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Motivation: The changing climate...

In recent years, the Earth’s climate has been changing
(e.g. the average global temperature has been increasing) '
— Why is this happening? T | e

— What are the potential impacts? . ‘I’H I
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Context: Aerosols, and their effects on the climate

Aerosols are particles suspended in the atmosphere
— They come from natural and anthropogenic sources

nasa.gov/Features/Aerosols/
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. — They come from natural and anthropogenic sources

— They affect the radiative balance of the earth-atmosphere system
In two ways:

1. Aerosols scatter and absorb
energy directly: The Aerosol




Context: Aerosols, and their effects on the climate

Aerosols are particles suspended in the atmosphere
— They come from natural and anthropogenic sources
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— They affect the radiative balance of the earth-atmosphere system
In two ways:

1. Aerosols scatter and absorb 2. Aerosols can affect and change the
enerqy directly: The Aerosol properties of clouds: The Aerosol
e S —— _ .
7 : /*‘ ‘ Cloud Interaction (ACI) effect
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Source: http://earthobservatory.nasa.gov/Features/Aerosols/, NASA image by Robert Simmon.




Context: Aerosols, and their effects on the climate

— They come from natural and anthropogenic sources

— They affect the radiative balance of the earth-atmosphere system

In two ways:

1. Aerosols scatter and absorb 2. Aerosols can affect and change the
energy directly: The Aerosol properties of clouds: The Aerosol
Radiation Interaction (ARI) effect Cloud Interaction (ACI) effect

Their effects on the change in Earth’s radiative Aerosol-cloud forcing (W m-?)
balance over the industrial period — Aerosol 0.0 -
Radiative Forcing — Is the most uncertain factor l I I I

. . . -1.0 -
in international assessments of climate change...

-2.0

Source: IPCC; Bellouin et al. (2020)
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Context: Aerosols, and their effects on the climate

— They come from natural and anthropogenic sources

— They affect the radiative balance of the earth-atmosphere system

In two ways:

1. Aerosols scatter and absorb 2. Aerosols can affect and change the
energy directly: The Aerosol properties of clouds: The Aerosol
Radiation Interaction (ARI) effect Cloud Interaction (ACI) effect

Their effects on the change in Earth’s radiative Aerosol-cloud forcing (W m-?)

balance over the industrial period — Aerosol 0.0 -
Radiative Forcing — Is the most uncertain factor l I I I

. . . -1.0 -
in international assessments of climate change...

g _ 2.0 -
e We need to explore the effects of uncertainty

In cloud / aerosol / climate models in order to Source: IPCC; Bellouin et al. (2020)
understand it and ultimately constrain it.... 1996 2001 2007 2013 2020

SEMatory.nasa.gov/Features/Aerosols/




— Aleatory uncertainty, due to randomness:
= Natural variability in climate processes.

» Stochastic variables: rainfall, wind speed...



Context: What Is uncertainty?

— Aleatory uncertainty, due to randomness:
= Natural variability in climate processes.

= Stochastic variables: rainfall, wind speed...

— Epistemic uncertainty, due to lack of knowledge:
= Emissions levels.
* The characterisation of the variability.

* Process interactions that we don’t yet know about...



Context: Descriptions of uncertainty

Our descriptions of uncertainty can vary greatly...

— Qualitative
= Statements such as “likely” and “unlikely”...
* Low, medium or high confidence (IPCC).

— Quantitative
= Arange of plausible values...
» Standard deviation and variance...

= A statistical distribution...
» Confidence bounds (90%, 95%, 99%...).



Context: Models of complex systems

Models are used to simulate our Observations
knowledge of complex systems Input parameters
like the atmosphere and climate Initial conditions

— Aim: to understand and e
_ _ xpert knowledge
predict the system’s behaviour

MODEL

State of system
Impacts



Context: Models of complex systems

MODEL

Models are used to simulate our Observations
knowledge of complex systems Input parameters
like the atmosphere and climate Initial conditions
— Aim: to understand and

Expert knowledge

predict the system’s behaviour

= A modelisinherently uncertain

State of system
Impacts

— We cannot include the full detail of everything — we must make assumptions and

simplifications (parameterisations)
— There is natural variability in the system processes

— Parts of the system are still unknown / to be discovered



Context: Models of complex systems

Models are used to simulate our Observations
knowledge of complex systems Input parameters
like the atmosphere and climate Initial conditions
— Aim: to understand and

Expert knowledge

MODEL

predict the system’s behaviour

= A modelisinherently uncertain

State of system
Impacts

— We cannot include the full detail of everything — we must make assumptions and

simplifications (parameterisations)
— There is natural variability in the system processes

— Parts of the system are still unknown / to be discovered

= A model has many uncertain inputs (parameters) — these are what I’'m interested in!
— How does the uncertainty in model parameters affect predictions of

system behaviour?



Context: How to explore the effects of parameter uncertainty
on predictions of system behaviour?

2-D Example:

Uncertainty ranges on model parameters generate a
(multi-dimensional) parameter uncertainty space to
explore

—

Default

<4— Parameter 2

44— Parameter 1 ——»



Context: How to explore the effects of parameter uncertainty
on predictions of system behaviour?

_ 2-D Example:
Uncertainty ranges on model parameters generate a

(multi-dimensional) parameter uncertainty space to

explore Default

Parameter 2

For large models, ‘one-at-a-time’ perturbations are often
used to explore the effects of parameter uncertainty, but
they provide minimal coverage of ‘uncertainty space’ ‘

= \What is the model behaviour in the rest of the Parameter 1
Sspace?



Context: How to explore the effects of parameter uncertainty
on predictions of system behaviour?

2-D Example:

Parameter 1

Uncertainty ranges on model parameters generate a
(multi-dimensional) parameter uncertainty space to
explore

For large models, ‘one-at-a-time’ perturbations are often
used to explore the effects of parameter uncertainty, but
they provide minimal coverage of ‘uncertainty space’
= What is the model behaviour in the rest of the
Sspace?

Parameter 2

To fully understand the system behaviour, we need to densely sample the space
BUT, running a complex model requires significant computational resource - NOT FEASIBLE

with the model itself



Context: How to explore the effects of parameter uncertainty
on predictions of system behaviour?

. 3-D Example:
Uncertainty ranges on model parameters generatea = GAO8800.00.00-0.

(multi-dimensional) parameter uncertainty spaceto GRS
explore

Parameter 2

For large models, ‘one-at-a-time’ perturbations are often

used to explore the effects of parameter uncertainty, but

they provide minimal coverage of ‘uncertainty space’ ,
= What is the model behaviour in the rest of the %%

————————————

space? O i a i a e aaaaals
Parameter 1

To fully understand the system behaviour, we need to densely sample the space
BUT, running a complex model requires significant computational resource - NOT FEASIBLE
with the model itself, especially as the number of input dimensions increase



Context: How to explore the effects of parameter uncertainty
on predictions of system behaviour?

. 3-D Example:
Uncertainty ranges on model parameters generatea = @GOOS800.0000-040
(multi-dimensional) parameter uncertainty space to

explore

Parameter 2

For large models, ‘one-at-a-time’ perturbations are often

used to explore the effects of parameter uncertainty, but

they provide minimal coverage of ‘uncertainty space’ ,
= What is the model behaviour in the rest of the %%

————————————

space? O i a i a e aaaaals
Parameter 1

To fully understand the system behaviour, we need to densely sample the space
BUT, running a complex model requires significant computational resource - NOT FEASIBLE
with the model itself, especially as the number of input dimensions increase

We need a statistical framework to enable dense sampling at a low
computational cost, so to explore the model behaviour over the uncertainty




A statistical framework for UQ in complex models
Oakley and O’Hagan (2004); Lee et al. (2013); Johnson et al. (2015)
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A statistical framework for UQ in complex models
Oakley and O’Hagan (2004); Lee et al. (2013); Johnson et al. (2015)

Expert elicitation

(choose parameters
and their ranges)




Expert Elicitation

‘We think these are the
uncertain parameters, and
their values are very unlikely
to fall outside of these ranges’

Bring together
experts in the field...

Through expert elicitation, we:
— ldentify the uncertain parameters to consider
— Determine a range (min — max) for each one

min max



Expert Elicitation

Bring together
experts in the field...

Through expert elicitation, we:

— ldentify the uncertain parameters to consider
— Determine a range (min — max) for each one

— Obtain a probability distribution over the
parameter range through evaluation of the
median and different quantiles (LQ, UQ) over

the range.

‘We think these are the
uncertain parameters, and
their values are very unlikely
to fall outside of these ranges’




A statistical framework for UQ in complex models
Oakley and O’Hagan (2004); Lee et al. (2013); Johnson et al. (2015)
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Experiment Design

The experiment design is a critical stage in this approach...

We want to obtain the maximum information over our
parameter unc. space from the fewest possible model runs




Experiment Design

The experiment design is a critical stage in this approach...

Maximin Latin Hypercube

We want to obtain the maximum information over our
parameter unc. space from the fewest possible model runs

02 04 0608

Good marginal coverage. 08
Good space-filling properties. 06 ]
Here, the minimum distance between 04 ]
any two points is maximised. 0y A
Number of runs depends on ‘active’ 0 7
parameters and function |
0.2
smoothness.

Extend to N dimensions for

* Generalrule: 10 x p N important uncertainties



Experiment Design

The experiment design is a critical stage in this approach...

We want to obtain the maximum information over our
parameter unc. space from the fewest possible model runs

Factorial (gridded) designs Maximin Latin Hypercube

Input 1 Input 1
o o M Q &
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Input 2 o Input 2
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Experiment Design

The experiment design is a critical stage in this approach...

Factorial (gridded) designs
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We want to obtain the maximum information over our
parameter unc. space from the fewest possible model runs
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Experiment Design

The experiment design is a critical stage in this approach...

We want to obtain the maximum information over our
parameter unc. space from the fewest possible model runs

Factorial (gridded) designs Maximin Latin Hypercube

Input 1 Input 1
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A statistical framework for UQ in complex models
Oakley and O’Hagan (2004); Lee et al. (2013); Johnson et al. (2015)
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A statistical framework for UQ in complex models
Oakley and O’Hagan (2004); Lee et al. (2013); Johnson et al. (2015)

Expert elicitation

(choose parameters
and their ranges)

A4

/Experimental\
design Run
(select points in > perturbed
parameter parameter
space). e.g. Latin ensemble

. \ Hypercube / - /

https://www.epcc.ed.ac.uk/hpc-services/archer2

We collate the model outputs for each
selected input combination



A statistical framework for UQ in complex models
Oakley and O’Hagan (2004); Lee et al. (2013); Johnson et al. (2015)
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What is an emulator? O’Hagan (2006)

An emulator is a statistical representation that maps the relationship between a set of
uncertain inputs and a model output of interest.

Output

-

Q,
)
@[@/’e eret b
Qaf
Predicted Model
response surface

~ training runs

» Extend to N dimensions for
N important uncertainties



Gaussian process emulation

O’Hagan (20006)

An emulator is a statistical representation that maps the relationship between a set of
uncertain inputs and a model output of interest.

5
o
5
o AR
) |
ye)
o
Q,
)
ey eret b
< ?3(3
Predicted Model
response surface

~ training runs

» Extend to N dimensions for
N important uncertainties

— Based on the Gaussian Process (GP)
Key assumptions:

— The model output Y is smooth

— Model output at specific input parameter settings X gives

information about model behaviour close by in parameter
space.

a priori: Y = g(X) ~GPIm(X) ,k(X,X")]

Applied within a Bayesian statistical framework that exploits
conditional probability: Posterior emulator « Prior X Likelihood

Y*|Y,X,X* 0 ~ GP[m*(X) , k*(X,X")]



General formulation of the emulator:

- Y = g(X) represents the model simulator

— Parameters: P4, P,, ..., P; that form an d-dimensional parameter space
— Training Inputs: X = {X{, X, ..., X,,}, where X; = (1, P2i) -, Pai)

— Training outputs: ¥ = {Y; = g(X,),Y, = g(X,),...,Y,, = g(X;))}

A priori, we assume:
9(X)~GP[m(X) , k(X,X")]
where m(X) and k(X,X') are the mean and covariance functions of the GP, resp.

Given X, the model for the training data is:
Y~N(w )
with Ui = m(Xl) and ZU = k(Xl,X]), l,] (S {1,2, ,Tl}



General formulation of the emulator:
Mean and Covariance function choices

Mean Function:
— For a D-dimensional input vector X;, the most popular choices are:

= Constant: m(X;) = B,
= Linear: m(X;) = By + B1Xi1 + B2Xiz + -+ BpXip

Covariance Structure:

— The most popular choice is the “Squared Exponential” covariance function.
For input vectors X, and X, of D-dimensions, this takes the form:

D
k(Xp,Xq) = Cov (g(Xp),g(Xq)) = sz 1_[ [exp {—nd|Xpd — qu|2}] + J,%(qu,
d=1

where ng4, d = {1, ..., D} are roughness parameters, afz corresponds to the signal
variance, and g corresponds to a noise (nugget) effect.



General formulation of the emulator:

— Test Inputs: X, = {X.{, X., ..., X,s}, NOt contained in X, at which we wish to predict Y.

— Let Y, be the corresponding vector of predictions.

— By the prior, the joint distribution of (Y,Y.) is

HEX(A =)

where u,; = m(X,;), i € {1,2, ..., s}, Z, contains the training-test set covariances
and X,, contains the test set covariances, given k(X,X').

— By conditioning on the information in the training dataset, we obtain the following
posterior distribution for Y., from which we can predict Y,:

Y.V, X, X~N(u, + 2,271 — ), 2., — 2, 271%,).



Gaussian process emulation

O’Hagan (20006)

An emulator is a statistical representation that maps the relationship between a set of
uncertain inputs and a model output of interest.

5
o
5
o AR
) |
ye)
o
Q,
)
e, eret b
< ?3(’6
Predicted Model
response surface

~ training runs

» Extend to N dimensions for
N important uncertainties

Example: O’'Hagan (2006)

(a): The true function; (b) - (d): forming the emulator model, adding

further data points until the true function is recovered.
(a)

(b)




A statistical framework for UQ in complex models
Oakley and O’Hagan (2004); Lee et al. (2013); Johnson et al. (2015)
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A statistical framework for UQ in complex models
Oakley and O’Hagan (2004); Lee et al. (2013); Johnson et al. (2015)
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ERF

Variance-based Sensitivity Analysis (saltelli et al., 2000) I jﬂmh

— How does parameter uncertainty affect model predictions? A

— Using Variance decomposition, we decompose the variance in the model output due
to the parametric uncertainty, V= Var(E|Y|X]), to its contribution sources:

d
V= VarEYIXD = ) Vit ) Wi+ + Wiy g
i=1 i<j
where:
= V= VarXi(EX_i[lei]) represents the expected amount by which the uncertainty

In the model output Y will be reduced if the parameter X; were known exactly

= Vij = Vary,; (EX_U. [Y|Xij]) =V; +V; + W;; represents... if X;, X; known exactly...



ERF

Variance-based Sensitivity Analysis (saltelli et al., 2000) I m

— How does parameter uncertainty affect model predictions? —

ERF (1850 to 2008: W m™%)

— Using Variance decomposition, we decompose the variance in the model output due
to the parametric uncertainty, V= Var(E|Y|X]), to its contribution sources:

d
V= VarEYIXD = ) Vit ) Wi+ + Wiy g
i=1 i<j
where:
= V= VarXi(EX_i[lei]) represents the expected amount by which the uncertainty

In the model output Y will be reduced if the parameter X; were known exactly

= Vij = Vary,; (EX_U. [Y|Xij]) =V; +V; + W;; represents... if X;, X; known exactly...

X1

Sensitivity Indices: The individual main effects (%age contributions to V) ) e

V.
are given by: §; = Vl’ and Z?zl S; + Zi<j Sij++5812..a =1

Output

llnput



A ‘History Matching’ approach to reduce uncertainty

History Matching (Craig et al., 1996) rules out regions of parameter space that are not consistent

with observations:

1 million model ‘variants’, Reject implausible

from emulators odels R Plausible
o models
)ﬂ |

S 1 plausible
S L1 combinations
>| | of parameters

= ¥
1
Plausible
predictions
Observable Forcing Observable Forcing

Johnson et al. (2018, 2020)



Example 1. Volcanic aerosol study — Marshall et al., 2019
(doi: 10.1029/2018JD028675)

Exploring the radiative forcing caused by a volcanic eruption....

. : . 3-d parameter space
Model: UM-UKCA (Met-office general circulation model (GCM) coupled to the UK

Chemistry and Aerosol scheme; Based on ‘Global-Atmosphere 4’ configuration)
PPE: 30 training runs; 11 validation runs

Injection Height

Table 1 (km)

Eruption Source Parameters and Range in Values That are Perturbed in

This Study

Parameter Parameter range

SO, emission magnitude 10-100 Tg SO Eruption Latitude S0, Emission (Tg)
Injection height (plume bottom) 15-25 km

Latitude 80°S to 80°N

Considered 3 outputs in total:
We’ll concentrate on ‘Integrated global mean net radiative forcing
— Ranges from -68 to -692 MJ/m?in the simulations

(more negative = stronger forcing effect)

’



Example 1. Volcanic aerosol study — Marshall et al., 2019
(doi: 10.1029/2018JD028675)

0
Exploring the radiative forcing caused by a volcanic eruption....
Emulated output:
Model: UM-UKCA (Met-office general circulation model (GCM) coupled to the UK
Chemistry and Aerosol scheme; Based on ‘Global-Atmosphere 4’ configuration) R 300
PPE: 30 training runs; 11 validation runs ‘ ik .
Injection Height'
Table 1 (km) !
Eruption Source Parameters and Range in Values That are Perturbed in
This Study
Parameter Parameter range =700
SO, emission magnitude 10-100 Tg SO, Eruption LatitucWges S0, Emission (Te)
Injection height (plume bottom) 15-25 km
Latitude 80°S to 80°N mz:

Validation:

—1004

(M) m=?)

- 1 [
200 $

=3001

Considered 3 outputs in total:
We’ll concentrate on ‘Integrated global mean net radiative forcing’
— Ranges from -68 to -692 MJ/m?in the simulations

(more negative = stronger forcing effect) R e

Model output (M] m~2)

—400+ :
[ ]

—5001 .

Emulator prediction

=600+




Example 1. Volcanic aerosol study — Marshall et al., 2019
(doi: 10.1029/2018JD028675)

0
Exploring the radiative forcing caused by a volcanic eruption....
Emulated output:
Model: UM-UKCA (Met-office general circulation model (GCM) coupled to the UK P
Chemistry and Aerosol scheme; Based on ‘Global-Atmosphere 4’ configuration) B0 ciaieis 300
PPE: 30 training runs; 11 validation runs _ . .
Injection Height §
Table 1 (km) '
Eruption Source Parameters and Range in Values That are Perturbed in
This Study
Parameter Parameter range =700
SO, emission magnitude 10-100 Tg SO, Eruption LatitudWg S0, Emission (Te)
Injection height (plume bottom) 15-25 km Sensitivity:
LatitUdE SOQS t.'D _100(F) Integrated global mean net radiative forcing 100 (d) Parameter contributions

80+

|
N
o
o

601

forcing (M) m~2)

Percentage of variance (%)

Considered 3 outputs in total: —00) = L= 2|
We'll concentrate on ‘Integrated global mean net radiative fi g™ \ 2.
— Ranges from -68 to -692 MJ/m?in the simulations w00 N ol — . | __ B
0.0 0.2 _ 0.4 0.6 0.8 1.0 e-folding sAOD radiative forcing
(more negative = stronger forcing effect) Normalized parameter range

I SO; emission Eruption latitude I Injection height



Example 1. Volcanic aerosol study — Marshall et al., 2019
(doi: 10.1029/2018JD028675)

0
Exploring the radiative forcing caused by a volcanic eruption....
Constraint: RF < -400
Model: UM-UKCA (Met-office general circulation model (GCM) coupled to the UK
Chemistry and Aerosol scheme; Based on ‘Global-Atmosphere 4’ configuration) st 300
PPE: 30 training runs; 11 validation runs 4‘ .
Injection Height :

Table 1 (km)
Eruption Source Parameters and Range in Values That are Perturbed in
This Study
Parameter Parameter range =700
SO, emission magnitude 10-100 Tg SO, Eruption Latitua"ew g SO, Emission (Tg)
Injection height (plume bottom) 15-25 km Sensitivity: (
LatitUdE SODS t.'D _IOO(F) Integrated global mean net radiative forcing 100 (d) Parameter contributions

801

601

| | |
B w N
o o o
o o o

Percentage of variance (%)

Radiative forcing (M) m~2)

Considered 3 outputs in total: L= w0l
We’ll concentrate on ‘Integrated global mean net radiative f \ 2
- Ranges from _68 to _692 MJ/mz In the SImUIatlonS _500‘010 0.2 0.4 0.6 0.8 1.0 0 e-follding SAOD radiative forcing

(more negative = stronger forcing effect) Normalized parameter range

I SO; emission Eruption latitude I Injection height



Example 2. UK Met Office Climate Model — Johnson et al., 2020

(doi: 10.5194/acp-20-9491-2020)
Exploring the effects of parameter uncertainties on predictions of aerosol radiative forcing

Atmos. Chem. Phys.. 20, 9491-9524, 2020 Atmospheric
https://doi.org/10.5194/acp-20-9491-2020 :

© Author(s) 2020. This work is distributed under Chemls'try
the Creative Commons Attribution 4.0 License. and PhySlCS

Robust observational constraint of uncertain aerosol processes
and emissions in a climate model and the effect on
aerosol radiative forcing

Jill S. Johnson', Leighton A. Regayre', Masaru Yoshioka', Kirsty J. Pringle', Steven T. Turnock?, Jo Browse?,
David M. H. Sexton?, John W. Rostron?, Nick A. J. Schutgens®, Daniel G. Partridge’, Dantong Liu®*,
a b4 2
James D. Allan®’, Hugh Coe®, Aijun Ding®, David D. Cohen?, Armand Atanacio’, Ville Vakkari'"'', Eija Asmi'", and
4 ) 2 )
Ken S. Carslaw!
'nstitute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, UK
2Met Office Hadley Centre, Exeter, UK

3Centre faor Genoranhv and Enviranmental Science Ilnivercitv of Eveter Penrvn 11K




Example 2: UK Met Office Climate Model — Johnson et al., 2020

(doi: 10.5194/acp-20-9491-2020)

Exploring the effects of parameter uncertainties on predictions of aerosol radiative forcing

HadGEM3-UKCA (vn8.4) Total simulations: 235

26 aerosol parameters and processes perturbed, including:
= patural emissions (e.g. Sea Spray, DMS, Volcanic, Dust)

= anthropogenic emissions (e.g. SO,, Fossil fuel, Biomass
burning, residential)

= aerosol removal properties

= pH of cloud droplets

= modal width for aerosol size (Aitken and accumulation)
» standard deviation of updraft velocity

1850 (pre-industrial) and 2008 (present-day) emissions

1 year per period

2008 meteorology

Nudged horizontal winds and temperatures

Several studies led to this one...

Lee et al, 2013, ACP



Example 2: UK Met Office Climate Model — Johnson et al., 2020

(doi: 10.5194/acp-20-9491-2020)
Exploring the effects of parameter uncertainties on predictions of aerosol radiative forcing

HadGEM3-UKCA (vn8.4) Total simulations: 235| Several studies led to this one...
26 aerosol parameters and processes perturbed, including: Emulation at the ‘grid-box’ level
= natural emissions (e.g. Sea Spray, DMS, Volcanic, Dust) for comparison to obs.

= anthropogenic emissions (e.g. SO,, Fossil fuel, Biomass
burning, residential)

= aerosol removal properties

= pH of cloud droplets

= modal width for aerosol size (Aitken and accumulation)
» standard deviation of updraft velocity
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Lee et al, 2013, ACP

Nudged horizontal winds and temperatures




Example 2: UK Met Office Climate Model — Johnson et al., 2020

(doi: 10.5194/acp-20-9491-2020)

Exploring the effects of parameter uncertainties on predictions of aerosol radiative forcing

HadGEM3-UKCA (vn8.4) Total simulations: 235

26 aerosol parameters and processes perturbed, including:
= patural emissions (e.g. Sea Spray, DMS, Volcanic, Dust)
= anthropogenic emissions (e.g. SO,, Fossil fuel, Biomass

burning, residential)
= aerosol removal properties
= pH of cloud droplets

= modal width for aerosol size (Aitken and accumulation)

» standard deviation of updraft velocity

1850 (pre-industrial) and 2008 (present-day) emissions

1 year per period

2008 meteorology

Nudged horizontal winds and temperatures

Several studies led to this one...

Emulation at the ‘grid-box’ level

for comparison to obs.
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Sensitivity analysis

We can use sensitivity analysis to determine common causes of uncertainty

between observable quantities and aerosol radiative forcing:
[European averages; Johnson et al., 2018, ACP]

to variance
20 40 60 80 100

Percentage contribution

0




Aerosol observations

An extensive set of aerosol observations was used to constrain the model’s
uncertainty... and so our uncertainty in predictions of aerosol radiative forcing...
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Varied global coverage:
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9000+ observations
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A ‘History Matching’ approach to reduce uncertainty

History Matching (Craig et al., 1996) rules out regions of parameter space that are not

consistent with observations using an implausibility metric:

1 million model ‘variants’, Reject implausible .
m Plausible

from emulators odels I models
) - [ |

N 1 plausible
S L1 combinations
>| | of parameters

= ¥
1
Plausible
predictions
Observable Forcing Observable Forcing

Johnson et al. (2018, 2020)



A ‘History Matching’ approach to reduce uncertainty

History Matching (Craig et al., 1996) rules out regions of parameter space that are not

consistent with observations using an implausibility metric: Approx. scale of

1 million model ‘variants’, Reject implausible . the analysis:
from emulators models N Plausible
models
? 2 {‘- Model
l' - 26 perturbed
> - Plausible parameters
> —— combinations _ 1 1jjlion model
5 | | of parameters :
> ] variants
1 :
plausible  Observations
predictions = 9000 In situ
) measurements

| (AOD, particle
hhm number, N,

Observable Fdrcing Observable Forcing PM, s, SO,, OC)




Derivation of an implausibility metric to rule out poor models
on comparison to real aerosol measurements

Johnson et al. (2020): 1 million model variants, compared to 9000+ gridded observations
using an implausibility metric —> Accounting for all uncertainties in the comparison process

Model output

Observation Smaller I implies a variant is more

imol inilit [Prediction from _ _
mplausibility \ / emulator] plausible w.r.t. the observation
; |0 — M | For a single aerosol property in
— a particular month, we rule out
VIVar(M) + Var(0) + Var(R) + Var(S)] variants if I is large for >T

observations

Emulator/

prediction
uncertainty

Joint Constraint: Rule out a
Structu.ral variant if it is ruled out for ANY
uncertainty individual month/observation type

epresentation
uncertainty

Measurement
uncertainty

Spatial and temporal differences in resolution between the
(schutgens et al., 2016)  Observations and the model



Components of representation uncertainty

Model v’s Observations resolution

= Spatial co-location, Rgp
— Comparing point measurements with the model grid

— Where in the grid-box (central / edge) the observation lies
(Schutgens et al., 2016a)

= Temporal co-location, R+

— Comparing campaign data (measured over a few

hours/days) to monthly mean model output
(Schutgens et al., 2016b)

= |Inter-annual variability, R,y
— Campaigns are ‘one-off’ studies

- Comparing observations taken in a particular year to model |
output of a different year

These uncertainties can vary between different aerosol properties




Quantifying the uncertainty terms

Var(O): Instrument measurement uncertainty Var(M): Emulator uncertainty
— Information that observations are measured to an — Comes from the fitted emulator
accuracy of within +/- p % of the true value model for each prediction
— Assume Gaussian approximation for uncertainty
+/- 1% = +/- —
/- p% =+/- 20) p =10% Var(S): Structural uncertainty
— We assume NO structural
Var(R,,) and Var(R;): Spatial/temporal co-location uncertainty term [Var(S)=0].
— Similarly to Var(0): % error on observed value, using — We allow the implausibility measure
information from Schutgens et al. (2016) to inform us about any potential

p =20% and p = 10% structural errors.

Var(R,,,): Inter-annual variability

— Estimated from an analysis of the trend and variation of
gridded aerosol properties in a UKCA hindcast simulation over
the period of 1980-2009 (Turnock et al., 2015)



ldentifying observations that do not compare well

We remove observations if the lower 95% credible interval bound on | (across variants) is >1
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It can be difficult to pin-point the cause: Are the mis-matches due to representation errors?

Or, are they indicators of structural errors in the model?

Fig 4, Johnson et al. (2020)



Parameter Constraint

Parameter 1

Frequency

Parameter 2

Frequency

It is only possible to constrain joint
parameter distributions (in 26 dimensions)

We show marginal distributions

Example: Marginal distribution of
constrained boundary layer nucleation rate
using all measurements

BLNUC| — —4m —
(scale factor)
0.1 0.32 1 3.2
Constrained
BLNUC|[ & —————
(scale factor)
1 1 1
0.1 0.32 1 3.2

Unconstrained

10



Results: Marginal parameter constraints from constraint with individual
variables and the joint constraint
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Johnson et al. (2020



Results: Joint constraint effect from using observations of multiple aerosol
variables

1 million model variants, compared to 9000+ gridded observations

Constraint on parameters
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Around 2%
of variants

are
retained

Constraint achieved on aerosol forcing is weak

[the effect of compensating errors — ‘equifinality’]

Johnson et al. (2020)



Results: Joint constraint effect from using observations of multiple aerosol
variables — improved with targeted observations

1 million model variants, compared to 9000+ gridded observations

Extension of the constraint using additional targeted

observations over the Southern Ocean from the
ACE-SPACE campaign (Dec 2016 — Mar 2017)
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The constraint on aerosol forcing is
iImproved but still relatively weak

Our work highlights several key
challenges in the model-
observation comparison process
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Some key statistical challenges to address in future research
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Some key statistical challenges to address in future research
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Some key statistical challenges to address in future research
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Next steps — tackling some of these challenges in ‘Aerosol-MFR’

Aerosol-MFR — Towards Maximum Feasible Reduction in Aerosol Forcing Unc.

75.0
> - L
72.5 /
/
/
70.04

Current UKESM
constraint

(o)} (o)}
o N
o wn

Percent reduction in forcing
90% confidence interval
(o)}
N
wn

o
o
o

Projected Aerosol-MFR
constraint

—
—
—_—

0 20 40 60

80 100 120

Number of observations used

Regayre et al, (2023) [ACP]

140

Recent work has shown that the forcing
uncertainty range can be reduced as more
observations are used to constrain the model
processes — but only up to a point.

» Beyond ~15 this constraint weakens —
we’ve found that the model cannot match
more observations than this simultaneously.



Next steps — tackling some of these challenges in ‘Aerosol-MFR’

Aerosol-MFR — Towards Maximum Feasible Reduction in Aerosol Forcing Unc.
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Regayre et al, (2023), ACP

140

Recent work has shown that the forcing
uncertainty range can be reduced as more
observations are used to constrain the model
processes — but only up to a point.

» Beyond ~15 this constraint weakens —
we’ve found that the model cannot match
more observations than this simultaneously.

We hypothesise (hope!) that the uncertainty in
aerosol radiative forcing will be significantly
reduced in this project!

— Aims: To tackle structural errors and the effects of parametric uncertainty
(particularly, compensating errors) together within a single framework...



Challenges with our emulation approach...
Example 3 - Uncertainty in Modelling a Cloud Field

Exploring properties of a cloud field: Stratocumulus to cumulus
[Sansom et al. (2023), In Prep] transition

Here, natural variability affects the simulation output.

= Cloud properties are sensitive to any small variation in
Initial conditions.

= Each training simulation is just 1 possible cloud state for
the selected parameter settings.




Challenges with our emulation approach...
Example 3 - Uncertainty in Modelling a Cloud Field

Exploring properties of a cloud field: Stratocumulus to cumulus
[Sansom et al. (2023), In Prep] transition

Here, natural variability affects the simulation output.

= Cloud properties are sensitive to any small variation in
Initial conditions.

= Each training simulation is just 1 possible cloud state for
the selected parameter settings.
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Challenges with our emulation approach...

Prope_rtles _of a cloud field are a prime example of non-stationary et
behaviour in the natural world (NOAA collaboration) ———
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Challenges with our emulation approach...
Example 3: we must be careful — the emulation doesn’t always work!

Properties of a cloud field are a prime example of non-stationary
behaviour in the natural world (NOAA collaboration)
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Challenges with our emulation approach...
Example 3: we must be careful — the emulation doesn’t always work!
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Summary

Complex models of natural systems like the atmosphere & climate are inherently uncertain.

It’s important to quantify uncertainty in model predictions, in order to have confidence in
them.

To fully understand a system’s behaviour, we must densely sample it over the key input
uncertainties — the statistical framework enables this via Gaussian Process emulation.

Once quantified, we can use real-world observations to try and reduce output uncertainties
via ‘History Matching’.



Summary

= Complex models of natural systems like the atmosphere & climate are inherently uncertain.

" |t'simportant to quantify uncertainty in model predictions, in order to have confidence in
them.

* To fully understand a system’s behaviour, we must densely sample it over the key input
uncertainties — the statistical framework enables this via Gaussian Process emulation.

"= Once quantified, we can use real-world observations to try and reduce output uncertainties
via ‘History Matching’.

For the Met Office’s aerosol-climate model, HadGEM-UKCA:
= Robust constraint of the model is achievable using multiple types of aerosol measurements.
= Significant constraint of parameter space and aerosol properties leads to some constraint
on aerosol forcing
= Large representation errors and equifinality can limit the forcing constraint

= There are several challenges in these applications that require more research! ©
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