

Gaussian process emulation to rigorously explore uncertainty in complex models of the atmosphere and climate

Jill S Johnson

Collaborators: Leighton Regayre, Rachel Sansom and Ken Carslaw (University of Leeds);

Lauren Marshall (University of Durham).

Gaussian processes, surrogates and digital twins workshop

Presentation Outline

Context

- Aerosols, and their effects on the climate...
- What do we mean by 'uncertainty'?
- Models of complex systems and uncertainty...
- Methods A statistical framework for UQ in complex models
 - Gaussian Process 'emulation' to densely sample the model

Applications in Climate Science

- Volcanic eruptions...
- Uncertainty constraint of a global aerosol-climate model...
- Challenges...
- Summary

Motivation: The changing climate...

In recent years, the Earth's climate has been changing (e.g. the average global temperature has been increasing)

- Why is this happening?
- What are the potential impacts?

Aerosols are particles suspended in the atmosphere

- They come from **natural** and **anthropogenic** sources

Aerosols are particles suspended in the atmosphere

- They come from natural and anthropogenic sources
- They affect the radiative balance of the earth-atmosphere system in two ways:
- 1. Aerosols scatter and absorb energy directly: The Aerosol Radiation Interaction (ARI) effect

Source: http://earthobservatory.nasa.gov/Features/Aerosols/, NASA image by Robert Simmon.

http://earthopsenatory.nasa.gov/Features/Aerosols/

Aerosols are particles suspended in the atmosphere

- They come from **natural** and **anthropogenic** sources
- They affect the radiative balance of the earth-atmosphere system in two ways:
- 1. Aerosols scatter and absorb energy directly: The Aerosol

Aerosols can affect and change the properties of clouds: The Aerosol
Cloud Interaction (ACI) effect

Source: http://earthobservatory.nasa.gov/Features/Aerosols/, NASA image by Robert Simmon.

atory.nasa.gov/Features/Aerosols/

Aerosols are particles suspended in the atmosphere

- They come from natural and anthropogenic sources
- They affect the radiative balance of the earth-atmosphere system in two ways:
- Aerosols scatter and absorb energy directly: The Aerosol Radiation Interaction (ARI) effect
- 2. Aerosols can affect and change the properties of clouds: The Aerosol Cloud Interaction (ACI) effect

Their effects on the **change in Earth's radiative balance** over the industrial period – Aerosol **Radiative Forcing** – is the **most uncertain factor** in international assessments of climate change...

Aerosols are particles suspended in the atmosphere

- They come from **natural** and **anthropogenic** sources
- They affect the radiative balance of the earth-atmosphere system in two ways:
- 1. Aerosols scatter and absorb energy directly: The Aerosol Radiation Interaction (ARI) effect
- 2. Aerosols can affect and change the properties of clouds: The Aerosol Cloud Interaction (ACI) effect

Their effects on the **change in Earth's radiative balance** over the industrial period – Aerosol **Radiative Forcing** – is the **most uncertain factor** in international assessments of climate change...

We need to **explore the effects of uncertainty** in cloud / aerosol / climate models in order to understand it and ultimately constrain it....

Context: What is uncertainty?

- Aleatory uncertainty, due to randomness:

- Natural variability in climate processes.
- Stochastic variables: rainfall, wind speed...

Context: What is uncertainty?

- Aleatory uncertainty, due to randomness:

- Natural variability in climate processes.
- Stochastic variables: rainfall, wind speed...

- Epistemic uncertainty, due to lack of knowledge:

- Emissions levels.
- The characterisation of the variability.
- Process interactions that we don't yet know about...

Our descriptions of uncertainty can vary greatly...

- Qualitative

- Statements such as "likely" and "unlikely"...
- Low, medium or high confidence (IPCC).

– Quantitative

- A range of plausible values...
- Standard deviation and variance...
- A statistical distribution...
- Confidence bounds (90%, 95%, 99%...).

Context: Models of complex systems

Models are used to simulate our knowledge of complex systems like the atmosphere and climate

 Aim: to understand and predict the system's behaviour

Context: Models of complex systems

Models are used to simulate our knowledge of complex systems like the atmosphere and climate

 Aim: to understand and predict the system's behaviour

- A model is **inherently uncertain**
 - We cannot include the full detail of everything we must make assumptions and simplifications (parameterisations)
 - There is **natural variability** in the system processes
 - Parts of the system are still unknown / to be discovered

Context: Models of complex systems

Models are used to simulate our knowledge of complex systems like the atmosphere and climate

 Aim: to understand and predict the system's behaviour

- A model is inherently uncertain
 - We cannot include the full detail of everything we must make assumptions and simplifications (parameterisations)
 - There is natural variability in the system processes
 - Parts of the system are still unknown / to be discovered
- A model has many uncertain inputs (parameters) these are what I'm interested in!
 - How does the uncertainty in model parameters affect predictions of system behaviour?

Uncertainty ranges on model parameters generate a (multi-dimensional) **parameter uncertainty space** to explore

Uncertainty ranges on model parameters generate a (multi-dimensional) **parameter uncertainty space** to explore

For large models, **'one-at-a-time' perturbations** are often used to explore the effects of parameter uncertainty, but they provide **minimal coverage** of 'uncertainty space'

What is the model behaviour in the rest of the space?

Uncertainty ranges on model parameters generate a (multi-dimensional) **parameter uncertainty space** to explore

For large models, **'one-at-a-time' perturbations** are often used to explore the effects of parameter uncertainty, but they provide **minimal coverage** of 'uncertainty space'

What is the model behaviour in the rest of the space?

To fully understand the system behaviour, we need to densely sample the space BUT, running a complex model requires significant computational resource \rightarrow NOT FEASIBLE with the model itself

Uncertainty ranges on model parameters generate a (multi-dimensional) **parameter uncertainty space** to explore

For large models, **'one-at-a-time' perturbations** are often used to explore the effects of parameter uncertainty, but they provide **minimal coverage** of 'uncertainty space'

What is the model behaviour in the rest of the space?

3-D Example:

To fully understand the system behaviour, we need to densely sample the space BUT, running a complex model requires significant computational resource \rightarrow NOT FEASIBLE with the model itself, especially as the number of input dimensions increase

Uncertainty ranges on model parameters generate a (multi-dimensional) **parameter uncertainty space** to explore

For large models, **'one-at-a-time' perturbations** are often used to explore the effects of parameter uncertainty, but they provide **minimal coverage** of 'uncertainty space'

What is the model behaviour in the rest of the space?

3-D Example:

To fully understand the system behaviour, we need to densely sample the space BUT, running a complex model requires significant computational resource \rightarrow NOT FEASIBLE with the model itself, especially as the number of input dimensions increase

We need a **statistical framework** to enable **dense sampling at a low computational cost**, so to explore the model behaviour over the uncertainty

Oakley and O'Hagan (2004); Lee et al. (2013); Johnson et al. (2015)

Oakley and O'Hagan (2004); Lee et al. (2013); Johnson et al. (2015)

Expert Elicitation

Bring together experts in the field...

'We think these are the uncertain parameters, and their values are very unlikely to fall outside of these ranges'

Through **expert elicitation**, we:

- Identify the uncertain parameters to consider
- Determine a range (min \rightarrow max) for each one

Expert Elicitation

Bring together experts in the field...

'We think these are the uncertain parameters, and their values are very unlikely to fall outside of these ranges'

Through **expert elicitation**, we:

- Identify the uncertain parameters to consider
- Determine a range (min \rightarrow max) for each one
- Obtain a probability distribution over the parameter range through evaluation of the median and different quantiles (LQ, UQ) over the range.

Oakley and O'Hagan (2004); Lee et al. (2013); Johnson et al. (2015)

The experiment design is a critical stage in this approach...

We want to obtain the maximum information over our parameter unc. space from the fewest possible model runs

The experiment design is a critical stage in this approach...

We want to obtain the maximum information over our parameter unc. space from the fewest possible model runs

Maximin Latin Hypercube

- Good marginal coverage.
- Good space-filling properties.
- Here, the minimum distance between any two points is maximised.
- Number of runs depends on 'active' parameters and function smoothness.
 - General rule: 10 x p

Extend to *N* dimensions for *N* important uncertainties

The experiment design is a critical stage in this approach...

We want to obtain the maximum information over our parameter unc. space from the fewest possible model runs

Maximin Latin Hypercube

0

Input 2

0

0

Factorial (gridded) designs

The experiment design is a critical stage in this approach...

We want to obtain the maximum information over our parameter unc. space from the fewest possible model runs

Factorial (gridded) designs

Maximin Latin Hypercube

The experiment design is a critical stage in this approach...

We want to obtain the maximum information over our parameter unc. space from the fewest possible model runs

Factorial (gridded) designs

Oakley and O'Hagan (2004); Lee et al. (2013); Johnson et al. (2015)

Oakley and O'Hagan (2004); Lee et al. (2013); Johnson et al. (2015)

https://www.epcc.ed.ac.uk/hpc-services/archer2

We collate the model outputs for each selected input combination

Oakley and O'Hagan (2004); Lee et al. (2013); Johnson et al. (2015)

What is an emulator?

O'Hagan (2006)

An emulator is a **statistical representation** that **maps** the relationship between a set of uncertain inputs and a model output of interest.

Gaussian process emulation

O'Hagan (2006)

An emulator is a **statistical representation** that **maps** the relationship between a set of uncertain inputs and a model output of interest.

Based on the Gaussian Process (GP)

Key assumptions:

- The model output Y is smooth
- Model output at specific input parameter settings X gives information about model behaviour close by in parameter space.

a priori: $Y = g(X) \sim GP[m(X), k(X, X')]$

Applied within a **Bayesian statistical framework** that exploits conditional probability: Posterior emulator \propto Prior \times Likelihood

 $Y^*|Y, X, X^*, \theta \sim \operatorname{GP}[m^*(X), k^*(X, X')]$

General formulation of the emulator:

- Y = g(X) represents the model simulator
- Parameters: P_1, P_2, \dots, P_d that form an *d*-dimensional parameter space
- Training Inputs: $X = \{X_1, X_2, ..., X_n\}$, where $X_i = (p_{1i}, p_{2i}, ..., p_{di})$
- Training outputs: $Y = \{Y_1 = g(X_1), Y_2 = g(X_2), \dots, Y_n = g(X_n)\}$

A priori, we assume:

```
g(X) \sim \operatorname{GP}[m(X), k(X, X')]
```

where m(X) and k(X, X') are the mean and covariance functions of the GP, resp.

Given *X*, the model for the training data is:

 $\boldsymbol{Y} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\mu_i = m(X_i)$ and $\Sigma_{ij} = k(X_i, X_j), i, j \in \{1, 2, ..., n\}$

General formulation of the emulator: Mean and Covariance function choices

Mean Function:

- For a *D*-dimensional input vector X_i , the most popular choices are:
 - Constant: $m(X_i) = \beta_0$
 - Linear: $m(X_i) = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_D X_{iD}$

Covariance Structure:

- The most popular choice is the "Squared Exponential" covariance function. For input vectors X_p and X_q of *D*-dimensions, this takes the form:

$$k(X_p, X_q) = Cov\left(g(X_p), g(X_q)\right) = \sigma_f^2 \prod_{d=1}^D \left[exp\left\{-\eta_d \left|X_{pd} - X_{qd}\right|^2\right\}\right] + \sigma_n^2 \delta_{pq},$$

where η_d , $d = \{1, ..., D\}$ are roughness parameters, σ_f^2 corresponds to the signal variance, and σ_n^2 corresponds to a noise (nugget) effect.
General formulation of the emulator:

- Test Inputs: $X_* = \{X_{*1}, X_{*2}, \dots, X_{*s}\}$, not contained in X, at which we wish to predict Y.
- Let Y_* be the corresponding vector of predictions.
- By the prior, the joint distribution of (Y, Y_*) is

$$\begin{bmatrix} \boldsymbol{Y} \\ \boldsymbol{Y}_* \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \boldsymbol{\mu} \\ \boldsymbol{\mu}_* \end{bmatrix}, \begin{bmatrix} \boldsymbol{\Sigma} & \boldsymbol{\Sigma}_* \\ \boldsymbol{\Sigma}_*^T & \boldsymbol{\Sigma}_{**} \end{bmatrix} \right)$$

where $\mu_{*i} = m(X_{*i})$, $i \in \{1, 2, ..., s\}$, Σ_* contains the training-test set covariances and Σ_{**} contains the test set covariances, given k(X, X').

- By conditioning on the information in the training dataset, we obtain the following posterior distribution for Y_* , from which we can predict Y_* :

$$Y_*|Y,X_*,X\sim \mathcal{N}(\mu_*+\Sigma_*^T\Sigma^{-1}(Y-\mu),\Sigma_{**}-\Sigma_*^T\Sigma^{-1}\Sigma_*).$$

Gaussian process emulation

An emulator is a **statistical representation** that **maps** the relationship between a set of uncertain inputs and a model output of interest.

Example: O'Hagan (2006)

(a): The true function; (b) - (d): forming the emulator model, adding further data points until the true function is recovered.

A statistical framework for UQ in complex models

Oakley and O'Hagan (2004); Lee et al. (2013); Johnson et al. (2015)

A statistical framework for UQ in complex models

Oakley and O'Hagan (2004); Lee et al. (2013); Johnson et al. (2015)

Variance-based Sensitivity Analysis (Saltelli et al., 2000)

- How does parameter uncertainty affect model predictions?

- Using Variance decomposition, we decompose the variance in the model output due to the parametric uncertainty, V = Var(E[Y|X]), to its contribution sources:

$$V = Var(E[Y|X]) = \sum_{i=1}^{d} V_i + \sum_{i < j} W_{ij} + \dots + W_{1,2,\dots,d}$$

where:

• $V_i = \operatorname{Var}_{X_i}(E_{X_{-i}}[Y|X_i])$ represents the **expected amount by which the uncertainty** in the model output Y will be reduced if the parameter X_i were known exactly

•
$$V_{ij} = \operatorname{Var}_{X_{ij}} \left(E_{X_{-ij}} [Y | X_{ij}] \right) = V_i + V_j + W_{ij}$$
 represents... if X_i, X_j known exactly...

Variance-based Sensitivity Analysis (Saltelli et al., 2000)

- How does parameter uncertainty affect model predictions?

- Using Variance decomposition, we decompose the variance in the model output due to the parametric uncertainty, V = Var(E[Y|X]), to its contribution sources:

$$V = Var(E[Y|X]) = \sum_{i=1}^{d} V_i + \sum_{i < j} W_{ij} + \dots + W_{1,2,\dots,d}$$

where:

• $V_i = \operatorname{Var}_{X_i}(E_{X_{-i}}[Y|X_i])$ represents the **expected amount by which the uncertainty** in the model output Y will be reduced if the parameter X_i were known exactly

•
$$V_{ij} = \operatorname{Var}_{X_{ij}} \left(E_{X_{-ij}} [Y|X_{ij}] \right) = V_i + V_j + W_{ij}$$
 represents... if X_i, X_j known exactly.

Sensitivity Indices: The individual main effects (%age contributions to V) are given by: $S_i = \frac{V_i}{V}$, and $\sum_{i=1}^d S_i + \sum_{i < j} S_{ij} + \dots + S_{1,2,\dots,d} = 1$

A 'History Matching' approach to reduce uncertainty

History Matching (Craig et al., 1996) rules out regions of parameter space that are not consistent with observations:

Johnson et al. (2018, 2020)

(doi: 10.1029/2018JD028675)

Exploring the radiative forcing caused by a volcanic eruption....

Model: UM-UKCA (Met-office general circulation model (GCM) coupled to the UK Chemistry and Aerosol scheme; Based on 'Global-Atmosphere 4' configuration) **PPE:** 30 training runs; 11 validation runs

Table 1

Eruption Source Parameters and Range in Values That are Perturbed in This Study

Parameter	Parameter range
SO ₂ emission magnitude	10–100 Tg SO ₂
Injection height (plume bottom)	15–25 km
Latitude	80°S to 80°N

Considered 3 outputs in total:

We'll concentrate on 'Integrated global mean net radiative forcing'

 Ranges from -68 to -692 MJ/m² in the simulations (more negative = stronger forcing effect)

(doi: 10.1029/2018JD028675)

Exploring the radiative forcing caused by a volcanic eruption.... -100 **Emulated output: Model:** UM-UKCA (Met-office general circulation model (GCM) coupled to the UK -200 Chemistry and Aerosol scheme; Based on 'Global-Atmosphere 4' configuration) **⊸300 PPE:** 30 training runs; 11 validation runs Injection Height* Table 1 (km) Eruption Source Parameters and Range in Values That are Perturbed in This Study Parameter Parameter range **20700** SO₂ Emission (Tg) **Eruption Latitude** SO₂ emission magnitude 10–100 Tg SO₂ Injection height (plume bottom) 15-25 km100 Latitude 80°S to 80°N m⁻²) Validation: -100 -200 **Considered 3 outputs in total:** -300 -400We'll concentrate on 'Integrated global mean net radiative forcing' -500

Ranges from -68 to -692 MJ/m^2 in the simulations (more negative = stronger forcing effect)

(doi: 10.1029/2018JD028675)

(doi: 10.1029/2018JD028675)

(doi: 10.5194/acp-20-9491-2020)

Exploring the effects of parameter uncertainties on predictions of aerosol radiative forcing

	Atmos. Chem. Phys., 20, 9491–9524, 2020 https://doi.org/10.5194/acp-20-9491-2020	Atmospheric Chemistry					
	© Author(s) 2020. This work is distributed under						
■ nat	the Creative Commons Attribution 4.0 License.	and Friysics %					
ant							
bur	Robust observational constraint of uncertain aerosol processes						
■ aer	and emissions in a climate model and the effect on						
■ pH	a anagal na diating fansing						
= mo	aerosol radiative forcing						
■ stai	Jill S. Johnson ¹ , Leighton A. Regayre ¹ , Masaru Yoshioka ¹ , Kirsty J. Pringle ¹ , Steven T. Turnock ² , Jo Browse ³ , David M. H. Sexton ² , John W. Rostron ² , Nick A. J. Schutgens ⁴ , Daniel G. Partridge ⁵ , Dantong Liu ^{6,a} ,						
1850 (pre-ii	James D. Allan ^{6,7} , Hugh Coe ⁶ , Aijun Ding ⁸ , David D. Cohen ⁹ , Armand At Ken S. Carslaw ¹	anacio ⁹ , Ville Vakkari ^{10,11} , Eija Asmi ¹⁰ , and					
1 year per p	¹ Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, UK ² Met Office Hadley Centre, Exeter, UK						
2008 meteo	³ Centre for Geography and Environmental Science, University of Exeter, Penry	vn UK					

Nudged horizontal winds and temperatures

(doi: 10.5194/acp-20-9491-2020)

Exploring the effects of parameter uncertainties on predictions of aerosol radiative forcing

HadGEM3-UKCA (vn8.4)

Total simulations: 235

26 aerosol parameters and processes perturbed, including:

- natural emissions (e.g. Sea Spray, DMS, Volcanic, Dust)
- anthropogenic emissions (e.g. SO₂, Fossil fuel, Biomass burning, residential)
- aerosol removal properties
- pH of cloud droplets
- modal width for aerosol size (Aitken and accumulation)
- standard deviation of updraft velocity

1850 (pre-industrial) and 2008 (present-day) emissions

1 year per period

2008 meteorology

Nudged horizontal winds and temperatures

Several studies led to this one...

(doi: 10.5194/acp-20-9491-2020)

Exploring the effects of parameter uncertainties on predictions of aerosol radiative forcing

HadGEM3-UKCA (vn8.4)

Total simulations: 235

26 aerosol parameters and processes perturbed, including:

- natural emissions (e.g. Sea Spray, DMS, Volcanic, Dust)
- anthropogenic emissions (e.g. SO₂, Fossil fuel, Biomass burning, residential)
- aerosol removal properties
- pH of cloud droplets
- modal width for aerosol size (Aitken and accumulation)
- standard deviation of updraft velocity

1850 (pre-industrial) and 2008 (present-day) emissions

1 year per period

2008 meteorology

Nudged horizontal winds and temperatures

Several studies led to this one... Emulation at the 'grid-box' level for comparison to obs.

(doi: 10.5194/acp-20-9491-2020)

Exploring the effects of parameter uncertainties on predictions of aerosol radiative forcing

HadGEM3-UKCA (vn8.4)

Total simulations: 235

26 aerosol parameters and processes perturbed, including:

- natural emissions (e.g. Sea Spray, DMS, Volcanic, Dust)
- anthropogenic emissions (e.g. SO₂, Fossil fuel, Biomass burning, residential)
- aerosol removal properties
- pH of cloud droplets
- modal width for aerosol size (Aitken and accumulation)
- standard deviation of updraft velocity

1850 (pre-industrial) and 2008 (present-day) emissions

1 year per period

2008 meteorology

Nudged horizontal winds and temperatures

Several studies led to this one... Emulation at the 'grid-box' level for comparison to obs.

Sensitivity analysis

We can use sensitivity analysis to determine common causes of uncertainty between observable quantities and aerosol radiative forcing: [European averages; Johnson *et al.*, 2018, ACP]

Aerosol observations

An extensive set of aerosol observations was used to constrain the model's uncertainty... and so our uncertainty in predictions of aerosol radiative forcing...

- Varied global coverage: Spatially/temporally sparse
- Data from large networks (e.g. AERONET)
- Data from ship and Aircraft campaigns
- 9000+ observations

Johnson et al. (2020)

A 'History Matching' approach to reduce uncertainty

History Matching (Craig et al., 1996) rules out regions of parameter space that are not consistent with observations using an implausibility metric:

Johnson et al. (2018, 2020)

A 'History Matching' approach to reduce uncertainty

History Matching (Craig et al., 1996) rules out regions of parameter space that are not consistent with observations using an implausibility metric:

Approx. scale of the analysis:

Model

- 26 perturbed parameters
- 1 million model variants
- Observations - 9000 in situ measurements (AOD, particle number, N₅₀, PM_{2.5}, SO₄, OC)

Derivation of an implausibility metric to rule out poor models on comparison to real aerosol measurements

Johnson et al. (2020): 1 million model variants, compared to 9000+ gridded observations using an implausibility metric \rightarrow Accounting for all uncertainties in the comparison process

Smaller *I* implies a variant is more plausible w.r.t. the observation

For a single aerosol property in a particular month, we rule out variants if *I* is large for >T observations

Joint Constraint: Rule out a variant if it is ruled out for ANY individual month/observation type

Spatial and temporal differences in resolution between the (Schutgens et al., 2016) observations and the model

Components of representation uncertainty

- Spatial co-location, *R_{SP}*
 - Comparing point measurements with the model grid
 - Where in the grid-box (central / edge) the observation lies

(Schutgens et al., 2016a)

(Schutgens et al., 2016b)

- Temporal co-location, *R_T*
 - Comparing campaign data (measured over a few hours/days) to monthly mean model output
- Inter-annual variability, R_{IAV}
 - Campaigns are 'one-off' studies
 - Comparing observations taken in a particular year to model output of a different year

These uncertainties can vary between different aerosol properties

Model v's Observations resolution

Quantifying the uncertainty terms

Var(O): Instrument measurement uncertainty

- Information that observations are measured to an accuracy of within +/-p % of the true value
- Assume Gaussian approximation for uncertainty (+/- $p\% = +/- 2\sigma$) p = 10%

Var(R_{SP}) and Var(R_T): Spatial/temporal co-location

Similarly to Var(O): % error on observed value, using information from Schutgens et al. (2016)

p = 20% and *p* = 10%

Var(R_{IAV}): Inter-annual variability

 Estimated from an analysis of the trend and variation of gridded aerosol properties in a UKCA hindcast simulation over the period of 1980–2009 (Turnock et al., 2015)

Var(M): Emulator uncertainty

 Comes from the fitted emulator model for each prediction

Var(S): Structural uncertainty

- We assume NO structural uncertainty term [Var(S)=0].
- We allow the implausibility measure to inform us about any potential structural errors.

Identifying observations that do not compare well

We remove observations if the lower 95% credible interval bound on *I* (across variants) is >1

It can be difficult to pin-point the cause: Are the mis-matches due to representation errors? Or, are they indicators of structural errors in the model? Fig 4, Johnson et al. (2020)

Parameter Constraint

It is only possible to constrain joint parameter distributions (in 26 dimensions)

We show marginal distributions

Example: Marginal distribution of constrained boundary layer nucleation rate using all measurements

Results: Marginal parameter constraints from constraint with individual variables and the joint constraint

All measurements

0.3 2.725 5.15 7.575

4.6 5.2 5.8 6.4

0.5 0.71 1 1.41

60 75

142.5 195 247.5 30

192.5 295 397.5 50 1e-06 1.8e-05 0.00032 0.0056 0 27.25 51.5 75.75 10 0.125 0.35 1 2.8

0.6 0.75 0.95 1.2 1.5 0.96 1.3 1.76 2.3

1.3 2.1 3.36 5.4

0.2 0.45 1 2.24

0.1 0.225 0.35 0.475 0.

> 0.25 0.4 0.55 0.71 i

0.3 0.4 0.5 0.6 0. 0.1 0.2 0.3 0.4 0.5

1.41

1.4

0.71 1

0.71 1

0.1 0.32 1 3.16

0.25 0.5 1 0.25 0.5 1

45

1.2 1.35 1.5 1.65 1 1.2 1.35 1.5 1.65 1

3.2 1

0.32 1

BL NUC

ARR FF FMS

ARB BB EMS

ANTH_SO2

0.81

KAPPA OC 📄

0.1

	AOD	Sulphate	PM2.5	OC _	N3	N50	
BL_NUC (scale factor)							
0	1 0.32 1 3.2 10 0.1	1 0.32 1 3.2 10	0.1 0.32 1 3.2 10	0.1 0.32 1 3.2 1	0 0.1 0.32 1 3.2 10	0.1 0.32 1 3.2 10	
AGEING (monoloayers)							(
ACC_WIDTH	.3 2.725 5.15 7.575 10 0.3	3 2.725 5.15 7.575 10	0.3 2.725 5.15 7.575 10	0.3 2.725 5.15 7.375 1	0 0.3 2.725 5.15 7.575 10	0.3 2.725 5.15 7.575 10	
(nm) 1	.2 1.35 1.5 1.65 1.8 1.2	2 1.35 1.5 1.65 1.8	1.2 1.35 1.5 1.65 1.8	1.2 1.35 1.5 1.65 1	8 1.2 1.35 1.5 1.65 1.4	8 1.2 1.35 1.5 1.65 1.8	
AIT_WIDTH (nm)							
1	2 1.35 1.5 1.65 1.8 1.2	2 1.35 1.5 1.65 1.8	1.2 1.35 1.5 1.65 1.8	1.2 1.35 1.5 1.65 1	8 1.2 1.35 1.5 1.65 1.	1.2 1.35 1.5 1.65 1.8	
CLOUD_PH pH							
CARB_FF_EMS		5.2 5.8 6.4 /	4.0 5.2 5.0 0.4 /	4.6 5.2 5.8 6.4	4.6 5.2 5.8 6.4 7	4.6 5.2 5.6 6.4 7	1
(scale factor) 0	5 0.71 1 1.41 2 0.5	5 0.71 1 1.41 2	0.5 0.71 1 1.41 2	0.5 0.71 1 1.41	2 0.5 0.71 1 1.41 2	0.5 0.71 1 1.41 2	
CARB_BB_EMS (scale factor)							c
0.	25 0.5 1 2 4 0.2	5 0.5 1 2 4	0.25 0.5 1 2 4	0.25 0.5 1 2 4	0.25 0.5 1 2 4	0.25 0.5 1 2 4	
(scale factor)							0
CARB_FF_DIAM	25 0.5 1 2 4 0.2	5 0.5 1 2 4		0.25 0.5 1 2	0.25 0.5 1 2 4	0.23 0.5 1 2 4	c
(nm) 3	0 45 60 75 90 30	45 60 75 90	30 45 60 75 90	30 45 60 75 9	0 30 45 60 75 90	30 45 60 75 90	
CARB_BB_DIAM (nm)							c
9	0 142.5 195 247.5 300 90	142.5 195 247.5 300	90 142.5 195 247.5 300	90 142.5 195 247.5 3	0 90 142.5 195 247.5 30	3 90 142.5 195 247.5 300	
CARB_RES_DIAM (nm)							CA
9 PRIM_SO4_FRAC	0 192.5 295 397.5 500 90	192.5 295 397.5 500	90 192.5 295 397.5 500	90 192.5 295 397.5 5	0 90 192.5 295 397.5 50	90 192.5 295 397.5 500	PR
1e	-06 1.8e-05 0.00032 0.0056 0.1 e-0	06 1.8e-05 0.00032 0.0056 0.1	1e-06 1.8e-05 0.00032 0.0056 0.1 ;	Le-06 1.8e-05 0.00032 0.0056 0	1 1e-06 1.8e-05 0.00032 0.0056 0.1	l 1e-06 1.8e-05 0.00032 0.0056 0.1	
PRIM_SO4_DIAM (nm)							PR
	3 27.25 51.5 75.75 100 3	27.25 51.5 75.75 100	3 27.25 51.5 75.75 100	3 27.25 51.5 75.75 10	0 3 27.25 51.5 75.75 10	3 27.25 51.5 75.75 100	
SEA_SPRAY (scale factor)							
0.1 ANTH_502	25 0.35 1 2.8 8 .12	25 0.35 1 2.8 8	0.125 0.35 1 2.8 8	0.125 0.35 1 2.8 1	8 0.125 0.35 1 2.8 8	0.125 0.35 1 2.8 8	
(scale factor) 0	6 0.75 0.95 1.2 1.5 0.6	6 0.75 0.95 1.2 1.5	0.6 0.75 0.95 1.2 1.5	0.6 0.75 0.95 1.2 1	5 0.6 0.75 0.95 1.2 1.1	5 0.6 0.75 0.95 1.2 1.5	
VOLC_SO2 (scale factor)							
0.	71 0.96 1.3 1.76 2.38 0.7	1 0.96 1.3 1.76 2.38	0.71 0.96 1.3 1.76 2.38	0.71 0.96 1.3 1.76 2.	38 0.71 0.96 1.3 1.76 2.3	8 0.71 0.96 1.3 1.76 2.38	
BVOC_SOA (scale factor)							
0. DMS	81 1.3 2.1 3.36 5.4 0.8	1 1.3 2.1 3.36 5.4	0.81 1.3 2.1 3.36 5.4	0.81 1.3 2.1 3.36 5	4 0.81 1.3 2.1 3.36 5.4	0.81 1.3 2.1 3.36 5.4	
(scale factor) 0	5 0.71 1 1.41 2 0.5	5 0.71 1 1.41 2	0.5 0.71 1 1.41 2	0.5 0.71 1 1.41	2 0.5 0.71 1 1.41 2	0.5 0.71 1 1.41 2	
DRY_DEP_AIT (scale factor)							
0	5 0.71 1 1.41 2 0.5	5 0.71 1 1.41 2	0.5 0.71 1 1.41 2	0.5 0.71 1 1.41 ;	2 0.5 0.71 1 1.41 2	0.5 0.71 1 1.41 2	
DRY_DEP_ACC (scale factor)							C
0 DRY DEP SO2	.1 0.32 1 3.16 10 0.1	1 0.32 1 3.16 10	0.1 0.32 1 3.16 10	0.1 0.32 1 3.16 1	0 0.1 0.32 1 3.16 10	0.1 0.32 1 3.16 10	r
(scale factor) 0	2 0.45 1 2.24 5 0.2	2 0.45 1 2.24 5	0.2 0.45 1 2.24 5	0.2 0.45 1 2.24	5 0.2 0.45 1 2.24 5	0.2 0.45 1 2.24 5	
KAPPA_OC							
0	.1 0.225 0.35 0.475 0.6 0.1	1 0.225 0.35 0.475 0.6	0.1 0.225 0.35 0.475 0.6	0.1 0.225 0.35 0.475 0	6 0.1 0.225 0.35 0.475 0.	i 0.1 0.225 0.35 0.475 0.6	
SIGW (tandard deviation)							(standa
0 DUST	.1 0.25 0.4 0.55 0.7 0.1	1 0.25 0.4 0.55 0.7	0.1 0.25 0.4 0.55 0.7	0.1 0.25 0.4 0.55 0	7 0.1 0.25 0.4 0.55 0.7	0.1 0.25 0.4 0.55 0.7	
(scale factor)	5 0.71 1 1.4 2 0.5	5 0.71 1 1.4 2	0.5 0.71 1 1.4 2	0.5 0.71 1 1.4	2 0.5 0.71 1 1.4 2	0.5 0.71 1 1.4 2	
RAIN_FRAC							
0	3 0.4 0.5 0.6 0.7 0.3	3 0.4 0.5 0.6 0.7	0.3 0.4 0.5 0.6 0.7	0.3 0.4 0.5 0.6 0	7 0.3 0.4 0.5 0.6 0.	/ 0.3 0.4 0.5 0.6 0.7	
LOUD_ICE_THRESH							CLOUD
0	1 0.2 0.3 0.4 0.5 0.1	1 0.2 0.3 0.4 0.5	0.1 0.2 0.3 0.4 0.5	0.1 0.2 0.3 0.4 0	5 0.1 0.2 0.3 0.4 0.5	i 0.1 0.2 0.3 0.4 0.5	

We rule out model variants for each variable (columns) and combine (last column) to quantify the effect of the constraint on parameter values

These marginal parameter constraint plots show where parameter values are more / less likely within the constrained samples

Johnson et al. (2020)

Results: Joint constraint effect from using observations of multiple aerosol variables

1 million model variants, compared to 9000+ gridded observations

Constraint on parameters Constraint on observables

Johnson et al. (2020)

Constraint on forcing: Net RF

Results: Joint constraint effect from using observations of multiple aerosol variables – improved with targeted observations

1 million model variants, compared to 9000+ gridded observations

[Reddington et al. (2017); Fig. 5]

Improve the accuracy and realism of spatial and temporal representation error estimates

[Reddington et al. (2017); Fig. 5]

Improve the accuracy and realism of spatial and temporal representation error estimates

To explore the optimal resolution for model-observation comparisons [Reduce 'equifinality']

[Reddington et al. (2017); Fig. 5]

Improve the accuracy and realism of spatial and temporal representation error estimates

To explore the optimal resolution for model-observation comparisons [Reduce 'equifinality']

[Reddington et al. (2017)]

Utilise key patterns, regimes and relationships in model errors and observations as metrics for constraint

[Reddington et al. (2017)]

Utilise key patterns, regimes and relationships in model errors and observations as metrics for constraint

RF_{ar} (W m⁻²)

RF_{ari} (W m⁻²)

Can we exploit the dense sampling to identify and address structural model errors, to improve model performance?

Next steps – tackling some of these challenges in 'Aerosol-MFR'

Aerosol-MFR – Towards Maximum Feasible Reduction in Aerosol Forcing Unc.

Regayre et al, (2023) [ACP]

Recent work has shown that the forcing uncertainty range can be reduced as more observations are used to constrain the model processes – but only up to a point.

 Beyond ~15 this constraint weakens – we've found that the model cannot match more observations than this simultaneously.

Next steps – tackling some of these challenges in 'Aerosol-MFR'

Aerosol-MFR – Towards Maximum Feasible Reduction in Aerosol Forcing Unc.

Regayre et al, (2023), ACP

Recent work has shown that the forcing uncertainty range can be reduced as more observations are used to constrain the model processes – but only up to a point.

 Beyond ~15 this constraint weakens – we've found that the model cannot match more observations than this simultaneously.

We hypothesise (hope!) that the uncertainty in aerosol radiative forcing will be significantly reduced in this project!

 Aims: To tackle structural errors and the effects of parametric uncertainty (particularly, compensating errors) together within a single framework...

Challenges with our emulation approach... Example 3 - Uncertainty in Modelling a Cloud Field

Exploring properties of a cloud field: Stratocumulus to cumulus [Sansom et al. (2023), In Prep] transition

Here, natural variability affects the simulation output.

- Cloud properties are sensitive to any small variation in initial conditions.
- Each training simulation is just 1 possible cloud state for the selected parameter settings.

Challenges with our emulation approach... Example 3 - Uncertainty in Modelling a Cloud Field

Exploring properties of a cloud field: Stratocumulus to cumulus [Sansom et al. (2023), In Prep] transition

Here, natural variability affects the simulation output.

- Cloud properties are sensitive to any small variation in initial conditions.
- Each training simulation is just 1 possible cloud state for the selected parameter settings.
- The GP emulator needs **a nugget term** in the covariance function:

$$k(X_p, X_q) = Cov\left(g(X_p), g(X_q)\right)$$
$$= \sigma_f^2 \prod_{d=1}^D \left[exp\left\{-\eta_d \left|X_{pd} - X_{qd}\right|^2\right\}\right] + \sigma_n^2 \delta_{pq}$$

How can we estimate it?

Challenges with our emulation approach... Example 3: we must be careful – the emulation doesn't always work!

Properties of a cloud field are a prime example of non-stationary behaviour in the natural world (NOAA collaboration)

Challenges with our emulation approach... Example 3: we must be careful – the emulation doesn't always work!

Properties of a cloud field are a prime example of non-stationary behaviour in the natural world (NOAA collaboration)

Sharp and distinct changes in cloud fraction response

In this study, 6 'initial condition' parameters were perturbed.

We need to be careful how we select our outputs for emulation – The clouds evolve through time at different rates...

Glassmeier et al., 2019, ACP

Challenges with our emulation approach... Example 3: we must be careful – the emulation doesn't always work!

Properties of a cloud field are a prime example of non-stationary behaviour in the natural world (NOAA collaboration)

Cloud Fraction

Sharp and distinct changes in cloud fraction response

LES Cloud Model Output

We need a more complex way to approximate the output response surface (e.g. Treed GP [Gramacy & Lee, 2008]; use of Voronoi tessellations [Pope *et al.*, 2021]; mixture covariance [Volodina & Williamson, 2018])

erosol

It's an active area of research! 🙂

Summary

- Complex models of natural systems like the atmosphere & climate are inherently uncertain.
- It's important to quantify uncertainty in model predictions, in order to have confidence in them.
- To fully understand a system's behaviour, we must densely sample it over the key input uncertainties – the statistical framework enables this via Gaussian Process emulation.
- Once quantified, we can use real-world observations to try and reduce output uncertainties via 'History Matching'.

Summary

- Complex models of natural systems like the atmosphere & climate are inherently uncertain.
- It's important to quantify uncertainty in model predictions, in order to have confidence in them.
- To fully understand a system's behaviour, we must densely sample it over the key input uncertainties – the statistical framework enables this via Gaussian Process emulation.
- Once quantified, we can use real-world observations to try and reduce output uncertainties via 'History Matching'.

For the Met Office's aerosol-climate model, HadGEM-UKCA:

- **Robust constraint** of the model is achievable using multiple types of aerosol measurements.
 - Significant constraint of parameter space and aerosol properties leads to some constraint on aerosol forcing
 - Large representation errors and equifinality can limit the forcing constraint
- There are several challenges in these applications that require more research! ③

Any Questions?