Emulating computer experiments of rail infrastructure slope stability using Gaussian processes and Bayesian inference

A Svalova¹, J Oakley¹, P Helm², D Prangle³, M Rouainia², S Glendinning², DJ Wilkinson¹

¹School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, NE1 7RU Alex.Svalova@newcastle.ac.uk ²School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU ³Institute for Statistical Science, University of Bristol, Bristol, BS8 1QU

ACHILLES (EP/R034575/1) is funded by the UK Engineering and Physical Sciences Research Council (EPSRC)

Please do not distribute these slides without prior consent of the author

Deterioration of infrastructure slopes^[1]

- Many rail slopes ≈ 200 years old^[2]
- Built in high-plasticity clay (London Clay)
- Wet weather and weather extremes increase deterioration
- Highways suffer similar problems
 Though they're younger
- Our focus: Great Western Main Line

Computer experiments of deterioration

- Modelling strain softening of over-consolidated clays in cutting slopes^[3,4]
 - Influence of weather and seasonal cycles
 - Seasonal shrink-swell cycles impact strength
- Model informed by previous studies
- Latin hypercube design of 76 experiments
 - Geometry (height and angle cotangent)
 - Soil strength (peak cohesion)
 - Soil strength (peak friction angle)
 - Permeability
- Monitor time to slope failure (years)- completed
- Monitor factor of safety- ongoing

ACHILLES

Superficial cut slope failure on the GWML between London and S Wales

https://theconversation.com/britain-needs-infrastructure-readyfor-climate-change-before-its-too-late-62375

Emulating computer experiments

ACHILLES

Numerical models are very time-consuming

Numerical model*Emulator*[5]76 models900 models40 days5 hours10 machinesI machine

* Once trained

[5] Svalova A, Helm P, Prangle D, Rouainia M, Glendinning S, Wilkinson DJ. Data-Centric Engineering. 2021.

Emulating computer experiments

• Consider a simulator f evaluated at inputs x (e.g. geometry, strength, permeability) to produce outputs $y = f(x)^{[6]}$

- Require η s.t. $\eta(\mathbf{x}) \approx f(\mathbf{x})$ • Use **Gaussian processes**
- Need f to be smooth and continuous
- Assume f can be approximated by a multivariate normal distribution

Gaussian processes for emulation

 Gaussian processes- infinite-dimensional distributions for functions

- Assume $\eta(\cdot)$ takes input $x = (x_1, x_2, ..., x_p)$ where $x_i \in \chi_i \subset \mathbb{R}$
- A scalar-valued Gaussian process is fully defined by its mean and covariance functions m and V: $\eta(\cdot)|\boldsymbol{\beta}, \sigma^2, \boldsymbol{\theta}, \tau \sim \mathrm{GP}(m(\cdot), V(\cdot, \cdot)),$ $m: \mathbb{R}^p \to \mathbb{R}, \qquad V: \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{R}$

Gaussian processes for emulation

• *m* is often a linear transformation of the input variables $m(\mathbf{x}) = h(\mathbf{x})^T \boldsymbol{\beta}, \quad h(\cdot): \mathbb{R}^p \to \mathbb{R}^q,$ $e.g.h(\mathbf{x}) = (1, x_1, ..., x_p), \quad \boldsymbol{\beta} = (\beta_0, \beta_1, ..., \beta_{p+1=q})$

- *V* has the form $V(x, x') = \sigma^2 [C(x, x', \theta) + \tau \mathbb{I}(x, x')]$ • σ^2 - marginal variance
 - $C(x, x', \theta)$ is a correlation function (cts and psd)
 - • θ -vector of correlation lengths
 - *τ* nugget^[7,8]
 - $\mathbb{I}(x, x')$ is an indicator function

Types of the correlation functions

• Gaussian correlation function^[6]

$$C_G(\boldsymbol{x}, \boldsymbol{x}', \boldsymbol{\theta}) = \exp\left\{-\sum_{(i=1)}^p \frac{(x_i - x_i')^2}{\theta_i^2}\right\}$$

CHILLE:

• Matern correlation function family^[9]

$$C_M(\boldsymbol{x}, \boldsymbol{x}', \boldsymbol{\theta}, \boldsymbol{\nu}) = \prod_{i=1}^p \frac{1}{\Gamma(\boldsymbol{\nu}) 2^{\boldsymbol{\nu}-1}} \left(\frac{\sqrt{2\boldsymbol{\nu}} |x_i - x_i'|}{\theta_i} \right)^{\boldsymbol{\nu}} K_{\boldsymbol{\nu}} \left(\frac{\sqrt{2\boldsymbol{\nu}} |x_i - x_i'|}{\theta_i} \right)$$

 K_{ν} - modified Bessel function of second kind of order ν

[6] Bastos LS, O'Hagan A. Technometrics. 2009;51:425-438.[9] Rasmussen CE, Williams CKI. Gaussian processes for machine learning. 2006. The MIT Press: Cambridge, Massachusetts.

GPE conditional on observations

 GPs are closed under conditioning- can derive an analytical expression for the GPE conditioned on a set of computer experiments. ACHILLES

• Assume a collection of n outputs $\mathbf{y} = (f(\mathbf{x}_1), f(\mathbf{x}_2), \dots, f(\mathbf{x}_n))$ performed on x_1, x_2, \dots, x_n • $\boldsymbol{\gamma} | \boldsymbol{\beta}, \sigma^2, \boldsymbol{\theta}, \tau \sim N(H_{\boldsymbol{\gamma}} \boldsymbol{\beta}, \sigma^2 \Sigma_{\boldsymbol{\gamma}})$ • H_{x} - regressor matrix, $H_{x,i} = h(x_i)$ • $\Sigma_{x(i,j)} = C(\mathbf{x}_i, \mathbf{x}_j, \boldsymbol{\theta}) + \tau \mathbb{I}(i,j)$ - correlation matrix $\eta(\cdot)|\mathbf{y},\boldsymbol{\beta},\sigma^2,\boldsymbol{\theta},\tau \sim \mathrm{GP}(m^*(\cdot),V^*(\cdot,\cdot)),$ $m^*(\mathbf{x}) = h(\mathbf{x})^T \boldsymbol{\beta} + t(\mathbf{x})^T \Sigma_{\mathbf{x}}^{-1} (\mathbf{y} - H_{\mathbf{x}} \boldsymbol{\beta}),$ $V^*(\boldsymbol{x}, \boldsymbol{x}') = \sigma^2 \big(C(\boldsymbol{x}, \boldsymbol{x}', \boldsymbol{\theta}) - t(\boldsymbol{x})^T \Sigma_{\boldsymbol{x}}^{-1} t(\boldsymbol{x}') \big),$ $t(\mathbf{x}) = (C(\mathbf{x}, \mathbf{x}_1, \boldsymbol{\theta}), C(\mathbf{x}, \mathbf{x}_2, \boldsymbol{\theta}), \dots, C(\mathbf{x}, \mathbf{x}_n, \boldsymbol{\theta}))^T$

Censored computer output

- For some models, failure not reached within 184 years
 - *n* experiments at $x_o = (x_{o,1}, x_{o,2}, ..., x_{o,n})$ produced uncensored observations y_o

CHILLES

- n_c experiments at $x_c = (x_{c,1}, ..., x_{c,n_c})$ produced censored "observations" y_c
- Define a new process $\eta_c(\cdot)$ where^[10]

$$\eta_c(x) = \begin{cases} \eta(x), & \text{if } \eta(x) < c \\ c, & \text{otherwise} \end{cases}$$

• The distribution of $\eta_c(\mathbf{X})$ at design points $\mathbf{X} = (\mathbf{x}_c, \mathbf{x}_o)$ is: $\eta(\mathbf{x}_o) \mid \boldsymbol{\beta}, \sigma^2, \boldsymbol{\theta}, \tau \sim \mathrm{N}(H_o \boldsymbol{\beta}, \sigma^2 \Sigma_o),$ $\eta_c(\mathbf{x}_c) \mid \eta(\mathbf{x}_o), \boldsymbol{\beta}, \sigma^2, \boldsymbol{\theta} \sim \mathrm{TN}_{(c,\infty)}(m_c, V_c),$ $m_c = H_c \boldsymbol{\beta} + \Sigma_{c,o} \Sigma_o^{-1}(\eta(\mathbf{x}) - H_o \boldsymbol{\beta}) \text{ and } V_c = \sigma^2 (\Sigma_c - \Sigma_{c,o} \Sigma_o^{-1} \Sigma_{o,c})$ • H_o and Σ_o are equivalent to H_x and Σ_x • H_c is a matrix of regressors associated with $\mathbf{x}_c, \Sigma_{c(i,j)} = C(\mathbf{x}_{c,i}, \mathbf{x}_{c,j}, \boldsymbol{\theta}) + \tau \mathbb{I}(i,j)$ • $\Sigma_{c,o(i,j)} = C(\mathbf{x}_{c,i}, \mathbf{x}_{o,j}, \boldsymbol{\theta}) \text{ and } \Sigma_{o,c} = \Sigma_{c,o}^T$

Bayesian inference

- Values of $\pmb{\beta}, \sigma^2, \pmb{\theta}$ and τ unknown
- The priors are as follows:

 $\begin{array}{ll} \beta_0 \sim {\rm N}(0,10^2), & \beta_i \sim {\rm N}(0,4^2), & \sigma^2 \sim {\rm IGa}(3,0.5), \\ \theta_i \sim {\rm Exp}(0.2), & \tau \sim {\rm IGa}(3,1), & i=1,2,\ldots,5 \end{array}$

- The resulting posterior of $\eta(\cdot)|$... also unknown
- Use MCMC
 - Met+Gibbs
 - Impute $y_{censored}$ (data augmentation)
- Most optimal:
 - Regressor function mean
 - Matern correlation function with $\nu = 5/2$
 - Square root of output

Latin hypercube design

Variable	Height m	Cot angle <i>degrees</i>	Cohesion <i>kPa</i>	Friction degrees	Permeability ms^{-1}
Range	[4, 20]	[0.5, 7.5]	[3, 10]	[18.5, 25]	[1.45E-9, 2.5E-8]

ACHILLES

TTF BPD using different mean and correlation functions

Cohesion = 7 kPaFriction = 19.8 degPerm = 7E-9 ms^{-1}

Results:TTF

Sensitivity analysis

• Explain the variation in the mean response of the emulator due to an individual or a combination of input variable(s)^[11]

- Fully-Bayesian
- For independent input variables x_i , $U(x) = \prod_{i=1}^p u_i(x_i)$
- Main effects^[11]:

$$me(x_i) \equiv E_{U_{-i}}(\eta | x_i)$$

=
$$\int \int_{-\chi_{-i}} \eta p(\eta | x_1, x_2, \dots, x_p) \cdot u_{-i}(x_{-i}) dx_{-i} d\eta$$

ACHILLES

Sensitivity indices^[12,13]

• The first-order sensitivity index $S_{1,i}$, i = 1, 2, ..., p evaluates the fractional contribution of x_i to the variance of the output

$$S_{1,i} = \frac{\mathbf{E}\left[\mathbf{E}^{2}[\eta|x_{i}]\right] - \mathbf{E}^{2}[\eta]}{\mathbf{Var}(\eta)}$$

• The total sensitivity index $S_{T,i}$ is a measure of the entire influence attributable to a given variable

$$S_{T,i} = 1 - \frac{\mathbf{E}\left[\mathbf{E}^{2}[\eta|x_{-i}] - \mathbf{E}^{2}[\eta]\right]}{\operatorname{Var}(\eta)}$$

• A large difference between the distributions of $S_{1,i}$ and $S_{T,i}$ would indicate that the interactions between the x_i and the remaining input variables are important to explaining the output variation

[12] Homma T, Saltelli A. Reliability Engineering and System Safety. 1996;35;1-17.[13] Farah M, Kottas A. Technometrics. 2014;56:159-173.

Sensitivity analysis

FoS modelling

FoS modelling- approximation with a simple model

Quadratic model of FoS

• Put a GP prior on the polynomial coefficients

• Let
$$y_{i,j} = \text{FoS}_{i,j} - 1$$

 $y_{i,j} = \alpha_{0,i} + \alpha_{1,i}t_{i,j} + \alpha_{2,i}t_{i,j}^2 + \varepsilon_{i,j}, \qquad \varepsilon_{i,j} \sim N(0, \sigma_i^2)$

- Can also re-formulate $y_{i,j}$ to include failure time
- Constrain the quadratic coefficients to avoid convex curves
 - Failure is defined by $y_{i,j}$ reaching zero for the first time

Quadratic model of FoS- debugging

Summary

- A GPE estimates the relationship between slope TTF and geometry, soil strength, and permeability
- Strong computational advantage
- Current work
 - FoS curves
 - Residual factor