {Posterior }} \propto \underbrace{p(\mathbf{Y} \mid \mathbf{f})}_{\text {Likelihood }} \underbrace{p(\mathbf{f})}_{\text {Prior }} \tag{2}
\end{equation*}
$$

- Inference and training has a $\mathcal{O}\left(N^{3}\right)$ computational complexity

Gaussian Processes

- Gaussian Processes are priors over functions, Rasmussen and Williams [2006]
- Infinite-dimensional extensions of multivariate Gaussians
- Fully defined by a mean and kernel function

$$
\begin{equation*}
\mathbf{f} \sim \mathcal{G} \mathcal{P}(\mu(\mathbf{X}), \mathbf{K}(\mathbf{X})) \tag{1}
\end{equation*}
$$

- Let $\mathbf{X} \in \mathbb{R}^{N \times D}, \mathbf{Y} \in \mathbb{R}^{N \times 1}$ be input-output observations
- Inference follows standard Bayesian machinery

$$
\begin{equation*}
\underbrace{p(\mathbf{f} \mid \mathbf{Y}, \mathbf{X})}_{\text {Posterior }} \propto \underbrace{p(\mathbf{Y} \mid \mathbf{f})}_{\text {Likelihood }} \underbrace{p(\mathbf{f})}_{\text {Prior }} \tag{2}
\end{equation*}
$$

- Inference and training has a $\mathcal{O}\left(N^{3}\right)$ computational complexity

Sparse Variational GPs

Sparse Variational GPs - Example

Sparse Variational GPs - Example

Variational Sparse GPs

- Augment the prior with inducing points and inducing locations $\mathbf{Z} \in \mathbb{R}^{M \times D}, M \ll N$

$$
\begin{equation*}
p(\mathbf{f}, \mathbf{u})=p(\mathbf{f} \mid \mathbf{u}) p(\mathbf{u}) \tag{3}
\end{equation*}
$$

with

$$
\begin{equation*}
p(\mathbf{u})=\mathrm{N}(\mathbf{u} \mid 0, \mathbf{K}(\mathbf{Z}, \mathbf{Z})), \quad p(\mathbf{f} \mid \mathbf{u})=\mathrm{N}\left(\mathbf{f} \mid \mathbf{K}(\mathbf{X}, \mathbf{Z}) \mathbf{K}(\mathbf{Z}, \mathbf{Z})^{-1} \mathbf{u}, \mathbf{Q}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{Q}=\mathbf{K}(\mathbf{X}, \mathbf{X})-\mathbf{K}(\mathbf{X}, \mathbf{Z}) \mathbf{K}(\mathbf{Z}, \mathbf{Z})^{-1} \mathbf{K}(\mathbf{Z}, \mathbf{X}) \tag{5}
\end{equation*}
$$

- VI provide a way to learn the inducing points!
- Minimise the distance between approximate posterior $q(f, u)$ and the true $p(\mathrm{f}, \mathrm{u} \mid \mathrm{Y})$

- But $p(\mathbf{f} \mid \mathbf{u})$ is N dimensional \rightarrow cubic computational complexity!

Variational Sparse GPs

- Augment the prior with inducing points and inducing locations $\mathbf{Z} \in \mathbb{R}^{M \times D}, M \ll N$

$$
\begin{equation*}
p(\mathbf{f}, \mathbf{u})=p(\mathbf{f} \mid \mathbf{u}) p(\mathbf{u}) \tag{3}
\end{equation*}
$$

with

$$
\begin{equation*}
p(\mathbf{u})=\mathrm{N}(\mathbf{u} \mid 0, \mathbf{K}(\mathbf{Z}, \mathbf{Z})), \quad p(\mathbf{f} \mid \mathbf{u})=\mathrm{N}\left(\mathbf{f} \mid \mathbf{K}(\mathbf{X}, \mathbf{Z}) \mathbf{K}(\mathbf{Z}, \mathbf{Z})^{-1} \mathbf{u}, \mathbf{Q}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{Q}=\mathbf{K}(\mathbf{X}, \mathbf{X})-\mathbf{K}(\mathbf{X}, \mathbf{Z}) \mathbf{K}(\mathbf{Z}, \mathbf{Z})^{-1} \mathbf{K}(\mathbf{Z}, \mathbf{X}) \tag{5}
\end{equation*}
$$

- VI provide a way to learn the inducing points!
- Minimise the distance between approximate posterior $q(\mathbf{f}, \mathbf{u})$ and the true $p(\mathbf{f}, \mathbf{u} \mid \mathbf{Y})$

$$
\underset{q(\mathbf{f}, \mathbf{u})}{\arg \min } \mathrm{KL}[q(\mathbf{f}, \mathbf{u}) \| p(\mathbf{f}, \mathbf{u} \mid \mathbf{Y})] \rightarrow \underset{q(\mathbf{f}, \mathbf{u})}{\arg \max } \mathbb{E}_{q(\mathbf{f}, \mathbf{u})}\left[\log \frac{p(\mathbf{Y} \mid \mathbf{f}) p(\mathbf{f} \mid \mathbf{u}) p(\mathbf{u})}{q(\mathbf{f} \mid \mathbf{u}) q(\mathbf{u})}\right]
$$

- But $p(\mathbf{f} \mid \mathbf{u})$ is N dimensional \rightarrow cubic computational complexity!

Variational Sparse GPs

- Augment the prior with inducing points and inducing locations $\mathbf{Z} \in \mathbb{R}^{M \times D}, M \ll N$

$$
\begin{equation*}
p(\mathbf{f}, \mathbf{u})=p(\mathbf{f} \mid \mathbf{u}) p(\mathbf{u}) \tag{3}
\end{equation*}
$$

with

$$
\begin{equation*}
p(\mathbf{u})=\mathrm{N}(\mathbf{u} \mid 0, \mathbf{K}(\mathbf{Z}, \mathbf{Z})), \quad p(\mathbf{f} \mid \mathbf{u})=\mathrm{N}\left(\mathbf{f} \mid \mathbf{K}(\mathbf{X}, \mathbf{Z}) \mathbf{K}(\mathbf{Z}, \mathbf{Z})^{-1} \mathbf{u}, \mathbf{Q}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{Q}=\mathbf{K}(\mathbf{X}, \mathbf{X})-\mathbf{K}(\mathbf{X}, \mathbf{Z}) \mathbf{K}(\mathbf{Z}, \mathbf{Z})^{-1} \mathbf{K}(\mathbf{Z}, \mathbf{X}) \tag{5}
\end{equation*}
$$

- VI provide a way to learn the inducing points!
- Minimise the distance between approximate posterior $q(\mathbf{f}, \mathbf{u})$ and the true $p(\mathbf{f}, \mathbf{u} \mid \mathbf{Y})$

$$
\underset{q(\mathbf{f}, \mathbf{u})}{\arg \min } \mathrm{KL}[q(\mathbf{f}, \mathbf{u}) \| p(\mathbf{f}, \mathbf{u} \mid \mathbf{Y})] \rightarrow \underset{q(\mathbf{f}, \mathbf{u})}{\arg \max } \mathbb{E}_{q(\mathbf{f}, \mathbf{u})}\left[\log \frac{p(\mathbf{Y} \mid \mathbf{f}) p(\mathbf{f} \mid \mathbf{u}) p(\mathbf{u})}{q(\mathbf{f} \mid \mathbf{u}) q(\mathbf{u})}\right]
$$

- But $p(\mathbf{f} \mid \mathbf{u})$ is N dimensional \rightarrow cubic computational complexity!

Variational Sparse GPs

- Augment the prior with inducing points and inducing locations $\mathbf{Z} \in \mathbb{R}^{M \times D}, M \ll N$

$$
\begin{equation*}
p(\mathbf{f}, \mathbf{u})=p(\mathbf{f} \mid \mathbf{u}) p(\mathbf{u}) \tag{3}
\end{equation*}
$$

with

$$
\begin{equation*}
p(\mathbf{u})=\mathrm{N}(\mathbf{u} \mid 0, \mathbf{K}(\mathbf{Z}, \mathbf{Z})), \quad p(\mathbf{f} \mid \mathbf{u})=\mathrm{N}\left(\mathbf{f} \mid \mathbf{K}(\mathbf{X}, \mathbf{Z}) \mathbf{K}(\mathbf{Z}, \mathbf{Z})^{-1} \mathbf{u}, \mathbf{Q}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{Q}=\mathbf{K}(\mathbf{X}, \mathbf{X})-\mathbf{K}(\mathbf{X}, \mathbf{Z}) \mathbf{K}(\mathbf{Z}, \mathbf{Z})^{-1} \mathbf{K}(\mathbf{Z}, \mathbf{X}) \tag{5}
\end{equation*}
$$

- VI provide a way to learn the inducing points!
- Minimise the distance between approximate posterior $q(\mathbf{f}, \mathbf{u})$ and the true $p(\mathbf{f}, \mathbf{u} \mid \mathbf{Y})$

$$
\underset{q(\mathbf{f}, \mathbf{u})}{\arg \min } \operatorname{KL}[q(\mathbf{f}, \mathbf{u}) \| p(\mathbf{f}, \mathbf{u} \mid \mathbf{Y})] \rightarrow \underset{q(\mathbf{f}, \mathbf{u})}{\arg \max } \mathbb{E}_{q(\mathbf{f}, \mathbf{u})}\left[\log \frac{p(\mathbf{Y} \mid \mathbf{f}) p(\mathbf{f} \mid \mathbf{u}) p(\mathbf{u})}{q(\mathbf{f} \mid \mathbf{u}) q(\mathbf{u})}\right]
$$

- But $p(\mathbf{f} \mid \mathbf{u})$ is N dimensional \rightarrow cubic computational complexity!

Variational Sparse GPs

- For computational efficient inference Titsias [2009] proposed to define as:

$$
q(\mathbf{f}, \mathbf{u})=p(\mathbf{f} \mid \mathbf{u}) q(\mathbf{u})
$$

where $q(\mathbf{u})=\mathrm{N}(\mathbf{u} \mid \mathbf{m}, \mathbf{S})$ is a free-form Gaussian:

$$
\begin{equation*}
\mathrm{ELBO}=\mathbb{E}_{q(\mathbf{f}, \mathbf{u})}\left[\log \frac{p(\mathbf{Y} \mid \mathbf{f}) p(\mathbf{f} \mid \mathbf{u}) p(\mathbf{u})}{p(\mathbf{f} \mid \mathbf{u}) q(\mathbf{u})}\right] \tag{6}
\end{equation*}
$$

- Hensman et al. [2013] extended this to the stochastic VI case:

$$
\begin{equation*}
\mathrm{ELBO}=\sum_{n}^{N} \mathbb{E}_{q\left(\mathbf{f}_{n}\right)}\left[\log p\left(\mathbf{Y}_{n} \mid \mathbf{f}_{n}\right)\right]-\operatorname{KL}[q(\mathbf{u}) \| p(\mathbf{u})] \tag{7}
\end{equation*}
$$

- Computable in $\mathcal{O}\left(N M^{2}+M^{3}\right)$ or $\mathcal{O}\left(M^{3}\right)$ with mini-batching

Variational Sparse GPs

- For computational efficient inference Titsias [2009] proposed to define as:

$$
q(\mathbf{f}, \mathbf{u})=p(\mathbf{f} \mid \mathbf{u}) q(\mathbf{u})
$$

where $q(\mathbf{u})=\mathrm{N}(\mathbf{u} \mid \mathbf{m}, \mathbf{S})$ is a free-form Gaussian:

$$
\begin{equation*}
\mathrm{ELBO}=\mathbb{E}_{q(\mathbf{f}, \mathbf{u})}\left[\log \frac{p(\mathbf{Y} \mid \mathbf{f}) p(\mathbf{f} \mid \mathbf{u}) p(\mathbf{u})}{p(\mathbf{f} \mid \mathbf{u}) q(\mathbf{u})}\right] \tag{6}
\end{equation*}
$$

- Hensman et al. [2013] extended this to the stochastic VI case:

$$
\begin{equation*}
\operatorname{ELBO}=\sum_{n}^{N} \mathbb{E}_{q\left(\mathbf{f}_{n}\right)}\left[\log p\left(\mathbf{Y}_{n} \mid \mathbf{f}_{n}\right)\right]-\operatorname{KL}[q(\mathbf{u}) \| p(\mathbf{u})] \tag{7}
\end{equation*}
$$

- Computable in $\mathcal{O}\left(N M^{2}+M^{3}\right)$ or $\mathcal{O}\left(M^{3}\right)$ with mini-batching

The Problem with SVGP for Time Series

Sparse Variational Gaussian Processes: The Problem

- With a low number of inducing points the GP cannot capture the structure

Sparse Variational Gaussian Processes: The Problem

- With a low number of inducing points the GP cannot capture the structure

- Assumed that $M \ll N$, which is not always appropriate!

State-Space GPs

State Space GPs - Temporal Setting

For Markov kernels a GP f is the solution to a LTI-SDE, Särkkä and Solin [2019]:

$$
\begin{aligned}
f(\mathbf{t}) & \sim \mathcal{G P}\left(0, \mathbf{K}_{t}\right) \\
\mathbf{Y}_{k} & \sim p\left(\mathbf{Y}_{k} \mid f\left(\mathbf{t}_{k}\right)\right)
\end{aligned}
$$

$$
\overline{\mathbf{f}}_{k}=\mathbf{A}_{k} \overline{\mathbf{f}}_{k-1}+\mathbf{q}_{k-1}
$$

$$
\Rightarrow \quad \mathbf{Y}_{k} \sim p\left(\mathbf{Y}_{k} \mid \mathbf{H} \overline{\mathbf{f}}_{k}\right)
$$

where k represents time and $\overline{\mathbf{f}}_{k} \in R^{d}$ is a vector of derivatives of \mathbf{f}, and $q_{k} \sim N\left(0, Q_{k}\right)$

State Space GPs - Temporal Setting

For Markov kernels a GP f is the solution to a LTI-SDE, Särkkä and Solin [2019]:

$$
\begin{aligned}
f(\mathbf{t}) & \sim \mathcal{G P}\left(0, \mathbf{K}_{t}\right), & & \overline{\mathbf{f}}_{k}
\end{aligned}=\mathbf{A}_{k} \overline{\mathbf{f}}_{k-1}+\mathbf{q}_{k-1}, ~ 子 \mathbf{Y}_{k} \sim p\left(\mathbf{Y}_{k} \mid \mathbf{H} \overline{\mathbf{f}}_{k}\right),
$$

where k represents time and $\overline{\mathbf{f}}_{k} \in R^{d}$ is a vector of derivatives of \mathbf{f}, and $q_{k} \sim N\left(0, Q_{k}\right)$

This can be efficiently solved in $\mathcal{O}\left(N_{t} d^{3}\right)$ through Kalman filtering and smoothing:

Filtering \rightarrow

State Space GPs - Matérn-3/2

- Matérn-3/2 covariance is:

$$
\begin{equation*}
K_{t}\left(t, t^{\prime}\right)=\sigma^{2}\left(1+\frac{\sqrt{3}\left|t-t^{\prime}\right|}{\ell}\right) \exp \left(-\frac{\sqrt{3}\left|t-t^{\prime}\right|}{\ell}\right) \tag{8}
\end{equation*}
$$

- Which has the following SDE representation

$$
\mathbf{A}=\left(\begin{array}{cc}
0 & 1 \tag{9}\\
-\lambda^{2} & -2 \lambda
\end{array}\right), \mathbf{L}=\binom{0}{1}, \mathbf{P}_{\infty}=\left(\begin{array}{cc}
\sigma^{2} & 0 \\
0 & \lambda^{2} \sigma^{2}
\end{array}\right)
$$

where $\lambda=\sqrt{3} / \ell$.

State Space GPs - Matérn-3/2

- Matérn-3/2 covariance is:

$$
\begin{equation*}
K_{t}\left(t, t^{\prime}\right)=\sigma^{2}\left(1+\frac{\sqrt{3}\left|t-t^{\prime}\right|}{\ell}\right) \exp \left(-\frac{\sqrt{3}\left|t-t^{\prime}\right|}{\ell}\right) \tag{8}
\end{equation*}
$$

- Which has the following SDE representation

$$
\mathbf{A}=\left(\begin{array}{cc}
0 & 1 \tag{9}\\
-\lambda^{2} & -2 \lambda
\end{array}\right), \mathbf{L}=\binom{0}{1}, \mathbf{P}_{\infty}=\left(\begin{array}{cc}
\sigma^{2} & 0 \\
0 & \lambda^{2} \sigma^{2}
\end{array}\right)
$$

where $\lambda=\sqrt{3} / \ell$.

Spatio-temporal State Space GPs

- Let the data lie on a spatio-temporal grid and the GP kernel be separable with a Markov kernel on time. Let N_{t} be the number of temporal locations and N_{s} the number of spatial then:
$-\mathbf{X}=\left[\left(t, \mathbf{x}_{s}\right)\right]_{t=1}^{N_{t}}$
$-K(\mathbf{x}, \mathbf{x})=K_{s}\left(\mathbf{x}_{s}, \mathbf{x}_{s}\right) \cdot K_{t}(t, t)$
- Then the GP has the following SDE representation:

$$
\begin{equation*}
\overline{\mathbf{f}}_{k}=\left[\overline{\mathbf{f}}_{k, s}\right]_{s}^{N_{s}} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{A}=\mathbf{I} \otimes \mathbf{A}_{t}, \quad \mathbf{L}=\mathbf{I} \otimes \mathbf{L}_{t}, \quad \mathbf{H}=\mathbf{I} \otimes \mathbf{H}_{t}, \quad \mathbf{Q}=\mathbf{K}_{s} \otimes \mathbf{Q}_{t} \tag{11}
\end{equation*}
$$

- We again just run a Kalman filter and smoother but now in $\mathcal{O}\left(N_{t}\left(N_{s} \cdot d\right)^{3}\right)$!
- Equivalent to a batch GP with a Kronecer structured kernel $\mathbf{K}_{s} \otimes \mathbf{K}_{t}$

Spatio-temporal State Space GPs

- Let the data lie on a spatio-temporal grid and the GP kernel be separable with a Markov kernel on time. Let N_{t} be the number of temporal locations and N_{s} the number of spatial then:
$-\mathbf{X}=\left[\left(t, x_{s}\right)\right]_{t=1}^{N_{t}}$
- $K(\mathbf{x}, \mathbf{x})=K_{s}\left(\mathbf{x}_{s}, \mathbf{x}_{s}\right) \cdot K_{t}(t, t)$
- Then the GP has the following SDE representation:

$$
\begin{equation*}
\overline{\mathbf{f}}_{k}=\left[\overline{\mathbf{f}}_{k, s}\right]_{s}^{N_{s}} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{A}=\mathbf{I} \otimes \mathbf{A}_{t}, \quad \mathbf{L}=\mathbf{I} \otimes \mathbf{L}_{t}, \quad \mathbf{H}=\mathbf{I} \otimes \mathbf{H}_{t}, \quad \mathbf{Q}=\mathbf{K}_{s} \otimes \mathbf{Q}_{t} \tag{11}
\end{equation*}
$$

- We again just run a Kalman filter and smoother but now in $\mathcal{O}\left(N_{t}\left(N_{s} \cdot d\right)^{3}\right)$!
- Equivalent to a batch GP with a Kronecer structured kernel $\mathbf{K}_{s} \otimes \mathbf{K}_{t}$

Spatio-temporal State Space GPs

- Let the data lie on a spatio-temporal grid and the GP kernel be separable with a Markov kernel on time. Let N_{t} be the number of temporal locations and N_{s} the number of spatial then:
- $\mathbf{X}=\left[\left(t, x_{s}\right)\right]_{t=1}^{N_{t}}$
- $K(\mathbf{x}, \mathbf{x})=K_{s}\left(\mathbf{x}_{s}, \mathbf{x}_{s}\right) \cdot K_{t}(t, t)$
- Then the GP has the following SDE representation:

$$
\begin{equation*}
\overline{\mathbf{f}}_{k}=\left[\overline{\mathbf{f}}_{k, s}\right]_{s}^{N_{s}} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{A}=\mathbf{I} \otimes \mathbf{A}_{t}, \quad \mathbf{L}=\mathbf{I} \otimes \mathbf{L}_{t}, \quad \mathbf{H}=\mathbf{I} \otimes \mathbf{H}_{t}, \quad \mathbf{Q}=\mathbf{K}_{s} \otimes \mathbf{Q}_{t} \tag{11}
\end{equation*}
$$

- We again just run a Kalman filter and smoother but now in $\mathcal{O}\left(N_{t}\left(N_{s} \cdot d\right)^{3}\right)$!
- Equivalent to a batch GP with a Kronecer structured kernel $\mathrm{K}_{s} \otimes \mathrm{~K}_{t}$

Spatio-temporal State Space GPs

- Let the data lie on a spatio-temporal grid and the GP kernel be separable with a Markov kernel on time. Let N_{t} be the number of temporal locations and N_{s} the number of spatial then:
$-\mathbf{X}=\left[\left(t, x_{s}\right)\right]_{t=1}^{N_{t}}$
- $K(\mathbf{x}, \mathbf{x})=K_{s}\left(\mathbf{x}_{s}, \mathbf{x}_{s}\right) \cdot K_{t}(t, t)$
- Then the GP has the following SDE representation:

$$
\begin{equation*}
\overline{\mathbf{f}}_{k}=\left[\overline{\mathbf{f}}_{k, s}\right]_{s}^{N_{s}} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathbf{A}=\mathbf{I} \otimes \mathbf{A}_{t}, \quad \mathbf{L}=\mathbf{I} \otimes \mathbf{L}_{t}, \quad \mathbf{H}=\mathbf{I} \otimes \mathbf{H}_{t}, \quad \mathbf{Q}=\mathbf{K}_{s} \otimes \mathbf{Q}_{t} \tag{11}
\end{equation*}
$$

- We again just run a Kalman filter and smoother but now in $\mathcal{O}\left(N_{t}\left(N_{s} \cdot d\right)^{3}\right)$!
- Equivalent to a batch GP with a Kronecer structured kernel $\mathbf{K}_{s} \otimes \mathbf{K}_{t}$

The Problem with State-space GPs for Spatial Data

- The run time is $\mathcal{O}\left(N_{t}\left(N_{s} \cdot d\right)^{3}\right)$
- Cubic is the size of the state!
- Limits the number of spatial points and Markov kernels that can be used

Natural Gradients as Conjugate Operations

Optimising a Variational Approximate Posterior

- Recall that the variational lower bound is

$$
\begin{equation*}
\operatorname{ELBO}=\mathcal{L}=\sum_{n}^{N} \mathbb{E}_{q\left(\mathbf{f}_{n}\right)}\left[\log p\left(\mathbf{Y}_{n} \mid \mathbf{f}_{n}\right)\right]-\operatorname{KL}[q(\mathbf{u}) \| p(\mathbf{u})] \tag{12}
\end{equation*}
$$

- And we want to solve

$$
\begin{equation*}
\underset{q(\mathbf{u})}{\arg \max } \mathcal{L} \tag{13}
\end{equation*}
$$

- We can update the parameters of $q(\mathbf{u})$ using gradient descent:

$$
\begin{equation*}
\lambda \leftarrow \lambda+\beta \frac{\partial \mathrm{ELBO}}{\partial \lambda} \tag{14}
\end{equation*}
$$

- But this depends on the parameterisation used for $q(\mathbf{u})$

Optimising a Variational Approximate Posterior

- Recall that the variational lower bound is

$$
\begin{equation*}
\operatorname{ELBO}=\mathcal{L}=\sum_{n}^{N} \mathbb{E}_{q\left(\mathbf{f}_{n}\right)}\left[\log p\left(\mathbf{Y}_{n} \mid \mathbf{f}_{n}\right)\right]-\operatorname{KL}[q(\mathbf{u}) \| p(\mathbf{u})] \tag{12}
\end{equation*}
$$

- And we want to solve

$$
\begin{equation*}
\underset{q(\mathbf{u})}{\arg \max } \mathcal{L} \tag{13}
\end{equation*}
$$

- We can update the parameters of $q(\mathbf{u})$ using gradient descent:

$$
\begin{equation*}
\lambda \leftarrow \lambda+\beta \frac{\partial \mathrm{ELBO}}{\partial \lambda} \tag{14}
\end{equation*}
$$

- But this depends on the parameterisation used for $q(\mathbf{u})$

Optimising a Variational Approximate Posterior

- Recall that the variational lower bound is

$$
\begin{equation*}
\operatorname{ELBO}=\mathcal{L}=\sum_{n}^{N} \mathbb{E}_{q\left(\mathbf{f}_{n}\right)}\left[\log p\left(\mathbf{Y}_{n} \mid \mathbf{f}_{n}\right)\right]-\operatorname{KL}[q(\mathbf{u}) \| p(\mathbf{u})] \tag{12}
\end{equation*}
$$

- And we want to solve

$$
\begin{equation*}
\underset{q(\mathbf{u})}{\arg \max } \mathcal{L} \tag{13}
\end{equation*}
$$

- We can update the parameters of $q(\mathbf{u})$ using gradient descent:

$$
\begin{equation*}
\lambda \leftarrow \lambda+\beta \frac{\partial \mathrm{ELBO}}{\partial \lambda} \tag{14}
\end{equation*}
$$

- But this depends on the parameterisation used for $q(\mathbf{u})$

Different Parameterisations of $q(\mathbf{u})$

A Gaussian distribution $q(\mathbf{u})=\mathrm{N}(\mathbf{u} \mid \mathbf{m}, \mathbf{S})$ can be parameterised in different ways:

$$
\begin{align*}
\boldsymbol{\theta} & =(\mathbf{m}, \mathbf{S}) \tag{15}\\
\boldsymbol{\lambda} & =\left(\mathbf{S}^{-1} \mathbf{m},-\frac{1}{2} \mathbf{S}^{-1}\right), \tag{16}\\
\boldsymbol{\mu} & =\left(\mathbf{m}, \mathbf{m m}^{\top}+\mathbf{S}\right) \tag{17}
\end{align*}
$$

where θ are the moment parameters, λ are the natural parameters, and μ are the expectation parameters. To make it clear when are talking about the prior vs approximate posterior we use η to denote the natural parameters of the model prior $p(\mathbf{u})$.

Natural Gradients

Figure: From Salimbeni et al. [2018]

Natural Gradients - (1)

The natural gradient $(\tilde{g}(\lambda))$ is a direction of steepest descent:

$$
\begin{equation*}
\tilde{g}(\lambda)=\lim _{\epsilon \rightarrow 0} \arg \max \mathcal{L}(\lambda+d \lambda) \text { s.t. } D_{\text {KLD }}(q(\mathbf{u} \mid \lambda), q(\mathbf{u} \mid \lambda+d \lambda))<\epsilon \tag{18}
\end{equation*}
$$

where the distance function is the (symmetric) KLD divergence

$$
\begin{equation*}
D_{\mathrm{KLD}}\left(q(\mathbf{u} \mid \lambda), q\left(\mathbf{u} \mid \lambda^{\prime}\right)\right)=\mathbb{E}_{q(\mathbf{u} \mid \lambda)}\left[\log \frac{q(\mathbf{u} \mid \lambda)}{q\left(\mathbf{u} \mid \lambda^{\prime}\right)}\right]+\mathbb{E}_{q\left(\mathbf{u} \mid \lambda^{\prime}\right)}\left[\log \frac{q\left(\mathbf{u} \mid \lambda^{\prime}\right)}{q(\mathbf{u} \mid \boldsymbol{\lambda})}\right] . \tag{19}
\end{equation*}
$$

(See Amari [1998], Hoffman et al. [2013])

Natural Gradients - (2)

The Natural Gradient simplifies to the preconditioned standard gradient:

$$
\begin{equation*}
\tilde{g}(\lambda)=\left[I\left(\lambda^{T}\right)^{-1} \frac{\partial \mathcal{L}}{\partial \lambda^{T}}\right]^{T}=\frac{\partial \mathcal{L}}{\partial \lambda} I(\lambda)^{-1} \tag{20}
\end{equation*}
$$

Using the properties of the multivariate Gaussian this further simplifies. The Fisher information matrix is

$$
\begin{equation*}
\mathbf{I}(\boldsymbol{\lambda})=\mathbb{E}\left[\left(\frac{\partial \log p(x \mid \lambda)}{\partial \lambda}\right)\left(\frac{\partial \log p(x \mid \lambda)}{\partial \lambda}\right)^{T}\right]=\frac{\mathrm{d}^{2} A(\lambda)}{\mathrm{d} \lambda^{2}}=\frac{\partial \mathbb{E}[T(x)]}{\partial \lambda}=\frac{\partial \mu}{\partial \lambda} \tag{21}
\end{equation*}
$$

And applying chain rule on Eq. (20):

$$
\begin{equation*}
\tilde{g}(\theta)=\frac{\partial \mathcal{L}}{\partial \lambda}\left(\frac{\partial \mu}{\partial \lambda}\right)^{-1}=\frac{\partial \mathcal{L}}{\partial \mu} \frac{\partial \mu}{\partial \lambda}\left(\frac{\partial \mu}{\partial \lambda}\right)^{-1}=\frac{\partial \mathcal{L}}{\partial \mu} \tag{22}
\end{equation*}
$$

(See Hensman et al. [2012], Khan and Rue [2021])

Natural Gradients - (2)

The Natural Gradient simplifies to the preconditioned standard gradient:

$$
\begin{equation*}
\tilde{g}(\lambda)=\left[I\left(\lambda^{T}\right)^{-1} \frac{\partial \mathcal{L}}{\partial \lambda^{T}}\right]^{T}=\frac{\partial \mathcal{L}}{\partial \lambda} I(\lambda)^{-1} \tag{20}
\end{equation*}
$$

Using the properties of the multivariate Gaussian this further simplifies. The Fisher information matrix is

$$
\begin{equation*}
\mathbf{I}(\boldsymbol{\lambda})=\mathbb{E}\left[\left(\frac{\partial \log p(x \mid \lambda)}{\partial \lambda}\right)\left(\frac{\partial \log p(x \mid \lambda)}{\partial \lambda}\right)^{T}\right]=\frac{\mathrm{d}^{2} A(\lambda)}{\mathrm{d} \lambda^{2}}=\frac{\partial \mathbb{E}[T(x)]}{\partial \lambda}=\frac{\partial \mu}{\partial \lambda} \tag{21}
\end{equation*}
$$

And applying chain rule on Eq. (20):

$$
\begin{equation*}
\tilde{g}(\theta)=\frac{\partial \mathcal{L}}{\partial \lambda}\left(\frac{\partial \mu}{\partial \lambda}\right)^{-1}=\frac{\partial \mathcal{L}}{\partial \mu} \frac{\partial \mu}{\partial \lambda}\left(\frac{\partial \mu}{\partial \lambda}\right)^{-1}=\frac{\partial \mathcal{L}}{\partial \mu} \tag{22}
\end{equation*}
$$

(See Hensman et al. [2012], Khan and Rue [2021])

Natural Gradients - (2)

The Natural Gradient simplifies to the preconditioned standard gradient:

$$
\begin{equation*}
\tilde{g}(\lambda)=\left[I\left(\lambda^{T}\right)^{-1} \frac{\partial \mathcal{L}}{\partial \lambda^{T}}\right]^{T}=\frac{\partial \mathcal{L}}{\partial \lambda} I(\lambda)^{-1} \tag{20}
\end{equation*}
$$

Using the properties of the multivariate Gaussian this further simplifies. The Fisher information matrix is

$$
\begin{equation*}
\mathbf{I}(\boldsymbol{\lambda})=\mathbb{E}\left[\left(\frac{\partial \log p(x \mid \lambda)}{\partial \lambda}\right)\left(\frac{\partial \log p(x \mid \lambda)}{\partial \lambda}\right)^{T}\right]=\frac{\mathrm{d}^{2} A(\lambda)}{\mathrm{d} \lambda^{2}}=\frac{\partial \mathbb{E}[T(x)]}{\partial \lambda}=\frac{\partial \mu}{\partial \lambda} \tag{21}
\end{equation*}
$$

And applying chain rule on Eq. (20):

$$
\begin{equation*}
\tilde{g}(\theta)=\frac{\partial \mathcal{L}}{\partial \lambda}\left(\frac{\partial \mu}{\partial \lambda}\right)^{-1}=\frac{\partial \mathcal{L}}{\partial \mu} \frac{\partial \mu}{\partial \lambda}\left(\frac{\partial \mu}{\partial \lambda}\right)^{-1}=\frac{\partial \mathcal{L}}{\partial \mu} \tag{22}
\end{equation*}
$$

(See Hensman et al. [2012], Khan and Rue [2021])

Natural Gradients - (3)

- The natural gradient update is given by:

$$
\begin{equation*}
\lambda \leftarrow \lambda+\beta \tilde{g}(\lambda)=\lambda+\beta \frac{\partial \mathcal{L}}{\partial \mu} \tag{23}
\end{equation*}
$$

- Compared to the 'standard' gradient

$$
\lambda=\lambda+\beta \frac{\partial \mathcal{L}}{\partial \lambda}
$$

- Take a gradient w.r.t. to μ not λ

Natural Gradients - (3)

- The natural gradient update is given by:

$$
\begin{equation*}
\lambda \leftarrow \lambda+\beta \tilde{g}(\lambda)=\lambda+\beta \frac{\partial \mathcal{L}}{\partial \mu} \tag{23}
\end{equation*}
$$

- Compared to the 'standard' gradient

$$
\begin{equation*}
\lambda=\lambda+\beta \frac{\partial \mathcal{L}}{\partial \lambda} \tag{24}
\end{equation*}
$$

- Take a gradient w.r.t. to μ not λ

Natural Gradients - (3)

- The natural gradient update is given by:

$$
\begin{equation*}
\lambda \leftarrow \lambda+\beta \tilde{g}(\lambda)=\lambda+\beta \frac{\partial \mathcal{L}}{\partial \mu} \tag{23}
\end{equation*}
$$

- Compared to the 'standard' gradient

$$
\begin{equation*}
\lambda=\lambda+\beta \frac{\partial \mathcal{L}}{\partial \lambda} \tag{24}
\end{equation*}
$$

- Take a gradient w.r.t. to μ not λ

Conjugate Natural Gradients

The natural gradient update is:

$$
\begin{align*}
\lambda & =\lambda+\beta \frac{\partial \mathcal{L}}{\partial \mu} \\
& =\lambda+\beta \frac{\partial \mathrm{ELL}}{\partial \mu}-\beta \frac{\partial \mathrm{KLD}}{\partial \mu} \tag{25}
\end{align*}
$$

Which simplifies to:

$$
\begin{align*}
\lambda & =\underbrace{(1-\beta) \widetilde{\lambda}_{0}+\beta \frac{\partial \mathrm{ELL}}{\partial \mu}}_{\text {Likelihood }}+\underbrace{\eta}_{\text {Prior }} \tag{26}\\
& =\widetilde{\lambda}+\eta
\end{align*}
$$

which is a Bayesian update from the model prior $(\boldsymbol{\eta})$ with an (approximate likelihood) parameterised by $\widetilde{\lambda}$.
(See Khan and Lin [2017], Hamelijnck et al. [2021])

Natural Gradients - Key Points

Natural Gradients - Key Points

- A natural gradient can be computed by a (conjugate) Bayesian update!

$$
\begin{align*}
& \widetilde{\lambda}=(1-\beta) \widetilde{\lambda}_{0}+\beta \frac{\partial \mathrm{ELL}}{\partial \mu} \tag{27}\\
& \lambda \leftarrow \widetilde{\lambda}+\eta
\end{align*}
$$

- The approximate likelihood is only updated additively by $\frac{\partial \mathrm{ELL}}{\partial \mu}$
- Reparameterise $\widetilde{\lambda} \rightarrow[\widetilde{\mathbf{Y}}, \widetilde{\mathbf{V}}]$ then for the SVGP the natural gradient update can be written as:

$$
\begin{equation*}
q(\mathbf{u}) \propto N(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}}) p(\mathbf{u}) \tag{28}
\end{equation*}
$$

Spatio-Temporal Variational GPS

ST-VGP - Game Plan

ST-VGP - Game Plan

- We are going to define the inducing points on a spatio-temporal grid
- This causes the marginal $q\left(f_{n}\right)$ to only depend on the spatial inducing points
- The natural gradients approximate likelihood $(N(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}}))$ is now block diagonal

$$
\begin{equation*}
q(\mathbf{u}) \propto N(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}}) p(\mathbf{u})=\left[\prod_{t}^{\mathrm{N}_{t}} N\left(\widetilde{\mathbf{Y}}_{t} \mid \mathbf{u}_{t}, \widetilde{\mathbf{V}}_{t, t}\right)\right] p(\mathbf{u}) \tag{29}
\end{equation*}
$$

- We can then compute $q(\mathbf{u})$, and additionally the full ELBO, using a state-space GP!

ST-VGP - Game Plan

- We are going to define the inducing points on a spatio-temporal grid
- This causes the marginal $q\left(\mathbf{f}_{n}\right)$ to only depend on the spatial inducing points
- The natural gradients approximate likelihood $(N(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}}))$ is now block diagonal

$$
\begin{equation*}
q(\mathbf{u}) \propto N(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}}) p(\mathbf{u})=\left[\prod_{t}^{N_{t}} N\left(\widetilde{\mathbf{Y}}_{t} \mid \mathbf{u}_{t}, \widetilde{\mathbf{V}}_{t, t}\right)\right] p(\mathbf{u}) \tag{29}
\end{equation*}
$$

- We can then compute $q(\mathbf{u})$, and additionally the full ELBO, using a state-space GP!

ST-vGP - Game Plan

- We are going to define the inducing points on a spatio-temporal grid
- This causes the marginal $q\left(\mathbf{f}_{n}\right)$ to only depend on the spatial inducing points
- The natural gradients approximate likelihood $(N(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}}))$ is now block diagonal

$$
\begin{equation*}
q(\mathbf{u}) \propto N(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}}) p(\mathbf{u})=\left[\prod_{t}^{N_{t}} N\left(\widetilde{\mathbf{Y}}_{t} \mid \mathbf{u}_{t}, \widetilde{\mathbf{V}}_{t, t}\right)\right] p(\mathbf{u}) \tag{29}
\end{equation*}
$$

- We can then compute $q(\mathbf{u})$, and additionally the full ELBO, using a state-space GP!

ST-vGP - Game Plan

- We are going to define the inducing points on a spatio-temporal grid
- This causes the marginal $q\left(\mathbf{f}_{n}\right)$ to only depend on the spatial inducing points
- The natural gradients approximate likelihood $(N(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}}))$ is now block diagonal

$$
\begin{equation*}
q(\mathbf{u}) \propto N(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}}) p(\mathbf{u})=\left[\prod_{t}^{N_{t}} N\left(\widetilde{\mathbf{Y}}_{t} \mid \mathbf{u}_{t}, \widetilde{\mathbf{V}}_{t, t}\right)\right] p(\mathbf{u}) \tag{29}
\end{equation*}
$$

- We can then compute $q(\mathbf{u})$, and additionally the full ELBO, using a state-space GP!

Spatial Sparsity

- We define a spatial sparsity as inducing points lying on spatio-temporal grid

- Assume \mathbf{X} is also on a grid then:

$$
\begin{equation*}
\mathbf{K}_{\mathbf{X x}}=\mathbf{K}_{\boldsymbol{t t}}^{(t)} \otimes \mathbf{K}_{\mathbf{S S}}^{(\mathrm{s})}, \quad \mathbf{K}_{\mathbf{X Z}}=\mathbf{K}_{\boldsymbol{t t}}^{(t)} \otimes \mathbf{K}_{\mathbf{S} \mathbf{Z}_{\mathbf{s}}}^{(\mathrm{s})}, \quad \mathbf{K}_{\mathbf{z z}}=\mathbf{K}_{\boldsymbol{t} \boldsymbol{t}}^{(t)} \otimes \mathbf{K}_{\mathbf{Z}_{\mathrm{s}} \mathbf{Z}_{\mathbf{s}}}^{(\mathrm{s})} \tag{30}
\end{equation*}
$$

- The inducing points only affect the spatial kernels!

Kronecker Structured Marginals

- Recall the sVGP ELBo:

$$
\begin{equation*}
\operatorname{ELBO}=\sum_{n}^{N} \mathbb{E}_{q\left(\mathbf{f}_{n}\right)}\left[\log p\left(\mathbf{Y}_{n} \mid \mathbf{f}_{n}\right)\right]-\operatorname{KL}[q(\mathbf{u}) \| p(\mathbf{u})] \tag{31}
\end{equation*}
$$

- The marginal $q(\mathbf{f})=\int p(\mathbf{f} \mid \mathbf{u}) q(\mathbf{u}) \mathrm{d} \mathbf{u}$ is Kronecker Structured
- Starting with the mean:

$$
\begin{align*}
\mathbf{m}_{f} & =\mathbf{K}_{\mathbf{X}, \mathbf{Z}} \mathbf{K}_{\mathbf{Z}, \mathbf{Z}}^{-1} \mathbf{m} \\
& =\left(\mathbf{K}_{\boldsymbol{t}, \boldsymbol{t}}^{(t)} \otimes \mathbf{K}_{\mathbf{s}, \mathbf{Z}_{\mathbf{s}}}^{(s)}\right)\left(\mathbf{K}_{\boldsymbol{t}, \boldsymbol{t}}^{-(t)} \otimes \mathbf{K}_{\mathbf{Z}_{\mathbf{s}}, \mathbf{Z}_{\mathbf{s}}}^{-(s)}\right) \mathbf{m} \\
& =\left(\mathbf{K}_{\boldsymbol{t}, \boldsymbol{t}}^{(t)} \mathbf{K}_{\boldsymbol{t}, \boldsymbol{t}}^{-(t)}\right) \otimes\left(\mathbf{K}_{\mathrm{s}, \mathbf{Z}_{\mathbf{s}}}^{(s)} \mathbf{K}_{\mathbf{Z}_{\mathrm{s}}, \mathbf{Z}_{\mathbf{s}}}^{-(s)}\right) \mathbf{m} \tag{32}\\
& =\left(\mathbf{I} \otimes \mathbf{K}_{\mathbf{s}, \mathbf{Z}_{\mathbf{s}}}^{(s)} \mathbf{K}_{\mathbf{Z}_{\mathbf{s}}, \mathbf{Z}_{\mathbf{s}}}^{-(s)}\right) \mathbf{m}
\end{align*}
$$

- The term $\left(\mathbf{I} \otimes \mathbf{K}_{\mathbf{s}, \mathbf{Z}_{\mathbf{s}}}^{(s)} \mathbf{K}_{\mathbf{Z}_{\mathbf{s}}, \mathbf{Z}_{\mathbf{s}}}^{-(s)}\right)$ is block diagonal hence $\mathbf{m}_{f, n}$ only depends on the inducing points in its spatial slice!

Kronecker Structured Marginals

- Recall the sVGP ELBo:

$$
\begin{equation*}
\operatorname{ELBO}=\sum_{n}^{N} \mathbb{E}_{q\left(\mathbf{f}_{n}\right)}\left[\log p\left(\mathbf{Y}_{n} \mid \mathbf{f}_{n}\right)\right]-\operatorname{KL}[q(\mathbf{u}) \| p(\mathbf{u})] \tag{31}
\end{equation*}
$$

- The marginal $q(\mathbf{f})=\int p(\mathbf{f} \mid \mathbf{u}) q(\mathbf{u}) \mathrm{d} \mathbf{u}$ is Kronecker Structured
- Starting with the mean:

$$
\begin{align*}
\mathbf{m}_{f} & =\mathbf{K}_{\mathbf{X}, \mathbf{Z}} \mathbf{K}_{\mathbf{Z}, \mathbf{Z}}^{-1} \mathbf{m} \\
& =\left(\mathbf{K}_{\boldsymbol{t}, \boldsymbol{t}}^{(t)} \otimes \mathbf{K}_{\mathbf{s}, \mathbf{Z}_{\mathbf{s}}}^{(s)}\right)\left(\mathbf{K}_{\boldsymbol{t}, \boldsymbol{t}}^{-(t)} \otimes \mathbf{K}_{\mathbf{Z}_{\mathbf{s}}, \mathbf{Z}_{\mathbf{s}}}^{-(s)}\right) \mathbf{m} \\
& =\left(\mathbf{K}_{\boldsymbol{t}, \boldsymbol{t}}^{(t)} \mathbf{K}_{\boldsymbol{t}, \boldsymbol{t}}^{-(t)}\right) \otimes\left(\mathbf{K}_{\mathrm{s}, \mathbf{Z}_{\mathbf{s}}}^{(s)} \mathbf{K}_{\mathbf{Z}_{\mathrm{s}}, \mathbf{Z}_{\mathbf{s}}}^{-(s)}\right) \mathbf{m} \tag{32}\\
& =\left(\mathbf{I} \otimes \mathbf{K}_{\mathrm{s}, \mathbf{Z}_{\mathrm{s}}}^{(s)} \mathbf{K}_{\mathbf{Z}_{\mathrm{s}}, \mathbf{Z}_{\mathrm{s}}}^{-(s)}\right) \mathbf{m}
\end{align*}
$$

- The term $\left(\mathbf{I} \otimes \mathbf{K}_{s, Z_{\mathbf{s}}}^{(s)} \mathbf{K}_{\mathbf{Z}_{s}, \mathbf{Z}_{s}}^{-(s)}\right)$ is block diagonal hence $\mathbf{m}_{f, n}$ only depends on the inducing points in its spatial slice!

Kronecker Structured Marginals

- Recall the sVGP ELBo:

$$
\begin{equation*}
\operatorname{ELBO}=\sum_{n}^{N} \mathbb{E}_{q\left(\mathbf{f}_{n}\right)}\left[\log p\left(\mathbf{Y}_{n} \mid \mathbf{f}_{n}\right)\right]-\operatorname{KL}[q(\mathbf{u}) \| p(\mathbf{u})] \tag{31}
\end{equation*}
$$

- The marginal $q(\mathbf{f})=\int p(\mathbf{f} \mid \mathbf{u}) q(\mathbf{u}) \mathrm{d} \mathbf{u}$ is Kronecker Structured
- Starting with the mean:

$$
\begin{align*}
\mathbf{m}_{f} & =\mathbf{K}_{\mathbf{X}, \mathbf{Z}} \mathbf{K}_{\mathbf{Z}, \mathbf{Z}}^{-1} \mathbf{m} \\
& =\left(\mathbf{K}_{\boldsymbol{t}, \boldsymbol{t}}^{(t)} \otimes \mathbf{K}_{\mathrm{s}, \mathbf{Z}_{\mathbf{s}}}^{(s)}\right)\left(\mathbf{K}_{\boldsymbol{t}, \boldsymbol{t}}^{-(t)} \otimes \mathbf{K}_{\mathbf{Z}_{\mathrm{s}}, \mathbf{Z}_{\mathbf{s}}}^{-(s)}\right) \mathbf{m} \\
& =\left(\mathbf{K}_{\boldsymbol{t}, \boldsymbol{t}}^{(t)} \mathbf{K}_{\boldsymbol{t}, \boldsymbol{t}}^{-(t)}\right) \otimes\left(\mathbf{K}_{\mathbf{s}, \mathbf{Z}_{\mathbf{s}}}^{(s)} \mathbf{K}_{\mathbf{Z}_{\mathrm{s}}, \mathbf{Z}_{\mathbf{s}}}^{-(s)}\right) \mathbf{m} \tag{32}\\
& =\left(\mathbf{I} \otimes \mathbf{K}_{\mathrm{s}, \mathbf{Z}_{\mathrm{s}}}^{(s)} \mathbf{K}_{\mathbf{Z}_{\mathrm{s}}, \mathbf{Z}_{\mathrm{s}}}^{-(s)}\right)
\end{align*}
$$

- The term $\left(\mathbf{I} \otimes \mathbf{K}_{s, Z_{\mathbf{s}}}^{(s)} \mathbf{K}_{\mathbf{Z}_{s}, \mathbf{Z}_{s}}^{-(s)}\right)$ is block diagonal hence $\mathbf{m}_{f, n}$ only depends on the inducing points in its spatial slice!

Natural Gradients with Spatial Sparsity - (1)

- Recall that a natural gradient is given by:

$$
\begin{align*}
& \widetilde{\lambda}=(1-\beta) \tilde{\lambda}_{0}+\beta \frac{\partial \mathrm{ELL}}{\partial \mu} \tag{33}\\
& \lambda \leftarrow \widetilde{\lambda}+\eta
\end{align*}
$$

- Expanding out the ELL term:

$$
\begin{equation*}
\frac{\partial \mathrm{ELL}}{\partial \mu}=\sum_{n}^{N} \frac{\partial \mathbb{E}_{q\left(\mathrm{f}_{n}\right)}\left[\log p\left(\mathrm{Y}_{n} \mid \mathrm{f}_{n}\right)\right]}{\partial \mu} \tag{34}
\end{equation*}
$$

- $q\left(\mathbf{f}_{n}\right)$ only depends on the inducing points in the same time slice as \mathbf{X}_{n}
- Hence $\frac{\partial \mathrm{ELL}}{\partial \mu}$ is block-diagonal!

Natural Gradients with Spatial Sparsity - (1)

- Recall that a natural gradient is given by:

$$
\begin{align*}
& \tilde{\lambda}=(1-\beta) \tilde{\lambda}_{0}+\beta \frac{\partial \mathrm{ELL}}{\partial \mu} \tag{33}\\
& \lambda \leftarrow \widetilde{\lambda}+\eta
\end{align*}
$$

- Expanding out the ELL term:

$$
\begin{equation*}
\frac{\partial \mathrm{ELL}}{\partial \mu}=\sum_{n}^{N} \frac{\partial \mathbb{E}_{q\left(\mathbf{f}_{n}\right)}\left[\log p\left(\mathbf{Y}_{n} \mid \mathbf{f}_{n}\right)\right]}{\partial \mu} \tag{34}
\end{equation*}
$$

- $q\left(\mathbf{f}_{n}\right)$ only depends on the inducing points in the same time slice as \mathbf{X}_{n}
- Hence $\frac{\partial \text { ELL }}{\partial \mu}$ is block-diagonal!

Natural Gradients with Spatial Sparsity - (1)

- Recall that a natural gradient is given by:

$$
\begin{align*}
& \widetilde{\lambda}=(1-\beta) \widetilde{\lambda}_{0}+\beta \frac{\partial \mathrm{ELL}}{\partial \mu} \tag{33}\\
& \lambda \leftarrow \widetilde{\lambda}+\eta
\end{align*}
$$

- Expanding out the ELL term:

$$
\begin{equation*}
\frac{\partial \mathrm{ELL}}{\partial \mu}=\sum_{n}^{N} \frac{\partial \mathbb{E}_{q\left(\mathbf{f}_{n}\right)}\left[\log p\left(\mathbf{Y}_{n} \mid \mathbf{f}_{n}\right)\right]}{\partial \mu} \tag{34}
\end{equation*}
$$

$-q\left(\mathbf{f}_{n}\right)$ only depends on the inducing points in the same time slice as \mathbf{X}_{n}

- Hence $\frac{\partial \text { ELL }}{\partial \mu}$ is block-diagonal!

Natural Gradients with Spatial Sparsity - (1)

- Recall that a natural gradient is given by:

$$
\begin{align*}
& \widetilde{\lambda}=(1-\beta) \tilde{\lambda}_{0}+\beta \frac{\partial \mathrm{ELL}}{\partial \mu} \tag{33}\\
& \lambda \leftarrow \widetilde{\lambda}+\eta
\end{align*}
$$

- Expanding out the ELL term:

$$
\begin{equation*}
\frac{\partial \mathrm{ELL}}{\partial \mu}=\sum_{n}^{N} \frac{\partial \mathbb{E}_{q\left(\mathbf{f}_{n}\right)}\left[\log p\left(\mathbf{Y}_{n} \mid \mathbf{f}_{n}\right)\right]}{\partial \mu} \tag{34}
\end{equation*}
$$

$-q\left(\mathbf{f}_{n}\right)$ only depends on the inducing points in the same time slice as \mathbf{X}_{n}

- Hence $\frac{\partial E L L}{\partial \mu}$ is block-diagonal!

Natural Gradients with Spatial Sparsity - (2)

- The approximate likelihood natural parameters are updated additively:

$$
\begin{align*}
& \tilde{\lambda}=(1-\beta) \tilde{\lambda}_{0}+\beta \frac{\partial \mathrm{ELL}}{\partial \mu} \tag{35}\\
& \lambda \leftarrow \tilde{\lambda}+\eta
\end{align*}
$$

- Hence $\tilde{\lambda}$ is also block diagona!!
- Natural gradient is equivalent to a Bayesian update with block-diagonal noise:

$$
\begin{equation*}
q(\mathbf{u}) \propto \mathrm{N}(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}}) p(\mathbf{u})=\prod_{t}^{N_{t}} \mathrm{~N}\left(\widetilde{\mathbf{Y}}_{t} \mid \mathbf{u}_{t}, \widetilde{\mathbf{V}}_{t}\right) p(\mathbf{u}) \tag{36}
\end{equation*}
$$

- Standard GP update!

ST-VGP Variational Lower Bound

- Reparameterize the approximate likelihood: $\widetilde{\lambda} \rightarrow[\widetilde{\mathbf{Y}}, \widetilde{\mathbf{V}}]$:

$$
\begin{equation*}
q(\mathbf{u})=\frac{\mathrm{N}(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}}) p(\mathbf{u})}{\mathrm{N}(\widetilde{\mathbf{Y}} \mid 0, \widetilde{\mathbf{V}}+\mathbf{K})} \tag{37}
\end{equation*}
$$

- Following Chang et al. [2020], substitute this into the Elbo :

$$
\begin{aligned}
\mathcal{L}_{\mathrm{ST}-\mathrm{VGP}} & =\mathbb{E}_{q(\mathbf{f}, \mathbf{u})}\left[\log \frac{p(\mathbf{Y} \mid \mathbf{f}) p(\mathbf{f} \mid \mathbf{u}) p(\mathbf{u}) \int \mathrm{N}(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}}) p(\mathbf{u}) \mathrm{d} \mathbf{u}}{\mathrm{~N}(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}}) p(\mathbf{f} \mid \mathbf{u}) p(\mathbf{u})}\right] \\
& =\mathbb{E}_{q(\mathbf{f})}[\log p(\mathbf{Y} \mid \mathbf{f})]-\mathbb{E}_{q(\mathbf{u})}[\log \mathrm{N}(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}}+\mathbf{K})]+\mathbb{E}_{q(\mathbf{u})}[\log \mathrm{N}(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}})]
\end{aligned}
$$

ST-VGP Variational Lower Bound

- Reparameterize the approximate likelihood: $\widetilde{\lambda} \rightarrow[\widetilde{\mathbf{Y}}, \widetilde{\mathbf{V}}]$:

$$
\begin{equation*}
q(\mathbf{u})=\frac{\mathrm{N}(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}}) p(\mathbf{u})}{\mathrm{N}(\widetilde{\mathbf{Y}} \mid 0, \widetilde{\mathbf{V}}+\mathbf{K})} \tag{37}
\end{equation*}
$$

- Following Chang et al. [2020], substitute this into the Elbo :

$$
\begin{aligned}
\mathcal{L}_{\mathrm{ST}-\mathrm{VGP}} & =\mathbb{E}_{q(\mathbf{f}, \mathbf{u})}\left[\log \frac{p(\mathbf{Y} \mid \mathbf{f}) p(\mathbf{f} \mid \mathbf{u}) p(\mathbf{u}) \int \mathrm{N}(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}}) p(\mathbf{u}) \mathrm{d} \mathbf{u}}{\mathrm{~N}(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}}) p(\mathbf{f} \mid \mathbf{u}) p(\mathbf{u})}\right] \\
& =\mathbb{E}_{q(\mathbf{f})}[\log p(\mathbf{Y} \mid \mathbf{f})]-\mathbb{E}_{q(\mathbf{u})}[\log \mathrm{N}(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}}+\mathbf{K})]+\mathbb{E}_{q(\mathbf{u})}[\log \mathrm{N}(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}})]
\end{aligned}
$$

ST-VGP Variational Lower Bound

- Reparameterize the approximate likelihood: $\widetilde{\lambda} \rightarrow[\widetilde{\mathbf{Y}}, \widetilde{\mathbf{V}}]$:

$$
\begin{equation*}
q(\mathbf{u})=\frac{\mathrm{N}(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}}) p(\mathbf{u})}{\mathrm{N}(\widetilde{\mathbf{Y}} \mid 0, \widetilde{\mathbf{V}}+\mathbf{K})} \tag{37}
\end{equation*}
$$

- Following Chang et al. [2020], substitute this into the ELbO :

$$
\begin{aligned}
\mathcal{L}_{\mathrm{ST}-\mathrm{VGP}} & =\mathbb{E}_{q(\mathbf{f}, \mathbf{u})}\left[\log \frac{p(\mathbf{Y} \mid \mathbf{f}) p(\mathbf{f} \mid \mathbf{u}) p(\mathbf{u}) \int \mathrm{N}(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}}) p(\mathbf{u}) \mathrm{d} \mathbf{u}}{\mathrm{~N}(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}}) p(\mathbf{f} \mid \mathbf{u}) p(\mathbf{u})}\right] \\
& =\mathbb{E}_{q(\mathbf{f})}[\log p(\mathbf{Y} \mid \mathbf{f})]-\mathbb{E}_{q(\mathbf{u})}[\log \mathrm{N}(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}}+\mathrm{K})]+\mathbb{E}_{q(\mathbf{u})}[\log \mathrm{N}(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}})]
\end{aligned}
$$

ST-VGP Variational Lower Bound

- Reparameterize the approximate likelihood: $\widetilde{\lambda} \rightarrow[\widetilde{\mathbf{Y}}, \widetilde{\mathbf{V}}]$:

$$
\begin{equation*}
q(\mathbf{u})=\frac{\mathrm{N}(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}}) p(\mathbf{u})}{\mathrm{N}(\widetilde{\mathbf{Y}} \mid 0, \widetilde{\mathbf{V}}+\mathbf{K})} \tag{37}
\end{equation*}
$$

- Following Chang et al. [2020], substitute this into the Elbo :

$$
\begin{aligned}
\mathcal{L}_{\mathrm{ST}-\mathrm{VGP}} & =\mathbb{E}_{q(\mathbf{f}, \mathbf{u})}\left[\log \frac{p(\mathbf{Y} \mid \mathbf{f}) p(\mathbf{f} \mid \mathbf{u}) p(\mathbf{u}) \int \mathrm{N}(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}}) p(\mathbf{u}) \mathrm{d} \mathbf{u}}{\mathrm{~N}(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}}) p(\mathbf{f} \mid \mathbf{u}) p(\mathbf{u})}\right] \\
& =\mathbb{E}_{q(\mathbf{f})}[\log p(\mathbf{Y} \mid \mathbf{f})]-\mathbb{E}_{q(\mathbf{u})}[\log \mathrm{N}(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}}+\mathbf{K})]+\mathbb{E}_{q(\mathbf{u})}[\log \mathrm{N}(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}})]
\end{aligned}
$$

Efficient Computation through State-space GPS

- Rewrite $q(\mathbf{u})$ as the solution to an LTI-SDE (Särkkä and Solin [2019])
- Compute q(u) through Kalman filtering and Smoothing - $\mathcal{O}\left(N_{t}\left(M_{s} \cdot d\right)^{3}\right)$
- Compute full ELBO:

$$
\begin{equation*}
\mathcal{L}=\underbrace{\mathbb{E}_{q(\mathrm{f})}[\log p(\mathbf{Y} \mid \mathrm{f})]}_{\mathcal{O}\left(N\left(M_{s} \cdot d\right)^{3}\right)}+\underbrace{\mathbb{E}_{q(\mathrm{u})}[\log \mathrm{N}(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathrm{V}}+\mathrm{K})]}_{\mathcal{O}\left(N_{t}\left(M_{\mathrm{s}} \cdot d\right)^{3}\right)}-\underbrace{\mathbb{E}_{q(\mathrm{u})}[\log \mathrm{N}(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathrm{V}})]}_{\mathcal{O}\left(N_{t}\left(M_{\mathrm{s}} \cdot d\right)^{3}\right)} \tag{38}
\end{equation*}
$$

- Can be computed in order $\mathcal{O}\left(N\left(M_{s} \cdot d\right)^{3}\right)$
- Equivalent to an SVGP with inducing points at every time point but only requires computation that is linear w.r.t. time!

Efficient Computation through State-space GPS

- Rewrite $q(\mathbf{u})$ as the solution to an LTI-SDE (Särkkä and Solin [2019])
- Compute $q(\mathbf{u})$ through Kalman filtering and Smoothing - $\mathcal{O}\left(N_{t}\left(M_{s} \cdot d\right)^{3}\right)$
- Compute full ELBO:

$$
\begin{equation*}
\mathcal{L}=\underbrace{\mathbb{E}_{q(\mathbf{f})}[\log p(\mathbf{Y} \mid \mathbf{f})]}_{\mathcal{O}\left(N\left(M_{\mathrm{s}} \cdot d\right)^{3}\right)}+\underbrace{\mathbb{E}_{q(\mathbf{u})}[\log \mathrm{N}(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}}+\mathbf{K})]}_{\mathcal{O}\left(N_{t}\left(M_{\mathrm{s}} \cdot d\right)^{3}\right)}-\mathbb{E}_{q(\mathbf{u})}[\log \mathrm{N}(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}})] \tag{38}
\end{equation*}
$$

- Can be computed in order $\mathcal{O}\left(N\left(M_{s} \cdot d\right)^{3}\right)$
- Equivalent to an SVGP with inducing points at every time point but only requires computation that is linear w.r.t. time!

Efficient Computation through State-space GPS

- Rewrite $q(\mathbf{u})$ as the solution to an LTI-SDE (Särkkä and Solin [2019])
- Compute $q(\mathbf{u})$ through Kalman filtering and Smoothing - $\mathcal{O}\left(N_{t}\left(M_{s} \cdot d\right)^{3}\right)$
- Compute full ELBO:

$$
\begin{equation*}
\mathcal{L}=\underbrace{\mathbb{E}_{q(\mathbf{f})}[\log p(\mathbf{Y} \mid \mathbf{f})]}_{\mathcal{O}\left(N\left(M_{\mathbf{s}} \cdot d\right)^{3}\right)}+\underbrace{\mathbb{E}_{q(\mathbf{u})}[\log \mathrm{N}(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}}+\mathbf{K})]}_{\mathcal{O}\left(N_{t}\left(M_{\mathbf{s}} \cdot d\right)^{3}\right)}-\mathbb{E}_{q(\mathbf{u})[\log \mathrm{N}(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}})]}^{\left.\left.\mathbb{E}_{\mathbf{s}} \cdot d\right)^{3}\right)} \tag{38}
\end{equation*}
$$

- Can be computed in order $\mathcal{O}\left(N\left(M_{\mathrm{s}} \cdot d\right)^{3}\right)$
- Equivalent to an SVGP with inducing points at every time point but only requires computation that is linear w.r.t. time!

Efficient Computation through State-space GPS

- Rewrite $q(\mathbf{u})$ as the solution to an LTI-SDE (Särkkä and Solin [2019])
- Compute $q(\mathbf{u})$ through Kalman filtering and Smoothing - $\mathcal{O}\left(N_{t}\left(M_{s} \cdot d\right)^{3}\right)$
- Compute full ELBO:

$$
\begin{equation*}
\mathcal{L}=\underbrace{\mathbb{E}_{q(\mathbf{f})}[\log p(\mathbf{Y} \mid \mathbf{f})]}_{\mathcal{O}\left(N\left(M_{s} \cdot d\right)^{3}\right)}+\underbrace{\mathbb{E}_{q(\mathbf{u})}[\log \mathrm{N}(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}}+\mathbf{K})]}_{\mathcal{O}\left(N_{t}\left(M_{\mathbf{s}} \cdot d\right)^{3}\right)}-\underbrace{\mathbb{E}_{q(\operatorname{u}}[\log \mathrm{N}(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}})]}_{\mathcal{O}\left(N_{t}\left(M_{\mathbf{s}} \cdot d\right)^{3}\right)} \tag{38}
\end{equation*}
$$

- Can be computed in order $\mathcal{O}\left(N\left(M_{s} \cdot d\right)^{3}\right)$
- Equivalent to an SVGP with inducing points at every time point but only requires computation that is linear w.r.t. time!

Efficient Computation through State-space GPS

- Rewrite $q(\mathbf{u})$ as the solution to an LTI-SDE (Särkkä and Solin [2019])
- Compute $q(\mathbf{u})$ through Kalman filtering and Smoothing - $\mathcal{O}\left(N_{t}\left(M_{s} \cdot d\right)^{3}\right)$
- Compute full ELBO:

$$
\begin{equation*}
\mathcal{L}=\underbrace{\mathbb{E}_{q(\mathbf{f})}[\log p(\mathbf{Y} \mid \mathbf{f})]}_{\mathcal{O}\left(N\left(M_{s} \cdot d\right)^{3}\right)}+\underbrace{\mathbb{E}_{q(\mathbf{u})}[\log \mathrm{N}(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}}+\mathbf{K})]}_{\mathcal{O}\left(N_{t}\left(M_{\mathbf{s}} \cdot d\right)^{3}\right)}-\mathbb{E}_{q(\mathbf{u})}[\log \mathrm{N}(\widetilde{\mathbf{Y}} \mid \mathbf{u}, \widetilde{\mathbf{V}})] \tag{38}
\end{equation*}
$$

- Can be computed in order $\mathcal{O}\left(N\left(M_{s} \cdot d\right)^{3}\right)$
- Equivalent to an SVGP with inducing points at every time point but only requires computation that is linear w.r.t. time!

Experiments

Experiment: Equivalence to SVGP

Experiment: Equivalence to SVGP

Experiment: Equivalence to SVGP

Experiment: PM_{10} in London-1

- Spatio-temporal PM10 data across London

PM10 - Hackney - Old Street (HK6)

- ST-SVGP with $\approx 60 \mathrm{~K}$ inducing points has the same computational cost of SVGP with 2, 000

Experiment: PM_{10} in London-2

Model (Batch Size)	Time (CPU)	Time (GPU)	RMSE	NLPD
ST-SVGP	16.79 ± 0.63	4.47 ± 0.01	$\mathbf{9 . 9 6} \pm \mathbf{0 . 5 6}$	$\mathbf{8 . 2 9} \pm \mathbf{0 . 8 0}$
MF-ST-SVGP	13.74 ± 0.49	0.85 ± 0.01	10.42 ± 0.63	8.52 ± 0.91
SVGP -200 (600)	20.21 ± 0.28	0.17 ± 0.00	15.46 ± 0.44	12.93 ± 0.95
SVGP -2500 (800)	40.90 ± 1.11	0.25 ± 0.00	15.53 ± 1.09	13.48 ± 1.85
SVGP -5000 (2000)	-	1.19 ± 0.00	14.20 ± 0.44	12.73 ± 0.73
SVGP -8000 (3000)	23.36 ± 1.01	4.09 ± 0.01	13.83 ± 0.47	12.40 ± 0.75
SKI				

Experiment: PM_{10} in London-2

Model (batch Size)	Time (CPU)	Time (GPU)	RMSE	NLPD
ST-SVGP	16.79 ± 0.63	4.47 ± 0.01	9.96 ± 0.56	$\mathbf{8 . 2 9} \pm \mathbf{0 . 8 0}$
MF-ST-SVGP	13.74 ± 0.49	0.85 ± 0.01	10.42 ± 0.63	8.52 ± 0.91
SVGP -2000 (600)	20.21 ± 0.28	0.17 ± 0.00	15.46 ± 0.44	12.93 ± 0.95
SVGP -2500 (800)	40.90 ± 1.11	0.25 ± 0.00	15.53 ± 1.09	13.48 ± 1.85
SVGP -5000 (2000)	-	1.19 ± 0.00	14.20 ± 0.44	12.73 ± 0.73
SVGP -8000 (3000)	-	4.09 ± 0.01	13.83 ± 0.47	12.40 ± 0.75
SKI	23.36 ± 1.01	3.61 ± 0.01	12.01 ± 0.55	10.32 ± 0.79

Experiment: PM_{10} in London-2

Model (batch Size)	Time (CPU)	Time (GPU)	RMSE	NLPD
ST-SVGP	16.79 ± 0.63	4.47 ± 0.01	9.96 ± 0.56	$\mathbf{8 . 2 9} \pm \mathbf{0 . 8 0}$
MF-ST-SVGP	13.74 ± 0.49	0.85 ± 0.01	10.42 ± 0.63	8.52 ± 0.91
SVGP -2000 (600)	20.21 ± 0.28	0.17 ± 0.00	15.46 ± 0.44	12.93 ± 0.95
SVGP -2500 (800)	40.90 ± 1.11	0.25 ± 0.00	15.53 ± 1.09	13.48 ± 1.85
SVGP -5000 (2000)	-	1.19 ± 0.00	14.20 ± 0.44	12.73 ± 0.73
SVGP -8000 (3000)	-	4.09 ± 0.01	13.83 ± 0.47	12.40 ± 0.75
SKI	23.36 ± 1.01	3.61 ± 0.01	12.01 ± 0.55	10.32 ± 0.79

Extensions

Spatial Mini Batching

Spatial Minibatching

- We have computed everything as if \mathbf{X} also lies on a spatiotemporal grid
- However we only really require that \mathbf{X} has data at the same temporal points since we compute the required marginals at each time point independently!
- Hence we can easily minibatch in space

$$
\begin{align*}
\mathbb{E}_{q(\mathbf{f})}[\log p(\mathbf{Y} \mid \mathbf{f})] & =\sum_{t}^{N_{t}} \sum_{s}^{N_{\mathrm{s}}}\left[\log p\left(\mathbf{Y}_{t, s} \mid \mathbf{f}_{t, s}\right)\right] \\
& \approx \sum_{t}^{N_{t}} \frac{N_{\mathrm{s}}}{B} \sum_{b}^{B}\left[\log p\left(\mathbf{Y}_{t, b} \mid \mathbf{f}_{t, b}\right)\right] \tag{39}
\end{align*}
$$

- Computational complexity $\mathcal{O}\left(N\left(M_{s} \cdot d\right)^{3}\right) \rightarrow \mathcal{O}\left(N_{t}\left(M_{s} \cdot d\right)^{3}\right)$

Ensuring PSD Updates

Ensuring PSD Updates

- So far we have assumed that the natural gradient always results in a positive semi-definite update, however, this is not always the case
- Beyond Gaussian likelihoods we need a way to ensure our update is valid (beyond using a small learning rate)
- We can use an approximation to the natural gradient that is very similar to the Gauss-Newton approximation
- See Wilkinson et al. [2021], Khan and Rue [2021].

Derivative Observations

Derivative Observations

- We can write a GP prior over a latent function and its various derivatives as

$$
\begin{equation*}
p\left(\mathbf{f}(\mathbf{x}), \nabla_{s} \mathbf{f}(\mathbf{x}), \nabla_{t} \mathbf{f}(\mathbf{x}), \nabla_{s t} \mathbf{f}(\mathbf{x})\right)=\mathrm{N}\left(\mathbf{F} \mid \mathbf{0}, \nabla \mathbf{K} \nabla^{T}\right) \tag{40}
\end{equation*}
$$

- When the kernel is separable and data lies on a grid we can write

$$
\begin{equation*}
p(\nabla \mathbf{f}(\mathbf{X}))=\mathrm{N}\left(\mathbf{f} \mid \mathbf{0}, \mathbf{K}_{t}^{\nabla}(\mathbf{X}, \mathbf{X}) \otimes \mathbf{K}_{s}^{\nabla}(\mathbf{X}, \mathbf{X})\right) \tag{41}
\end{equation*}
$$

where

$$
\mathbf{K}^{\nabla}=\left[\begin{array}{cc}
\mathbf{K} & \mathbf{K} \nabla^{T} \tag{42}\\
\nabla \cdot \mathbf{K} & \nabla \cdot \mathbf{K} \nabla^{T}
\end{array}\right]
$$

- Which can immediately be written as a state-space GP when the time kernel is Markov
- Can easily extend to solving linear and non-linear PDEs through the collocation method

Future Work

Future Work

- State Dimension - Ultimately, the bottleneck is still the state-dimension size. We can use less inducing points, but then we over smooth!
- Alternative reduced-rank methods? Ensemble methods?
- Model Constructions - There are lots of exciting model constructions to extend this framework to Deep GPs and Multi-fidelity GPs, physics-informed GPs, etc
- Natural Gradient Approximations - In general, the natural gradient approximation discussed is effective, however, there needs to be a proper evaluation of different approximation methods

Conclusion

Conclusion

- We have introduced ST-VGP which is a variational SVGP with a computational complexity that is linear w.r.t. to time.
- This is done within a natural gradient framework where we represent the approximate posterior with a state-space GP
- Future work could include exploring approximations to the spatial dimension to further improve the computation complexities

Conclusion

- We have introduced ST-VGP which is a variational SVGP with a computational complexity that is linear w.r.t. to time.
- This is done within a natural gradient framework where we represent the approximate posterior with a state-space GP
- Future work could include exploring approximations to the spatial dimension to further improve the computation complexities

Conclusion

- We have introduced ST-VGP which is a variational SVGP with a computational complexity that is linear w.r.t. to time.
- This is done within a natural gradient framework where we represent the approximate posterior with a state-space GP
- Future work could include exploring approximations to the spatial dimension to further improve the computation complexities

Conclusion

- Thank you for listening!
- Code and link to paper: https://github.com/AaltoML/spatio-temporal-GPs

References I

Shun-ichi Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2): 251-276, 1998.
José M Bernardo and Adrian F. M Smith. Bayesian theory. Wiley, 2004.
Paul E. Chang, William J. Wilkinson, Mohammad Emtiyaz Khan, and Arno Solin. Fast variational learning in state-space Gaussian process models. In 30th IEEE International Workshop on Machine Learning for Signal Processing (MLSP), pages 1-6, Espoo, Finland, 2020. IEEE.

Oliver Hamelijnck, William J. Wilkinson, Niki Andreas Loppi, Arno Solin, and Theodoros Damoulas. Spatio-temporal variational gaussian processes. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, 2021.
James Hensman, Magnus Rattray, and Neil D. Lawrence. Fast variational inference in the conjugate exponential family. In Advances in Neural Information Processing Systems 25 (NIPS), pages 2888-2896. Curran Associates Inc., 2012.

References II

James Hensman, Nicolò Fusi, and Neil D. Lawrence. Gaussian processes for big data. In Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence (UAI), pages 282-290. AUAI Press, 2013.
Matthew D. Hoffman, David M. Blei, Chong Wang, and John Paisley. Stochastic variational inference. J. Mach. Learn. Res., 14(1):1303-1347, may 2013. ISSN 1532-4435.
Mohammad Emtiyaz Khan and Wu Lin. Conjugate-computation variational inference:
Converting variational inference in non-conjugate models to inferences in conjugate models. In Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS), volume 54 of Proceedings of Machine Learning Research, pages 878-887. PMLR, 2017.
Mohammad Emtiyaz Khan and Håvard Rue. The bayesian learning rule, 2021. URL https://arxiv.org/abs/2107.04562.
CE Rasmussen and CKI Williams. Gaussian Processes for Machine Learning. MIT Press, Cambridge, MA, USA, 2006.

References III

Hugh Salimbeni, Stefanos Eleftheriadis, and James Hensman. Natural gradients in practice: Non-conjugate variational inference in Gaussian process models. In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS), volume 84 of Proceedings of Machine Learning Research, pages 689-697. PMLR, 2018.
Simo Särkkä and Arno Solin. Applied Stochastic Differential Equations. Cambridge University Press, 2019.
Michalis Titsias. Variational learning of inducing variables in sparse Gaussian processes. In Proceedings of the Twelth International Conference on Artificial Intelligence and Statistics (AISTATS), volume 5 of Proceedings of Machine Learning Research, pages 567-574. PMLR, 2009.
William J. Wilkinson, Simo Särkkä, and Arno Solin. Bayes-newton methods for approximate bayesian inference with psd guarantees, 2021.

Appendix

KLD Gradients

- We wish to compute:

$$
\frac{\partial K L D}{\partial \mu}=\left[\begin{array}{c}
\frac{\partial K L D}{\partial \mathbf{m}}-2 \frac{\partial K L D}{\partial S} \tag{43}\\
\frac{\partial K L}{\partial S}
\end{array}\right]
$$

where KLD $=\frac{1}{2}\left[\log |\mathbf{K}|-\log |\mathbf{S}|-M+\mathbf{m}^{T} \mathbf{K}^{-1} \mathbf{m}+\operatorname{Tr}\left[\mathbf{K}^{-1} \mathbf{S}\right]\right]$

- The required gradients are:

$$
\begin{equation*}
\frac{\partial \mathrm{KLD}}{\partial \mathbf{m}}=\mathbf{K}^{-1} \mathbf{m}, \quad \frac{\partial \mathrm{KLD}}{\partial \mathbf{S}}=-\frac{1}{2} \mathbf{S}^{-1}+\frac{1}{2} \mathbf{K}^{-1} \tag{44}
\end{equation*}
$$

- Leading to:

$$
\frac{\partial \mathrm{KLD}}{\partial \mu}=\left[\begin{array}{c}
+\mathbf{S}^{-1} \mathbf{m} \tag{45}\\
-\frac{1}{2} \mathbf{S}^{-1}+\frac{1}{2} \mathbf{K}^{-1}
\end{array}\right]
$$

CVI Update Equations

CVI Equations - (1)

- Initialise natural parameters as a Bayesian update:

$$
\begin{equation*}
\lambda_{1}=\widetilde{\lambda}_{0}+\eta \tag{46}
\end{equation*}
$$

where $\eta_{1}=\left[0,-\frac{1}{2} \mathbf{K}\right]$ and $\widetilde{\lambda}_{1}$ are the initial parameters. This implies:

$$
\begin{equation*}
\lambda_{1}=\left[\mathbf{S}^{-1} \mathbf{m},-\frac{1}{2} \mathbf{S}^{-1},\right] \tag{47}
\end{equation*}
$$

CVI Equations - (2)

- The natural gradient update is:

$$
\begin{equation*}
\lambda_{2}=\lambda_{1}+\beta \frac{\partial \mathcal{L}}{\partial \mu} \tag{48}
\end{equation*}
$$

- Substituting $\mathcal{L}=$ ELL - KLD and simplifying:

$$
\lambda_{2}=\lambda_{1}+\beta \frac{\partial \mathrm{ELL}}{\partial \mu}+\beta\left[\begin{array}{c}
-\mathbf{S}^{-1} \mathbf{m} \tag{49}\\
+\frac{1}{2} \mathbf{S}^{-1}-\frac{1}{2} \mathbf{K}^{-1}
\end{array}\right]
$$

- Rewrite $\boldsymbol{\lambda}_{2}=(1-\beta) \lambda_{2}+\beta \lambda$ and substitute in:

$$
\lambda_{2}=(1-\beta) \lambda_{1}+\beta\left[\begin{array}{c}
\mathbf{S}^{-1} \mathbf{m} \tag{50}\\
-\frac{1}{2} \mathbf{S}^{-1}
\end{array}\right]+\beta \frac{\partial \mathrm{ELL}}{\partial \mu}+\beta\left[\begin{array}{c}
-\mathbf{S}^{-1} \mathbf{m} \\
+\frac{1}{2} \mathbf{S}^{-1}-\frac{1}{2} \mathbf{K}^{-1}
\end{array}\right]
$$

CVI Equations - (3)

- Substitute $\lambda_{2}=\widetilde{\lambda}_{0}+\eta$ and simplify:

$$
\begin{align*}
\lambda_{2} & =(1-\beta) \lambda_{1}+\beta \frac{\partial \mathrm{ELL}}{\partial \mu}+\beta\left[\begin{array}{c}
\mathbf{S}^{-1} \mathbf{m} \\
-\frac{1}{2} \mathbf{S}^{-1}
\end{array}\right]+\beta\left[\begin{array}{c}
-\mathbf{S}^{-1} \mathbf{m}+0 \\
+\frac{1}{2} \mathbf{S}^{-1}-\frac{1}{2} \mathbf{K}^{-1}
\end{array}\right] \\
& =(1-\beta) \widetilde{\lambda}_{0}+\beta \frac{\partial \mathrm{ELL}}{\partial \mu}+(1-\beta) \eta+\beta \eta \\
& =\underbrace{(1-\beta) \widetilde{\lambda}_{0}+\beta \frac{\partial \mathrm{ELL}}{\partial \mu}}_{\widetilde{\lambda}_{1}}+\eta \tag{51}\\
& =\widetilde{\lambda}_{1}+\eta \text { with } \widetilde{\lambda}_{1}=(1-\beta) \widetilde{\lambda}_{0}+\beta \frac{\partial \mathrm{ELL}}{\partial \mu} .
\end{align*}
$$

- Which recovers the CVI update equations.

Exponential Families

Exponential Family - (1)

A distribution is in the Exponential Family if it can be written as:

$$
\begin{equation*}
p(x \mid \theta)=h(x) \mathbb{E}[\eta(\theta) \cdot T(x)-A(\theta)] \tag{52}
\end{equation*}
$$

A Gaussian distribution $q(\mathbf{u})=\mathrm{N}(\mathbf{u} \mid \mathbf{m}, \mathbf{S})$ is part of the exponential family with:

$$
\begin{align*}
h(x) & =(2 \pi)^{-D / 2} \\
T(x) & =\left(x, x x^{T}\right) \\
\eta(\theta) & =\left(\mathbf{S}^{-1} \mathbf{m},-\frac{1}{2} \mathbf{S}^{-1}\right) \tag{53}\\
A(\theta) & =\log \left[\int h(x) \mathbb{E}[\eta(\theta) \cdot T(x)] \mathrm{d} x\right]
\end{align*}
$$

Exponential Family - (2)

A Gaussian distribution $q(\mathbf{u})=\mathrm{N}(\mathbf{u} \mid \mathbf{m}, \mathbf{S})$ can be parameterised in different ways:

$$
\begin{align*}
\boldsymbol{\theta} & =(\mathbf{m}, \mathbf{S}) \tag{54}\\
\boldsymbol{\lambda} & =\left(\mathbf{S}^{-1} \mathbf{m},-\frac{1}{2} \mathbf{S}^{-1}\right), \tag{55}\\
\boldsymbol{\mu} & =\left(\mathbf{m}, \mathbf{m} \mathbf{m}^{\top}+\mathbf{S}\right), \tag{56}
\end{align*}
$$

where θ are the moment parameters, λ are the natural parameters, and μ are the expectation parameters.

Properties of the Multivariate Gaussian

Property
In the exponential family the gradient of the log normaliser (A) is equal to the expectation parameter:

$$
\begin{equation*}
\frac{\partial A(\lambda)}{\partial \lambda}=\mathbb{E}[T(x)]=\mu \tag{57}
\end{equation*}
$$

Property

When parameterised using natural parameters, conjugate inference in a Gaussian model can be written as:

$$
\begin{equation*}
\lambda^{(\text {post })}=\lambda^{(\text {lik })}+\eta^{(\text {prior })} \tag{58}
\end{equation*}
$$

(See Bernardo and Smith [2004] etc)

