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Deterioration of infrastructure slopes[1]

•Many rail slopes ≈ 200 years old[2]

• Built in high-plasticity clay (London Clay)

• Wet weather and weather extremes increase 
deterioration

• Highways suffer similar problems
Though they’re younger

• Our focus: Great Western Main Line

[1] https://www.achilles-grant.org.uk/
[2] Skempton AW. Construction History. 1996;11:33-49.



Computer experiments of deterioration
• Modelling strain softening of over-consolidated clays in cutting slopes[3,4]

 Influence of weather and seasonal cycles
 Seasonal shrink-swell cycles impact strength

• Model informed by previous studies
• Latin hypercube design of 76 experiments
 Geometry (height and angle cotangent)
 Soil strength (peak cohesion)
 Soil strength (peak friction angle)
 Permeability 

• Monitor time to slope failure (years)- completed
• Monitor factor of safety- ongoing

[3] Rouainia M, Helm P, Davies O, Glendinning S. Acta Geotechnica. 2020;15:2997-3016.
[4] Postill H, Helm P, Dixon N, et al. Engineering Geology. 2021;280;1-19.



Superficial cut slope failure on the GWML between London 
and S Wales

https://theconversation.com/britain-needs-infrastructure-ready-
for-climate-change-before-its-too-late-62375



Emulating computer experiments

• Numerical models are very time-consuming

Numerical model*

76 models

40 days

10 machines

Emulator*[5]

900 models

5 hours

1 machine

* Once trained
[5] Svalova A, Helm P, Prangle D, Rouainia M, Glendinning S, Wilkinson DJ. Data-Centric Engineering. 2021.



Emulating computer experiments
• Consider a simulator 𝑓𝑓 evaluated at inputs 𝒙𝒙 (e.g. 
geometry, strength, permeability) to produce outputs 
𝒚𝒚 = 𝑓𝑓 𝒙𝒙 [6]

• Require 𝜂𝜂 s.t. 𝜂𝜂 𝒙𝒙 ≈ 𝑓𝑓(𝒙𝒙)
Use Gaussian processes

• Need 𝑓𝑓 to be smooth and continuous

• Assume 𝑓𝑓 can be approximated by a multivariate normal 
distribution

[6] Bastos LS, O’Hagan A. Technometrics. 2009;51:425-438.



Gaussian processes for emulation
• Gaussian processes- infinite-dimensional distributions for 
functions

• Assume 𝜂𝜂 ⋅ takes input 𝒙𝒙 = 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑝𝑝 where 
𝑥𝑥𝑖𝑖 ∈ 𝜒𝜒𝑖𝑖 ⊂ ℝ

• A scalar-valued Gaussian process is fully defined by its 
mean and covariance functions 𝑚𝑚 and 𝑉𝑉:

𝜂𝜂 ⋅ |𝜷𝜷,𝜎𝜎2,𝜽𝜽, 𝜏𝜏 ∼ GP 𝑚𝑚 ⋅ ,𝑉𝑉 ⋅,⋅ ,
𝑚𝑚:ℝp → ℝ, 𝑉𝑉:ℝ𝑝𝑝 × ℝ𝑝𝑝 → ℝ

[6] Bastos LS, O’Hagan A. Technometrics. 2009;51:425-438.



Gaussian processes for emulation
•𝑚𝑚 is often a linear transformation of the input variables
𝑚𝑚 𝒙𝒙 = ℎ 𝒙𝒙 𝑇𝑇𝜷𝜷, ℎ ⋅ :ℝ𝑝𝑝 → ℝ𝑞𝑞 ,
𝑒𝑒.𝑔𝑔. ℎ 𝒙𝒙 = 1, 𝑥𝑥1, … , 𝑥𝑥𝑝𝑝 , 𝜷𝜷 = 𝛽𝛽0,𝛽𝛽1, … ,𝛽𝛽𝑝𝑝+1=𝑞𝑞

•𝑉𝑉 has the form 𝑉𝑉 𝒙𝒙,𝒙𝒙′ = 𝜎𝜎2 𝐶𝐶 𝒙𝒙,𝒙𝒙′,𝜽𝜽 + 𝜏𝜏𝜏𝜏 𝒙𝒙,𝒙𝒙′
𝜎𝜎2- marginal variance
𝐶𝐶(𝒙𝒙,𝒙𝒙′,𝜽𝜽)- is a correlation function (cts and psd)
𝜽𝜽- vector of correlation lengths
𝜏𝜏- nugget[7,8]

𝜏𝜏(𝒙𝒙,𝒙𝒙′) is an indicator function

[7] Andrianakis I, Challenor PG. Computational Statistics and Data Analysis. 2012;56:4215-4228.



Types of the correlation functions
• Gaussian correlation function[6]

𝐶𝐶𝐺𝐺(𝒙𝒙,𝒙𝒙′,𝜽𝜽) = exp − �
𝑖𝑖=1

𝑝𝑝
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖′ 2

𝜃𝜃𝑖𝑖2

• Matern correlation function family[9]

𝐶𝐶𝑀𝑀 𝒙𝒙,𝒙𝒙′,𝜽𝜽, 𝜈𝜈

= �
𝑖𝑖=1

𝑝𝑝
1

Γ 𝜈𝜈 2𝜈𝜈−1
2𝜈𝜈 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖′

𝜃𝜃𝑖𝑖

𝜈𝜈

𝐾𝐾𝜈𝜈
2𝜈𝜈 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖′

𝜃𝜃𝑖𝑖

𝐾𝐾𝜈𝜈- modified Bessel function of second kind of order 𝜈𝜈
[6] Bastos LS, O’Hagan A. Technometrics. 2009;51:425-438.
[9] Rasmussen CE, Williams CKI. Gaussian processes for machine learning. 2006. The MIT Press: Cambridge, Massachusetts.



GPE conditional on observations
• GPs are closed under conditioning- can derive an analytical 
expression for the GPE conditioned on a set of computer 
experiments.

• Assume a collection of 𝑛𝑛 outputs 𝒚𝒚 = 𝑓𝑓 𝒙𝒙1 , 𝑓𝑓 𝒙𝒙𝟐𝟐 , … , 𝑓𝑓 𝒙𝒙𝑛𝑛
performed on 𝒙𝒙1,𝒙𝒙2, … ,𝒙𝒙𝑛𝑛
 𝒚𝒚|𝜷𝜷,𝜎𝜎2,𝜽𝜽, 𝜏𝜏 ∼ N 𝐻𝐻𝑥𝑥𝜷𝜷,𝜎𝜎2 Σ𝑥𝑥
𝐻𝐻𝑥𝑥- regressor matrix, 𝐻𝐻𝑥𝑥,𝑖𝑖 = ℎ 𝒙𝒙𝑖𝑖
 Σ𝑥𝑥 𝑖𝑖,𝑗𝑗 = 𝐶𝐶 𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗 ,𝜽𝜽 + 𝜏𝜏𝜏𝜏(𝑖𝑖, 𝑗𝑗)- correlation matrix

𝜂𝜂(⋅)|𝒚𝒚,𝜷𝜷,𝜎𝜎2,𝜽𝜽, 𝜏𝜏 ∼ GP 𝑚𝑚∗ ⋅ ,𝑉𝑉∗ ⋅,⋅ ,
𝑚𝑚∗ 𝒙𝒙 = ℎ 𝒙𝒙 𝑇𝑇𝜷𝜷 + 𝑡𝑡 𝒙𝒙 𝑇𝑇 Σ𝑥𝑥−1 𝒚𝒚 − 𝐻𝐻𝑥𝑥𝜷𝜷 ,
𝑉𝑉∗ 𝒙𝒙,𝒙𝒙′ = 𝜎𝜎2 𝐶𝐶 𝒙𝒙,𝒙𝒙′,𝜽𝜽 − 𝑡𝑡 𝒙𝒙 𝑇𝑇 Σ𝑥𝑥−1𝑡𝑡 𝒙𝒙′ ,

𝑡𝑡(𝒙𝒙) = 𝐶𝐶 𝒙𝒙,𝒙𝒙1,𝜽𝜽 ,𝐶𝐶 𝒙𝒙,𝒙𝒙2,𝜽𝜽 , … ,𝐶𝐶 𝒙𝒙,𝒙𝒙𝑛𝑛,𝜽𝜽 𝑇𝑇

[6] Bastos LS, O’Hagan A. Technometrics. 2009;51:425-438.



Censored computer output
• For some models, failure not reached within 184 years
 𝑛𝑛 experiments at 𝒙𝒙𝑜𝑜 = 𝒙𝒙𝑜𝑜,1,𝒙𝒙𝑜𝑜,2, … ,𝒙𝒙𝑜𝑜,𝑛𝑛 produced uncensored observations 𝒚𝒚𝑜𝑜
 𝑛𝑛𝑐𝑐 experiments at 𝒙𝒙𝑐𝑐 = 𝒙𝒙𝑐𝑐,1, … ,𝒙𝒙𝑐𝑐,𝑛𝑛𝑐𝑐 produced censored “observations” 𝒚𝒚𝑐𝑐

• Define a new process 𝜂𝜂𝑐𝑐 ⋅ where[10]

𝜂𝜂𝑐𝑐 𝑥𝑥 = �𝜂𝜂 𝑥𝑥 , if 𝜂𝜂 𝑥𝑥 < 𝑐𝑐,
𝑐𝑐, otherwise

• The distribution of 𝜂𝜂𝑐𝑐 𝑿𝑿 at design points 𝑿𝑿 = 𝒙𝒙𝑐𝑐 ,𝒙𝒙𝑜𝑜 is:
𝜂𝜂(𝒙𝒙𝑜𝑜) | 𝜷𝜷,𝜎𝜎2,𝜽𝜽, 𝜏𝜏 ∼ N(𝐻𝐻𝑜𝑜𝜷𝜷,𝜎𝜎2Σ𝑜𝑜),

𝜂𝜂𝑐𝑐 𝒙𝒙𝑐𝑐 |𝜂𝜂 𝒙𝒙𝑜𝑜 ,𝜷𝜷,𝜎𝜎2,𝜽𝜽 ∼ TN 𝑐𝑐,∞ (𝑚𝑚𝑐𝑐 ,𝑉𝑉𝑐𝑐),
𝑚𝑚𝑐𝑐 = 𝐻𝐻𝑐𝑐𝜷𝜷 + Σ𝑐𝑐,𝑜𝑜Σ𝑜𝑜−1 𝜂𝜂 𝒙𝒙 − 𝐻𝐻𝑜𝑜𝜷𝜷 and 𝑉𝑉𝑐𝑐 = 𝜎𝜎2 Σ𝑐𝑐 − Σ𝑐𝑐,𝑜𝑜Σ𝑜𝑜−1Σ𝑜𝑜,𝑐𝑐

 𝐻𝐻𝑜𝑜 and Σ𝑜𝑜 are equivalent to 𝐻𝐻𝑥𝑥 and Σ𝑥𝑥
 𝐻𝐻𝑐𝑐 is a matrix of regressors associated with 𝒙𝒙𝑐𝑐, Σ𝑐𝑐 𝑖𝑖,𝑗𝑗 = 𝐶𝐶(𝒙𝒙𝑐𝑐,𝑖𝑖 ,𝒙𝒙𝑐𝑐,𝑗𝑗 ,𝜽𝜽) + 𝜏𝜏 𝜏𝜏(𝑖𝑖, 𝑗𝑗)
 Σ𝑐𝑐,𝑜𝑜 𝑖𝑖,𝑗𝑗 = 𝐶𝐶 𝒙𝒙𝑐𝑐,𝑖𝑖 ,𝒙𝒙𝑜𝑜,𝑗𝑗 ,𝜽𝜽 and Σ𝑜𝑜,𝑐𝑐 = Σ𝑐𝑐,𝑜𝑜

𝑇𝑇

[10] Kyzyurova KN. PhD. On uncertainty quantification for systems of computer models. 2014. Duke University.



Bayesian inference
• Values of 𝜷𝜷,𝜎𝜎2,𝜽𝜽 and 𝜏𝜏 unknown

• The priors are as follows:
𝛽𝛽0 ∼ N 0,102 , 𝛽𝛽𝑖𝑖 ∼ N 0,42 , 𝜎𝜎2 ∼ IGa 3,0.5 ,
𝜃𝜃𝑖𝑖 ∼ Exp 0.2 , 𝜏𝜏 ∼ IGa 3,1 , 𝑖𝑖 = 1,2, … , 5

• The resulting posterior of 𝜂𝜂 ⋅ | … also unknown

• Use MCMC
 Met+Gibbs
 Impute 𝒚𝒚𝑐𝑐𝑒𝑒𝑛𝑛𝑒𝑒𝑜𝑜𝑒𝑒𝑒𝑒𝑒𝑒 (data augmentation)

• Most optimal: 
 Regressor function mean
 Matern correlation function with 𝜈𝜈 = 5/2
 Square root of output



Latin hypercube design

Variable Height 𝑚𝑚 Cot angle 
𝑑𝑑𝑒𝑒𝑔𝑔𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑

Cohesion 𝑘𝑘𝑘𝑘𝑘𝑘 Friction 𝑑𝑑𝑒𝑒𝑔𝑔𝑑𝑑𝑒𝑒𝑒𝑒𝑑𝑑 Permeability 
𝒎𝒎𝒔𝒔−𝟏𝟏

Range [4, 20] [0.5, 7.5] [3, 10] [18.5, 25] [1.45E-9, 2.5E-8]



TTF BPD using different mean and correlation 
functions

Cohesion = 7 𝑘𝑘𝑘𝑘𝑘𝑘
Friction = 19.8 𝑑𝑑𝑒𝑒𝑔𝑔
Perm = 7E-9 𝑚𝑚𝑑𝑑−1



Results: TTF



Sensitivity analysis
• Explain the variation in the mean response of the emulator due 
to an individual or a combination of input variable(s)[11]

• Fully-Bayesian

• For independent input variables 𝑥𝑥𝑖𝑖, 𝑈𝑈(𝑥𝑥) = ∏𝑖𝑖=1
𝑝𝑝 𝑢𝑢𝑖𝑖 𝑥𝑥𝑖𝑖

• Main effects[11]:
𝑚𝑚𝑒𝑒 𝑥𝑥𝑖𝑖 ≡ 𝐸𝐸𝑈𝑈−𝑖𝑖(𝜂𝜂|𝑥𝑥𝑖𝑖)

= ��
−𝜒𝜒−𝑖𝑖

𝜂𝜂𝜂𝜂 𝜂𝜂 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑝𝑝 ⋅ 𝑢𝑢−𝑖𝑖 𝑥𝑥−𝑖𝑖 𝑑𝑑𝑥𝑥−𝑖𝑖𝑑𝑑𝜂𝜂

[11] Gramacy R. Surrogates. 2020. CRC Press: Boca Raton.



Sensitivity indices[12,13]

• The first-order sensitivity index 𝑆𝑆1,𝑖𝑖 , 𝑖𝑖 = 1,2, … , 𝜂𝜂 evaluates the 
fractional contribution of 𝑥𝑥𝑖𝑖 to the variance of the output

𝑆𝑆1,𝑖𝑖 =
E E2 𝜂𝜂 𝑥𝑥𝑖𝑖 − E2 𝜂𝜂

Var 𝜂𝜂
• The total sensitivity index 𝑆𝑆𝑇𝑇,𝑖𝑖 is a measure of the entire influence 
attributable to a given variable

𝑆𝑆𝑇𝑇,𝑖𝑖 = 1 −
E E2 𝜂𝜂 𝑥𝑥−𝑖𝑖 − E2 𝜂𝜂

Var 𝜂𝜂
• A large difference between the distributions of 𝑆𝑆1,𝑖𝑖 and 𝑆𝑆𝑇𝑇,𝑖𝑖 would 
indicate that the interactions between the 𝑥𝑥𝑖𝑖 and the remaining input 
variables are important to explaining the output variation

[12] Homma T, Saltelli A. Reliability Engineering and System Safety. 1996;35;1-17.
[13] Farah M, Kottas A. Technometrics. 2014;56:159-173.



Sensitivity analysis



FoS modelling



FoS modelling- approximation with a simple model



Quadratic model of FoS
• Put a GP prior on the polynomial coefficients

• Let 𝑦𝑦𝑖𝑖,𝑗𝑗 = FoS𝑖𝑖,𝑗𝑗 − 1
𝑦𝑦𝑖𝑖,𝑗𝑗 = 𝛼𝛼0,𝑖𝑖 + 𝛼𝛼1,𝑖𝑖𝑡𝑡𝑖𝑖,𝑗𝑗 + 𝛼𝛼2,𝑖𝑖 𝑡𝑡𝑖𝑖,𝑗𝑗2 + 𝜀𝜀𝑖𝑖,𝑗𝑗 , 𝜀𝜀𝑖𝑖,𝑗𝑗 ∼ 𝑁𝑁(0,𝜎𝜎𝑖𝑖2)

• Can also re-formulate 𝑦𝑦𝑖𝑖,𝑗𝑗 to include failure time

• Constrain the quadratic coefficients to avoid convex 
curves
 Failure is defined by 𝑦𝑦𝑖𝑖,𝑗𝑗 reaching zero for the first 
time



Quadratic model of FoS- debugging





Summary
• A GPE estimates the relationship between slope 
TTF and geometry, soil strength, and permeability

• Strong computational advantage

• Current work
 FoS curves
Residual factor
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