

Deep generative modelling aiding GPs and spatial statistics and MCMC (in three chapters)

> Elizaveta Semenova Department of Computer Science University of Oxford www.elizaveta-semenova.com GPSS 2023, Manchester

Outline

Introduction: spatial statistics

PriorVAE: encoding random vectors

aggVAE: encoding GP aggregates

PriorCVAE: can we infer hyperparameters?

Introduction: Spatial statistics

Disease mapping and public health

A map of a three-stage containment field in Italy, 1691

"Disease mapping and innovation: A history from wood-block prints to Web 3.0", Tom Koch (2022)

The map that changed how we fight outbreaks

Dr. John Snow mapped cholera cases in London, 1854.

'On the Mode of Communication of Cholera', Second Edition, John Snow (1855c)

Disease mapping and public health

'Memoir on the cholera at Oxford, in the year 1854 : with considerations suggested by the epidemic', Acland (1856)

Disease mapping and technology

"Cartographies of Disease: Maps, Mapping, and Medicine", Tom Koch (2017)

Modern technology for disease mapping

Data

Methods

geo-tagged spatiotemporal

Bayesian inference + spatial statistics deep learning

Areal data

US vaccinations at county level.

Credit: The New York Times

Geostatistical data

Observed malaria prevalence at survey locations in Uganda.

Credit: J Ssempiira

Point pattern data

Observed local (blue) and imported (red) malaria cases in Eswatini, 2015.

Credit: E Semenova

Methods: classical approach

Hierarchical Bayesian modelling using <u>Gaussian Processes</u>.

Methods: latent Gaussian models

- $y = (y_1, ..., y_n)$ outcome data over a set of *n* locations
- $y \sim p(y|g^{-1}(\eta), heta)$
- $\eta = X\beta + f$

- additive model for the mean, combines a fixed effects and random effect terms

observational model (likelihood)

- $f \sim p(f|\theta)$
- $\theta \sim p(\theta)$

- random effect term: Gaussian process
- hyperparameters

Methods: Bayesian inference

> y - data, θ - parameters,

- Gold standard inference algorithms: Markov chain Monte Carlo (MCMC) - theoretical guarantees; diagnostic tools
- Probabilistic programming languages: Stan, PyMC3, Numpyro, Turing.jl

Probabilistic programming languages (PPLs)

- PPLs allow users to specify probabilistic models and perform inference automatically.
- Users need to specify
 - 1. prior
 - 2. likelihood
- Inference is performed by an MCMC algorithm (Gibbs, Metropolis-Hastings, HMC) or Variational Inference

PPLs and software choices

Stan, PyMC	require manual reimplementation of NNs
Pyro + PyTorch	no manual implementation required, but slow
Numpyro + JAX	no manual implementation required, and fast
Turing.jl + Flux.jl	

Analyzing MCMC outputs

Diagnostics for MCMC samples

- Gelman-Rubin statistic (\hat{R})
- Effective sample size (ESS) per second

Methods: Gaussian Processes

- ▶ Definition: a Gaussian Process (GP) is random function f on a set X such that for any x₁,..., x_n ∈ X, the vector f_{GP} = [f(x₁),..., f(x_n)]^T is multivariate Gaussian.
- GPs are characterised by
 - a mean function $m(x) = \mathbb{E}(f(x))$,
 - ▶ a kernel (covariance) function k(x, x') = Cov(f(x), f(x')), e.g.

$$k(x_i, x_j) = \tau \exp\left(-\frac{||x_i - x_j||^2}{2l^2}\right)$$

Notation: $f \sim GP(m, k)$.

Modelling areal data

State-of-the-art models rely on "borrowing strength" from neighbours and use hierarchical Bayesian models to do so

Neighbors of areas 2, 44 and 58 of Pennsylvania.

Credit: Moraga, "Geospatial Health Data: Modelling and Visualization with R-INLA and Shiny"

Models of areal data

 $Q = \tau (D - \alpha A)$

 $\frac{f \sim \mathsf{MVN}(0, Q^{-1})}{Q - \text{precision matrix}}$

 $Q = \tau I$ i.i.d.

CAR: *A* and *D* are defined by the neighbourhood structure

 $Q = \tau (D - A)$ ICAR

 $Q^{-1} = \tau_1^{-1}I + \tau_2^{-1}(D - A)^-$ BYM

Modelling point pattern data

Log-Gaussian Cox process:

$$L(s_1, \dots, s_n; \lambda(s)) = \exp(-\lambda(D)) \prod_{i=1}^n \lambda(s_i),$$
$$\lambda(D) = \int_D \lambda(s) ds,$$
$$\lambda(s) = \exp(X^T(s)\beta + f(s)),$$
$$f \sim GP(0, k).$$

Computational bottleneck

- Gaussian Processes scale as $O(n^3)$.
- Bayesian inference with MCMC requires O(n³) calculations for each draw from the posterior.

PriorVAE: encoding random vectors

Goal

PriorVAE philosophy

$g(E[y|f_{\mathsf{GP}}]) = X\beta + f_{\mathsf{GP}}$

Replace costly evaluation of f_{GP} at inference stage with a cheap approximation learned with deep generative modelling.

Idea: train VAE on GP prior draws

$g(E[y|f_{\mathsf{GP}}]) = X\beta + f_{\mathsf{VAE}}$

 Substitute evaluation of the GP with the decoder of a trained variational autoencoder (VAE). Idea: train VAE on GP priors

Decoder of a trained variational autoencoder (VAE):

$$\mathsf{ELBO}_{\mathsf{VAE}} = \mathbb{E}_{q(z|y)} \left[\log p(y|z)
ight] - \mathsf{KL} \left[q(z|y) || p(z)
ight],$$
 $p(z) \sim \mathsf{N}(0, I)$

PriorVAE workflow

- Fix the set of observation locations (i.e. spatial structure or temporal labels),
- Use draws from a GP prior f_{GP} over the observation locations as training data for a VAE,
- Use the trained decoder $\phi_w(.)$ as a drop-in replacement for the GP in the model used for inference.

Pseudocode¹

```
def decoder_numpy(z, W1, B1, W2, B2):
    def linear(z, W, B):
        lin_out = jnp.matmul(z, W) + B
        return lin_out
```

```
return linear(jax.nn.relu(linear(z, W1, B1)), W2, B2)
```

```
def numpyro_model(z_dim, y):
    z = numpyro.sample("z",
    npdist.Normal(jnp.zeros(z_dim), jnp.ones(z_dim)))
```

```
f = numpyro.deterministic("f",
    decoder_numpy(z, W1, B1, W2, B2))
sigma = numpyro.sample("sigma", npdist.HalfNormal(1))
```

```
y = numpyro.sample("y", npdist.Normal(f, sigma),
    obs=y)
```

¹colab demo: https://tinyurl.com/priorcvae

Why does it work?

 $z_n \sim N(0, I_n)$ $z_d \sim N(0, I_d), \quad d < n$

$$f_{\mathsf{GP}} = L_{\theta} z_n \qquad \qquad f_{\mathsf{VAE}} = \phi_w(z_d)$$

Linear operation, but θ needs to be inferred.

Non-linear operation, but deterministic transformation.

Complexity: $O(n^3)$. Complexity: O(dn).

PriorVAE: one-dimensional GP inference

Making inference using the learned prior on a regular grid, n = 400

PriorVAE: HIV prevalence in Zimbabwe

70x speedup (ESS per second):

	Effective sample	Elapsed time,	ESS per
Model	size (ESS)	s	second
CAR	120	13	9
VAE-CAR	2600	4	650

PriorVAE: projected COVID-19 incidence in the UK

350x speedup (ESS per second):

	Effective sample	Elapsed time,	ESS per
Model	size (ESS)	s	second
CAR	317	277	1.14
VAE-CAR	3188	8	398

PriorVAE: Discussion

Advantages:

- Fast inference because of uncorrelated parameters in low dimensional space
- No need to retain training data
- Can be utilized for a variety of problems like time-series data, fixed spatial data
- Very efficient MCMC inference

Disadvantages:

PriorVAE: Discussion

Advantages:

- Fast inference because of uncorrelated parameters in low dimensional space
- No need to retain training data
- Can be utilized for a variety of problems like time-series data, fixed spatial data
- Very efficient MCMC inference

Disadvantages:

- Output is not conditioned on the input
- Input locations needs to be fixed for all prior training functions

Encodes random vectors, not random functions.

Source code:

PriorVAE https://github.com/elizavetasemenova/PriorVAE

aggVAE: encoding GP aggregates and change-of-support problem

Kenya: boundaries before and after 2010

aggVAE: what are we solving?

- Adjacency-based models assume heterogeneity.
- Changing boundaries: change-of-support.

Computational grid

• Create fine spatial grid $\{g_1, ..., g_n\}$ over the domain of interest:

Computational grid

Draw GP evaluations over the grid:

$$f = \begin{pmatrix} f_1 \\ \vdots \\ f_n \end{pmatrix} \sim \mathsf{MVN}(0, \Sigma),$$
$$f_j = f(g_j),$$
$$\Sigma_{jk} = \sigma^2 \exp\left(-\frac{d_{jk}^2}{2l^2}\right),$$
$$d_{jk} = ||g_j - g_k||$$

Attribution of grid points over polygons

Computing GP aggregates over polygons

For each district (polygon) $p_i, i = 1, ..., K$, compute

$$f_{\mathsf{aggGP}}^{p_i} = \int_{p_i} f(s) ds pprox c \sum_{g_j \in p_i} f_j = c ar{f}_{\mathsf{aggGP}}^{p_i}.$$

Spatial random effect:

$$f_{\mathsf{aggGP}} = \begin{pmatrix} f_{\mathsf{aggGP}}^{p_1} \\ \vdots \\ f_{\mathsf{aggGP}}^{p_K} \end{pmatrix} = Mf \in \mathbb{R}^K,$$

 $M : \quad m_{ij} = I_{\{g_j \subset p_i\}}.$

Joint encoding of priors

To tackle the the change-of-support problem, encode \bar{f}_{aggGP}^{old} and \bar{f}_{aggGP}^{new} jointly:

'aggVAE' workflow

- Fix spatial structure of areal units as a collection of polygons P = {p₁,..., p_k}.
- Create an aritificial computational grid of sufficient granularity G = {g₁,...,g_n}.
- ▶ Pre-compute the matrix of indicators M, $m_{ij} = I_{\{g_i \subset p_i\}}$.
- Draw GP evaluations over G using a selected kernel k(.,.): $f = (f_1, ..., f_n)^T$.
- Compute GP aggregates at the level of $P : f_{aggGP} = cMf$
- Train PriorVAE on f_{aggGP} draws to obtain f_{aggVAE} priors.
- ► Use *f*_{aggVAE} at inference stage within MCMC.

Mapping malaria prevalence in Kenya

► Model Malaria prevalence θ_i, i ∈ 1, ... K is inferred using the Negative Binomial distribution

$$\begin{cases} n_i^{\text{pos}} & \sim \text{NegBin}(n_i^{\text{tests}}, \theta_i), \\ \text{logit}(\theta_i) & = b_0 + f_{\text{aggGP}}^{p_i}. \end{cases}$$

where n_i^{tests} and n_i^{pos} are the number of total and positive RDT tests, correspondingly.

Inference. Perform MCMC inference using f_{aggVAE} instead of f_{aggGP}.

Results

Comparison of MCMC for models with f_{aggGP} and f_{aggVAE} using 200 warm-up steps and 1000 iterations:

Model of the spatial	Elapsed Average effective sample size	
random effect	ct time of the random effects	
aggGP	15h*	129
aggVAE	5s	231

Table: Model comparison.

* aggGP model has not converged: $\hat{R} = 1.4$.

Results

Can we infer hyperparameters? PrioCVAE!

PriorCVAE: use hyperparameter(s) as condition c

PriorCVAE: lengthscale as a condition c = l

50

PriorCVAE: non-stationary kernels

PriorCVAE trained on hyperpriors $I \sim \mathcal{U}(0.01, 0.4)$

PriorCVAE: extrapolation w.r.t. hyperparameters

Extrapolating away from $I \in (0.01, 0.4)$

NUTS, Laplace, ADVI - any luck?

Figure: Top: inferred mean and 90% BCI, bottom: inferred lengthscale.

GP, PriorVAE, PriorCVAE

10K x speedup (ESS per second):

	Effective sample	Elapsed time,	ESS per
Model	size (ESS)	s	second
PriorVAE	31115	8	3889
PriorCVAE	34725	17	2043
GP	1496	7150	0.2

Deep generative modelling for MCMC

Elizaveta Semenova, Yidan Xu, Adam Howes, Theo Rashid, Samir Bhatt, Swapnil Mishra, and Seth Flaxman.

 $\ensuremath{\mathsf{PriorVAE}}$ encoding spatial priors with variational autoencoders for small-area estimation.

Journal of the Royal Society Interface, 19(191):20220094, 2022.

Elizaveta Semenova, Swapnil Mishra, Samir Bhatt, Seth Flaxman, and H Juliette T Unwin.

Deep learning and MCMC with aggVAE for shifting administrative boundaries: mapping malaria prevalence in Kenya.

UAI 2023 workshop "Epistemic Uncertainty in Artificial Intelligence", 2023.

Elizaveta Semenova, Max Cairney-Leeming, and Seth Flaxman.

 $\mathsf{PriorCVAE}:$ scalable MCMC parameter inference with Bayesian deep generative modelling.

arXiv preprint arXiv:2304.04307, 2023.

Future work

improve quality of samples

Figure: Empirical covariance matrices

- applications: population genetics, spatial weather extremes
- geometry: sphere, graphs

Related work

πVAE method

- Mishra et al, 2022, Statistics and Computing
- it actually existed before PriorVAE
- An application of PriorVAE to Hawkes process
 - Miscouridou et al, 2022, TMLR
 - uses PriorVAE to make GP calculations feasible

Code

PriorVAE, JAX (but ugly)

GitHub: https://github.com/elizavetasemenova/PriorVAE Colab: https://tinyurl.com/PriorVAE

PriorCVAE, PyTorch (manually implement NN for Numpyro) GitHub: http://github.com/elizavetasemenova/PriorCVAE Colab: https://tinyurl.com/PriorCVAE

PriorCVAE, JAX (seemless NN and Numpyro integration) GitHub: https://github.com/MLGlobalHealth/PriorCVAE

Collaborators

Machine Learning & Global Health (MLGH) network

- Elizaveta Semenova, Seth Flaxman, Max Cairney-Leeming (University of Oxford)
- Adam Howes, Theo Rashid, Bob Verity (Imperial College London)
- Juliette Unwin (University of Bristol)
- Prakhar Veema (Aalto University)
- Swapnil Mishra (National University of Singapore)
- Samir Bhatt (University of Copenhagen/Imperial College)

www.elizaveta-semenova.com