
Deep generative modelling aiding
GPs and spatial statistics
and MCMC (in three chapters)

Elizaveta Semenova

Department of Computer Science

University of Oxford

www.elizaveta-semenova.com

GPSS 2023, Manchester



Outline

Introduction: spatial statistics

PriorVAE: encoding random vectors

aggVAE: encoding GP aggregates

PriorCVAE: can we infer hyperparameters?

2



Introduction: Spatial statistics
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Disease mapping and public health

▶ A map of a three-stage containment field in Italy, 1691

”Disease mapping and innovation: A history from wood-block prints to Web 3.0”, Tom Koch (2022)
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The map that changed how we fight outbreaks

▶ Dr. John Snow mapped cholera cases in London, 1854.

’On the Mode of Communication of Cholera’, Second Edition, John Snow (1855c)
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Disease mapping and public health

’Memoir on the cholera at Oxford, in the year 1854 : with considerations suggested by the epidemic’, Acland (1856)
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Disease mapping and technology

”Cartographies of Disease: Maps, Mapping, and Medicine”, Tom Koch (2017)
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Modern technology for disease mapping

Data Methods

geo-tagged Bayesian inference + spatial statistics

spatiotemporal deep learning

Image Credit: ESRI
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Areal data

US vaccinations at county level.

Credit: The New York Times
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Geostatistical data

Observed malaria prevalence at

survey locations in Uganda.

Credit: J Ssempiira
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Point pattern data

Observed local (blue) and imported (red)

malaria cases in Eswatini, 2015.

Credit: E Semenova
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Methods: classical approach

▶ Hierarchical Bayesian modelling using Gaussian Processes.
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Methods: latent Gaussian models

y = (y1, ..., yn)

y ∼ p(y |g−1(η), θ)

η = Xβ + f

f ∼ p(f |θ)

θ ∼ p(θ)

- outcome data over a set of n locations

- observational model (likelihood)

- additive model for the mean, combines a
fixed effects and random effect terms

- random effect term: Gaussian process

- hyperparameters
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Methods: Bayesian inference

▶ y - data, θ - parameters,

p(θ|y)︸ ︷︷ ︸
posterior

∝ p(y |θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior

▶ Gold standard inference algorithms: Markov chain Monte
Carlo (MCMC) - theoretical guarantees; diagnostic tools

▶ Probabilistic programming languages:
Stan, PyMC3, Numpyro, Turing.jl
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Probabilistic programming languages (PPLs)

▶ PPLs allow users to specify probabilistic models and perform
inference automatically.

▶ Users need to specify

1. prior
2. likelihood

▶ Inference is performed by an MCMC algorithm (Gibbs,
Metropolis-Hastings, HMC) or Variational Inference
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PPLs and software choices

Stan, PyMC

Pyro + PyTorch

Numpyro + JAX

Turing.jl + Flux.jl

require manual reimplementation of NNs

no manual implementation required,
but slow

no manual implementation required,
and fast
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Analyzing MCMC outputs

▶ Diagnostics for MCMC samples

- Gelman-Rubin statistic (R̂)

- Effective sample size (ESS) per second
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Methods: Gaussian Processes

▶ Definition: a Gaussian Process (GP) is random function f on
a set X such that for any x1, . . . , xn ∈ X , the vector
fGP = [f (x1), . . . , f (xn)]

T is multivariate Gaussian.

▶ GPs are characterised by
▶ a mean function m(x) = E(f (x)),
▶ a kernel (covariance) function k(x , x ′) = Cov(f (x), f (x ′)), e.g.

k(xi , xj) = τ exp

(
−||xi − xj ||2

2l2

)
.

▶ Notation: f ∼ GP(m, k).
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Modelling areal data

▶ State-of-the-art models rely on ”borrowing strength” from
neighbours and use hierarchical Bayesian models to do so

Neighbors of areas 2, 44 and 58 of Pennsylvania.
Credit: Moraga, “Geospatial Health Data: Modelling and Visualization with R-INLA and Shiny”
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Models of areal data

f ∼ MVN(0,Q−1)

Q = τ I

Q = τ(D − αA)

Q = τ(D − A)

Q−1 = τ−1
1 I + τ−1

2 (D − A)−

Q - precision matrix

i.i.d.

CAR: A and D are defined by the
neighbourhood structure

ICAR

BYM
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Modelling point pattern data

Log-Gaussian Cox process:

L(s1, . . . , sn;λ(s)) = exp(−λ(D))
n∏

i=1

λ(si ),

λ(D) =

∫
D
λ(s)ds,

λ(s) = exp(XT (s)β + f (s)),

f ∼ GP(0, k).
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Computational bottleneck

▶ Gaussian Processes scale as O(n3).

▶ Bayesian inference with MCMC requires O(n3) calculations
for each draw from the posterior.
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PriorVAE: encoding random vectors
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Goal

g(E [y |fGP])︸ ︷︷ ︸
Mean

= Xβ︸︷︷︸
fixed effect

+ fGP︸︷︷︸
random effect
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PriorVAE philosophy

g(E [y |fGP]) = Xβ + fGP

▶ Replace costly evaluation of fGP at inference stage with a
cheap approximation learned with deep generative modelling.
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Idea: train VAE on GP prior draws

g(E [y |fGP]) = Xβ + fVAE

▶ Substitute evaluation of the GP with the decoder of a trained
variational autoencoder (VAE).

26



Idea: train VAE on GP priors

▶ Decoder of a trained variational autoencoder (VAE):

ELBOVAE = Eq(z|y) [log p(y |z)]− KL [q(z |y)||p(z)] ,

p(z) ∼ N(0, I )

27



PriorVAE workflow

▶ Fix the set of observation locations (i.e. spatial structure or
temporal labels),

▶ Use draws from a GP prior fGP over the observation locations
as training data for a VAE,

▶ Use the trained decoder ϕw (.) as a drop-in replacement for
the GP in the model used for inference.
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Pseudocode1

def decoder_numpy(z, W1, B1, W2, B2):

def linear(z, W, B):

lin_out = jnp.matmul(z, W) + B

return lin_out

return linear(jax.nn.relu(linear(z, W1, B1)), W2, B2)

def numpyro_model(z_dim, y):

z = numpyro.sample("z",

npdist.Normal(jnp.zeros(z_dim), jnp.ones(z_dim)))

f = numpyro.deterministic("f",

decoder_numpy(z, W1, B1, W2, B2))

sigma = numpyro.sample("sigma", npdist.HalfNormal(1))

y = numpyro.sample("y", npdist.Normal(f, sigma),

obs=y)

1colab demo: https://tinyurl.com/priorcvae
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Why does it work?

zn ∼ N(0, In)

fGP = Lθzn

Linear operation, but θ needs
to be inferred.

Complexity: O(n3).

zd ∼ N(0, Id), d < n

fVAE = ϕw (zd)

Non-linear operation, but
deterministic transformation.

Complexity: O(dn).
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PriorVAE: one-dimensional GP inference
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Making inference using the learned prior on a regular grid, n = 400
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PriorVAE: HIV prevalence in Zimbabwe

70x speedup (ESS per second):

Model

Effective sample

size (ESS)
Elapsed time,

s

ESS per

second
CAR 120 13 9
VAE-CAR 2600 4 650
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PriorVAE: projected COVID-19 incidence in the UK

350x speedup (ESS per second):

Model

Effective sample

size (ESS)
Elapsed time,

s

ESS per

second
CAR 317 277 1.14
VAE-CAR 3188 8 398
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PriorVAE: Discussion

Advantages:

▶ Fast inference because of uncorrelated parameters in low
dimensional space

▶ No need to retain training data

▶ Can be utilized for a variety of problems like time-series data,
fixed spatial data

▶ Very efficient MCMC inference

Disadvantages:

▶ Output is not conditioned on the input

▶ Input locations needs to be fixed for all prior training functions

Encodes random vectors, not random functions.

Source code:

PriorVAE https://github.com/elizavetasemenova/PriorVAE
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aggVAE: encoding GP aggregates and
change-of-support problem
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Kenya: boundaries before and after 2010
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aggVAE: what are we solving?

▶ Adjacency-based models assume heterogeneity.

▶ Changing boundaries: change-of-support.
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Computational grid

▶ Create fine spatial grid {g1, ...gn} over the domain of interest:
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Computational grid

▶ Draw GP evaluations over the grid:

f =

f1
...
fn

 ∼ MVN(0,Σ),

fj = f (gj),

Σjk = σ2 exp

(
−
d2
jk

2l2

)
,

djk = ||gj − gk ||
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Attribution of grid points over polygons

34 36 38 40 42

4

2

0

2

4

6

34 36 38 40 42

4

2

0

2

4

6

41



Computing GP aggregates over polygons

For each district (polygon) pi , i = 1, ...,K , compute

f piaggGP =

∫
pi

f (s)ds ≈ c
∑
gj∈pi

fj = cf̄ piaggGP.

Spatial random effect:

faggGP =

f p1aggGP
...

f pKaggGP

 = Mf ∈ RK ,

M : mij = I{gj⊂pi}.
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Joint encoding of priors

To tackle the the change-of-support problem, encode f̄ oldaggGP and

f̄ newaggGP jointly:

f̄ jointaggGP =



f̄
pold1
aggGP

. . .

f̄
poldK1
aggGP

−−−−
f̄
pnew1
aggGP

f̄
pnewK2
aggGP


=

(
Moldf
Mnewf

)
∈ RK1+K2 .
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’aggVAE’ workflow

▶ Fix spatial structure of areal units as a collection of polygons
P = {p1, . . . , pk}.

▶ Create an aritificial computational grid of sufficient granularity
G = {g1, . . . , gn}.

▶ Pre-compute the matrix of indicators M, mij = I{gj⊂pi}.

▶ Draw GP evaluations over G using a selected kernel k(., .):
f = (f1, . . . fn)

T .

▶ Compute GP aggregates at the level of P : faggGP = cMf

▶ Train PriorVAE on faggGP draws to obtain faggVAE priors.

▶ Use faggVAE at inference stage within MCMC.
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Mapping malaria prevalence in Kenya

▶ Model Malaria prevalence θi , i ∈ 1, . . .K is inferred using the
Negative Binomial distribution{

nposi ∼ NegBin(ntestsi , θi ),

logit(θi ) = b0 + f piaggGP.

where ntestsi and nposi are the number of total and positive
RDT tests, correspondingly.

▶ Inference. Perform MCMC inference using faggVAE instead of
faggGP.
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Results

Comparison of MCMC for models with faggGP and faggVAE using
200 warm-up steps and 1000 iterations:

Model of the spatial
random effect

Elapsed
time

Average effective sample size
of the random effects

aggGP 15h∗ 129
aggVAE 5s 231

Table: Model comparison.

∗ aggGP model has not converged: R̂ = 1.4.
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Results
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Can we infer hyperparameters? PrioCVAE!
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PriorCVAE: use hyperparameter(s) as condition c

y ŷ

y
ŷ

µ

µ

σ

σ

z

z

c

c

Encoder

Encoder

Decoder

Decoder

Sample

Sample

Variational
Autoencoder

Conditional
Variational
Autoencoder
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PriorCVAE: lengthscale as a condition c = l
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PriorCVAE: non-stationary kernels
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PriorCVAE trained on hyperpriors l ∼ U(0.01, 0.4)
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PriorCVAE: extrapolation w.r.t. hyperparameters
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Extrapolating away from l ∈ (0.01, 0.4)
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NUTS, Laplace, ADVI - any luck?
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Figure: Top: inferred mean and 90% BCI, bottom: inferred lengthscale.
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GP, PriorVAE, PriorCVAE
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10K x speedup (ESS per second):

Model

Effective sample

size (ESS)
Elapsed time,

s

ESS per

second
PriorVAE 31115 8 3889
PriorCVAE 34725 17 2043
GP 1496 7150 0.2
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Deep generative modelling for MCMC

Elizaveta Semenova, Yidan Xu, Adam Howes, Theo Rashid, Samir Bhatt,
Swapnil Mishra, and Seth Flaxman.

PriorVAE: encoding spatial priors with variational autoencoders for small-area
estimation.

Journal of the Royal Society Interface, 19(191):20220094, 2022.

Elizaveta Semenova, Swapnil Mishra, Samir Bhatt, Seth Flaxman, and
H Juliette T Unwin.

Deep learning and MCMC with aggVAE for shifting administrative boundaries:
mapping malaria prevalence in Kenya.

UAI 2023 workshop ”Epistemic Uncertainty in Artificial Intelligence”, 2023.

Elizaveta Semenova, Max Cairney-Leeming, and Seth Flaxman.

PriorCVAE: scalable MCMC parameter inference with Bayesian deep generative
modelling.

arXiv preprint arXiv:2304.04307, 2023.
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Future work

▶ improve quality of samples

GP covariance matrix, l = 0.2 CVAE covariance matrix, l = 0.2

GP covariance matrix, l = 0.05 CVAE covariance matrix, l = 0.05

Figure: Empirical covariance matrices

▶ applications: population genetics, spatial weather extremes

▶ geometry: sphere, graphs
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Related work

▶ πVAE method
▶ Mishra et al, 2022, Statistics and Computing
▶ it actually existed before PriorVAE

▶ An application of PriorVAE to Hawkes process
▶ Miscouridou et al, 2022, TMLR
▶ uses PriorVAE to make GP calculations feasible
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Code

▶ PriorVAE, JAX (but ugly)
GitHub: https://github.com/elizavetasemenova/PriorVAE

Colab: https://tinyurl.com/PriorVAE

▶ PriorCVAE, PyTorch (manually implement NN for Numpyro)
GitHub: http://github.com/elizavetasemenova/PriorCVAE

Colab: https://tinyurl.com/PriorCVAE

▶ PriorCVAE, JAX (seemless NN and Numpyro integration)
GitHub: https://github.com/MLGlobalHealth/PriorCVAE
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Thank you!

▶ www.elizaveta-semenova.com
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