An introduction to Gaussian Processes

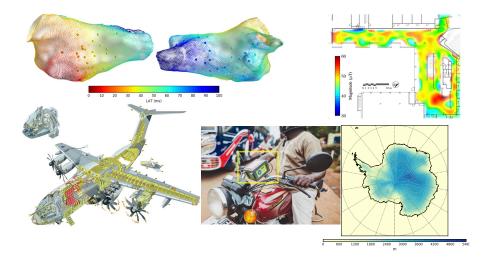
Richard Wilkinson

School of Mathematical Sciences University of Nottingham

> GP summer school September 2023

> > ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Recent GP Applications



Introduction

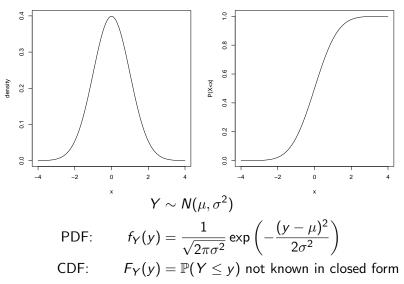
- (Multivariate) Gaussian distributions
- Definition of Gaussian processes
- Motivations and derivations
- Difficulties

You can download a copy of these slides from www.gpss.cc

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

PDF of a N(0,1) random variable

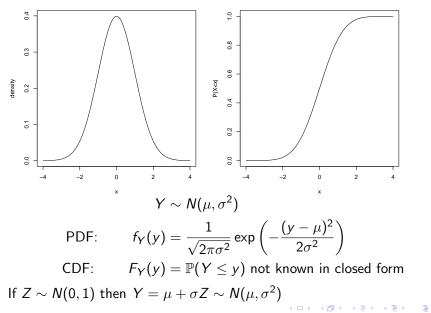
CDF of a N(0,1) random variable



・ロト ・日ト ・ヨト ・ヨー うへで

PDF of a N(0,1) random variable

CDF of a N(0,1) random variable



SOC

 $^{^1 \}rm max.$ ent. principle: the distribution with the largest entropy should be used as a least-informative default

The normal/Gaussian distribution occurs naturally and is convenient mathematically

• Family of normal distributions is closed under linear operations.

 $^{^1 \}rm max.$ ent. principle: the distribution with the largest entropy should be used as a least-informative default

- Family of normal distributions is closed under linear operations.
- Central limit theorem

 $^{^1 \}rm max.$ ent. principle: the distribution with the largest entropy should be used as a least-informative default

- Family of normal distributions is closed under linear operations.
- Central limit theorem
- Maximum entropy/surprisal: $N(\mu, \sigma^2)$ has maximum entropy¹ of any distribution with mean μ and variance σ^2

 $^{^1 \}rm max.$ ent. principle: the distribution with the largest entropy should be used as a least-informative default

- Family of normal distributions is closed under linear operations.
- Central limit theorem
- Maximum entropy/surprisal: $N(\mu, \sigma^2)$ has maximum entropy¹ of any distribution with mean μ and variance σ^2
- Infinite divisibility

 $^{^1 \}rm max.$ ent. principle: the distribution with the largest entropy should be used as a least-informative default

- Family of normal distributions is closed under linear operations.
- Central limit theorem
- Maximum entropy/surprisal: $N(\mu, \sigma^2)$ has maximum entropy¹ of any distribution with mean μ and variance σ^2
- Infinite divisibility
- If Y and Z are jointly normally distributed and are uncorrelated, then they are independent

 $^{^1 \}rm max.$ ent. principle: the distribution with the largest entropy should be used as a least-informative default

- Family of normal distributions is closed under linear operations.
- Central limit theorem
- Maximum entropy/surprisal: $N(\mu, \sigma^2)$ has maximum entropy¹ of any distribution with mean μ and variance σ^2
- Infinite divisibility
- If Y and Z are jointly normally distributed and are uncorrelated, then they are independent
- Square-loss functions lead to procedures that have a Gaussian probabilistic interpretation eg Fit model $f_{\beta}(x)$ to data y by mimizing $\sum (y_i f_{\beta}(x_i))^2$ is equivalent to maximum likelihood estimation under the assumption that $y = f_{\beta}(x) + \epsilon$ where $\epsilon \sim N(0, \sigma^2)$.

 $^{^1 \}rm max.$ ent. principle: the distribution with the largest entropy should be used as a least-informative default

'Multivariate' = two or more random variables

'Multivariate' = two or more random variables

Suppose $Y \in \mathbb{R}^d$ has a multivariate Gaussian distribution with

• mean vector $\mu \in \mathbb{R}^d$

• covariance matrix
$$\Sigma \in \mathbb{R}^{d \times d}$$

Write

 $Y \sim N_d(\mu, \Sigma)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

'Multivariate' = two or more random variables

Suppose $Y \in \mathbb{R}^d$ has a multivariate Gaussian distribution with

- mean vector $\mu \in \mathbb{R}^d$
- covariance matrix $\Sigma \in \mathbb{R}^{d \times d}$.

Write

$$Y \sim N_d(\mu, \Sigma)$$

Bivariate Gaussian: d=2

$$Y = \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} \qquad \mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} \qquad \Sigma = \begin{pmatrix} \sigma_1^2 & \rho_{12}\sigma_1\sigma_2 \\ \rho_{21}\sigma_1\sigma_2 & \sigma_2^2 \end{pmatrix}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

'Multivariate' = two or more random variables

Suppose $Y \in \mathbb{R}^d$ has a multivariate Gaussian distribution with

- mean vector $\mu \in \mathbb{R}^d$
- covariance matrix $\Sigma \in \mathbb{R}^{d \times d}$.

Write

$$Y \sim N_d(\mu, \Sigma)$$

Bivariate Gaussian: d=2

$$Y = \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} \qquad \mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} \qquad \Sigma = \begin{pmatrix} \sigma_1^2 & \rho_{12}\sigma_1\sigma_2 \\ \rho_{21}\sigma_1\sigma_2 & \sigma_2^2 \end{pmatrix}$$
$$\mathbb{V}ar(Y_i) = \sigma_i^2 \quad \mathbb{C}ov(Y_1, Y_2) = \rho_{12}\sigma_1\sigma_2 \quad \mathsf{Cor}(Y_1, Y_2) = \rho_{12}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

'Multivariate' = two or more random variables

Suppose $Y \in \mathbb{R}^d$ has a multivariate Gaussian distribution with

- mean vector $\mu \in \mathbb{R}^d$
- covariance matrix $\Sigma \in \mathbb{R}^{d \times d}$.

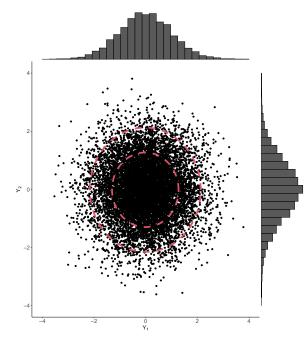
Write

$$Y \sim N_d(\mu, \Sigma)$$

Bivariate Gaussian: d=2

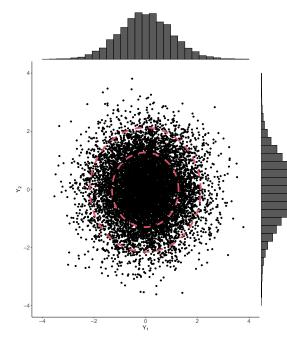
$$Y = \begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} \qquad \mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix} \qquad \Sigma = \begin{pmatrix} \sigma_1^2 & \rho_{12}\sigma_1\sigma_2 \\ \rho_{21}\sigma_1\sigma_2 & \sigma_2^2 \end{pmatrix}$$
$$\mathbb{V}ar(Y_i) = \sigma_i^2 \quad \mathbb{C}ov(Y_1, Y_2) = \rho_{12}\sigma_1\sigma_2 \quad Cor(Y_1, Y_2) = \rho_{12}$$
$$pdf: \quad f(y \mid \mu, \Sigma) = |\Sigma|^{-\frac{1}{2}}(2\pi)^{-\frac{d}{2}}\exp\left(-\frac{1}{2}(y-\mu)^{\top}\Sigma^{-1}(y-\mu)\right)$$

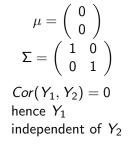
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



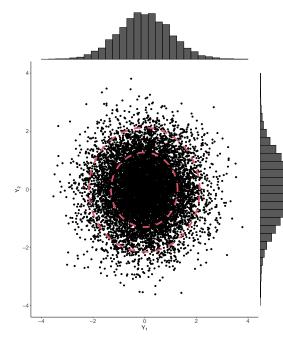
 $\mu = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ $\Sigma = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

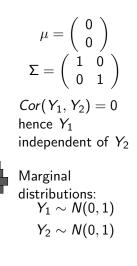
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで



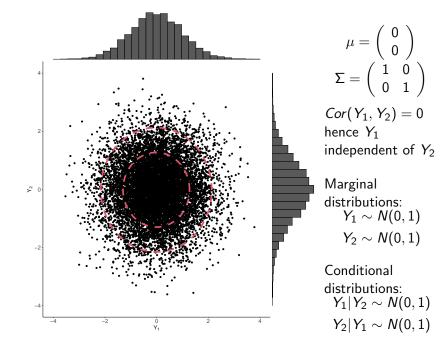


◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

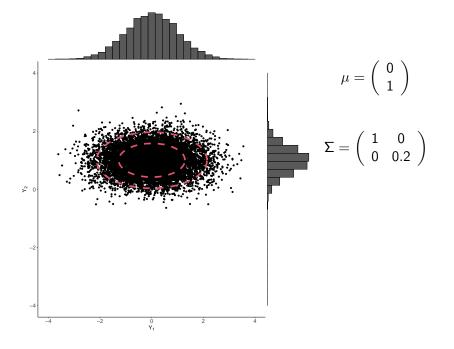


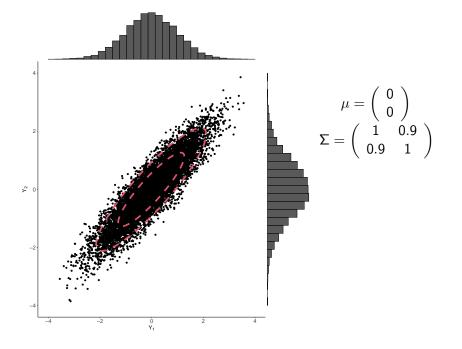


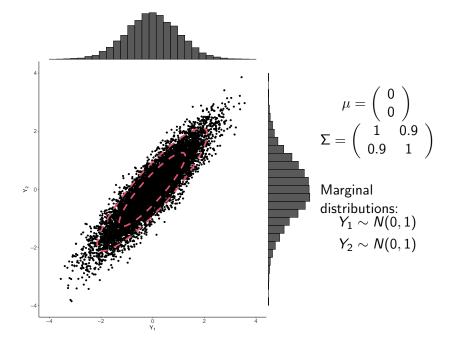
◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

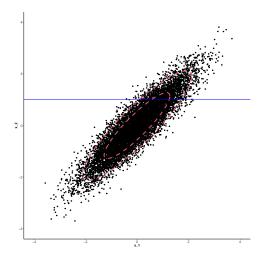


▲ロト ▲園ト ▲画ト ▲画ト 三直 - のくで





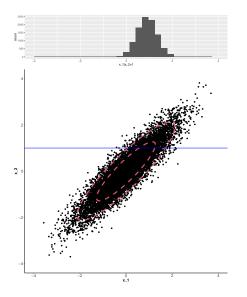




$$\mu = \left(egin{array}{c} 0 \ 0 \end{array}
ight)
onumber \Sigma = \left(egin{array}{c} 1 & 0.9 \ 0.9 & 1 \end{array}
ight)$$

What is the conditional distribution of $Y_1 | Y_2 = 1$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

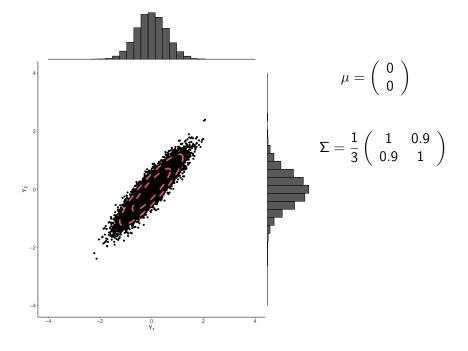


$$\mu = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

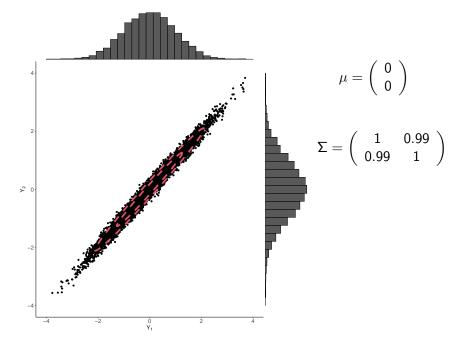
$$\Sigma = \begin{pmatrix} 1 & 0.9 \\ 0.9 & 1 \end{pmatrix}$$

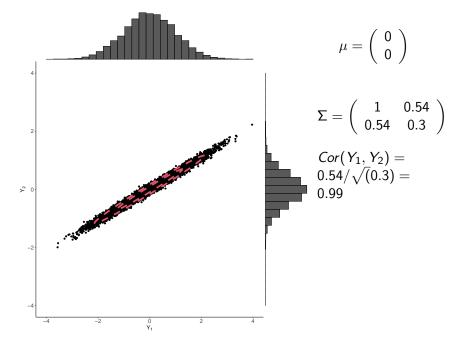
 $Y_1 | Y_2 = 1 \sim N(0.9, 0.19)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで



▲日▼ ▲国▼ ▲国▼ ▲国▼ ▲日▼



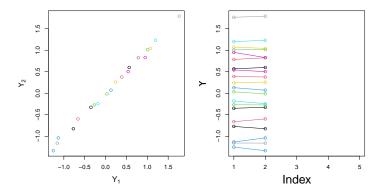


More pictures

Hard to visualise in dimensions > 2, so stack points next to each other.

More pictures

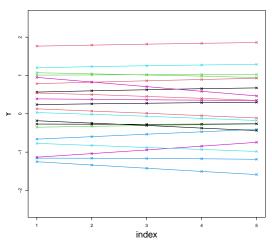
Hard to visualise in dimensions > 2, so stack points next to each other. So for 2d instead of we have



◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

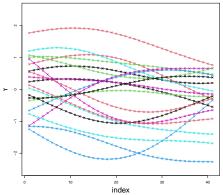
Consider d = 5 with

$$\mu = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix} \qquad \Sigma = \begin{pmatrix} 1 & 0.99 & 0.98 & 0.97 & 0.96 \\ 0.99 & 1 & 0.99 & 0.98 & 0.97 \\ 0.98 & 0.99 & 1 & 0.99 & 0.98 \\ 0.97 & 0.98 & 0.99 & 1 & 0.99 \\ 0.96 & 0.97 & 0.98 & 0.99 & 1 \end{pmatrix}$$



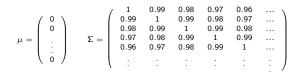
Each line is one sample.

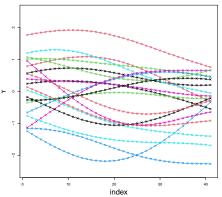
d = 50



Each line is one sample.

d = 50





Each line is one sample.

We can think of Gaussian processes as an infinite dimensional distribution over functions - all we need to do is change the indexing

Gaussian processes

A stochastic process is a collection of random variables indexed by some variable $x \in \mathcal{X}$

$$y = \{y(x) : x \in \mathcal{X}\}$$

Gaussian processes

A stochastic process is a collection of random variables indexed by some variable $x \in \mathcal{X}$

$$y = \{y(x) : x \in \mathcal{X}\}$$

Usually $y(x) \in \mathbb{R}$ and $\mathcal{X} \subset \mathbb{R}^n$

A stochastic process is a collection of random variables indexed by some variable $x \in \mathcal{X}$

$$y = \{y(x) : x \in \mathcal{X}\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Usually $y(x) \in \mathbb{R}$ and $\mathcal{X} \subset \mathbb{R}^n$ - think of y as a function of x.

A stochastic process is a collection of random variables indexed by some variable $x \in \mathcal{X}$

$$y = \{y(x) : x \in \mathcal{X}\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Usually $y(x) \in \mathbb{R}$ and $\mathcal{X} \subset \mathbb{R}^n$ - think of y as a function of x. If $|\mathcal{X}| = \infty$, y is an infinite dimensional process, e.g., $|\mathcal{X}| = [0, 1]$

A stochastic process is a collection of random variables indexed by some variable $x \in \mathcal{X}$

$$y = \{y(x) : x \in \mathcal{X}\}$$

Usually $y(x) \in \mathbb{R}$ and $\mathcal{X} \subset \mathbb{R}^n$ - think of y as a function of x. If $|\mathcal{X}| = \infty$, y is an infinite dimensional process, e.g., $|\mathcal{X}| = [0, 1]$ Thankfully, the law of y is uniquely determined by the finite dimensional distributions (FDDs), i.e., for all x_1, \ldots, x_n and for all $n \in \mathbb{N}$

$$\mathbb{P}(y(x_1) \leq c_1, \ldots, y(x_n) \leq c_n)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A stochastic process is a collection of random variables indexed by some variable $x \in \mathcal{X}$

$$y = \{y(x) : x \in \mathcal{X}\}$$

Usually $y(x) \in \mathbb{R}$ and $\mathcal{X} \subset \mathbb{R}^n$ - think of y as a function of x. If $|\mathcal{X}| = \infty$, y is an infinite dimensional process, e.g., $|\mathcal{X}| = [0, 1]$ Thankfully, the law of y is uniquely determined by the finite dimensional distributions (FDDs), i.e., for all x_1, \ldots, x_n and for all $n \in \mathbb{N}$

$$\mathbb{P}(y(x_1) \leq c_1, \ldots, y(x_n) \leq c_n)$$

A Gaussian process is a stochastic process with Gaussian FDDs, i.e.,

$$(y(x_1),\ldots,y(x_n)) \sim N_n(\mu,\Sigma)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A stochastic process is a collection of random variables indexed by some variable $x \in \mathcal{X}$

$$y = \{y(x) : x \in \mathcal{X}\}$$

Usually $y(x) \in \mathbb{R}$ and $\mathcal{X} \subset \mathbb{R}^n$ - think of y as a function of x. If $|\mathcal{X}| = \infty$, y is an infinite dimensional process, e.g., $|\mathcal{X}| = [0, 1]$ Thankfully, the law of y is uniquely determined by the finite dimensional distributions (FDDs), i.e., for all x_1, \ldots, x_n and for all $n \in \mathbb{N}$

$$\mathbb{P}(y(x_1) \leq c_1, \ldots, y(x_n) \leq c_n)$$

A Gaussian process is a stochastic process with Gaussian FDDs, i.e.,

$$(y(x_1),\ldots,y(x_n)) \sim N_n(\mu,\Sigma)$$

Write $y(\cdot) \sim GP$ to denote that we model the *function* y as a GP.

To fully specify the law of a Gaussian *distribution* we only need the mean and variance.

 $X \sim N(\mu, \Sigma)$

To fully specify the law of a Gaussian *distribution* we only need the mean and variance.

 $X \sim N(\mu, \Sigma)$

To fully specify the law of a Gaussian *process*, we need to specify mean and covariance functions.

To fully specify the law of a Gaussian *distribution* we only need the mean and variance.

 $X \sim N(\mu, \Sigma)$

To fully specify the law of a Gaussian *process*, we need to specify mean and covariance functions.

 $y(\cdot) \sim GP(m(\cdot), k(\cdot, \cdot))$

To fully specify the law of a Gaussian *distribution* we only need the mean and variance.

$$X \sim N(\mu, \Sigma)$$

To fully specify the law of a Gaussian *process*, we need to specify mean and covariance functions.

$$y(\cdot) \sim GP(m(\cdot), k(\cdot, \cdot))$$

where

$$\mathbb{E}(y(x)) = m(x)$$
$$\mathbb{C}ov(y(x), y(x')) = k(x, x')$$

Specifying the mean function

We are free to choose the mean $\mathbb{E}(y(x))$ and covariance $\mathbb{C}ov(y(x), y(x'))$ functions however we like (e.g. trial and error), subject to some 'rules':

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Specifying the mean function

We are free to choose the mean $\mathbb{E}(y(x))$ and covariance $\mathbb{C}ov(y(x), y(x'))$ functions however we like (e.g. trial and error), subject to some 'rules':

• We can use any mean function we want:

$$m(x) = \mathbb{E}(y(x))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Most popular choices are m(x) = 0 or m(x) = const for all x, or $m(x) = \beta^{\top} x$

We usually use a covariance function that is a function of the indexes/locations $% \left({{\left[{{{\rm{cov}}} \right]}_{\rm{cov}}} \right)_{\rm{cov}}} \right)$

$$k(x,x') = \mathbb{C}\mathrm{ov}(y(x),y(x')),$$

We usually use a covariance function that is a function of the indexes/locations $% \left({{\left[{{{\rm{cov}}} \right]}_{\rm{cov}}} \right)_{\rm{cov}}} \right)$

$$k(x, x') = \mathbb{C}\mathrm{ov}(y(x), y(x')),$$

k must be a positive semi-definite function, i.e., lead to valid covariance matrices:

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• Given locations x_1, \ldots, x_n , the $n \times n$ Gram matrix K with $K_{ij} = k(x_i, x_j)$ must be a positive semi-definite matrix.

We usually use a covariance function that is a function of the indexes/locations $% \left({{\left[{{{\rm{cov}}} \right]}_{\rm{cov}}} \right)_{\rm{cov}}} \right)$

$$k(x, x') = \mathbb{C}\mathrm{ov}(y(x), y(x')),$$

k must be a positive semi-definite function, i.e., lead to valid covariance matrices:

- Given locations x_1, \ldots, x_n , the $n \times n$ Gram matrix K with $K_{ij} = k(x_i, x_j)$ must be a positive semi-definite matrix.
- This can be problematic...

We usually use a covariance function that is a function of the indexes/locations

$$k(x, x') = \mathbb{C}\mathrm{ov}(y(x), y(x')),$$

k must be a positive semi-definite function, i.e., lead to valid covariance matrices:

- Given locations x_1, \ldots, x_n , the $n \times n$ Gram matrix K with $K_{ij} = k(x_i, x_j)$ must be a positive semi-definite matrix.
- This can be problematic...

We often assume k is a function of only the distance between locations

$$\mathbb{C}\mathrm{ov}(y(x), y(x')) = k(x - x')$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

which results in a stationary process.

We usually use a covariance function that is a function of the indexes/locations

$$k(x, x') = \mathbb{C}\mathrm{ov}(y(x), y(x')),$$

k must be a positive semi-definite function, i.e., lead to valid covariance matrices:

- Given locations x_1, \ldots, x_n , the $n \times n$ Gram matrix K with $K_{ij} = k(x_i, x_j)$ must be a positive semi-definite matrix.
- This can be problematic...

We often assume k is a function of only the distance between locations

$$\mathbb{C}\mathrm{ov}(y(x), y(x')) = k(x - x')$$

which results in a stationary process.

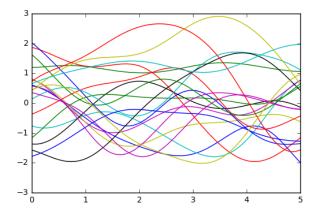
If $\mathbb{C}ov(y(x), y(x')) = k(||x - x'||)$ the covariance function is said to be isotropic.

The covariance function determines the *nature* of the GP.

• k determines the hypothesis space/space of functions

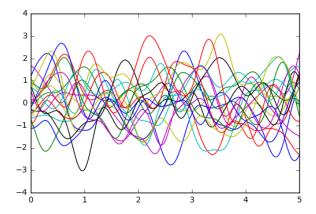
 $\mathsf{RBF}/\mathsf{Squared}\text{-exponential}/\mathsf{exponentiated}\ \mathsf{quadratic}$

$$k(x,x') = \exp\left(-\frac{1}{2}(x-x')^2\right)$$



RBF/Squared-exponential/exponentiated quadratic

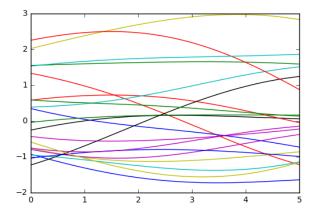
$$k(x, x') = \exp\left(-\frac{1}{2}\frac{(x-x')^2}{0.25^2}\right)$$



▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

 $\mathsf{RBF}/\mathsf{Squared}\text{-exponential}/\mathsf{exponentiated}\ \mathsf{quadratic}$

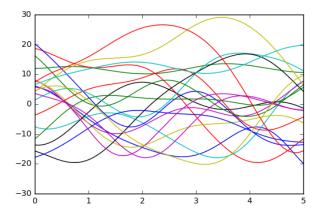
$$k(x, x') = \exp\left(-\frac{1}{2}\frac{(x-x')^2}{4^2}\right)$$



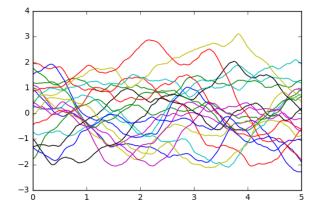
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

RBF/Squared-exponential/exponentiated quadratic

$$k(x, x') = 100 \exp\left(-\frac{1}{2}(x - x')^2\right)$$



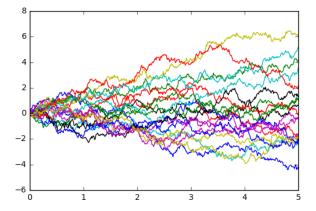
Matern 3/2 $k(x,x') \sim (1+|x-x'|) \exp\left(-|x-x'| ight)$



▲ロト ▲圖ト ▲国ト ▲国ト 三国 - のへで

Brownian motion

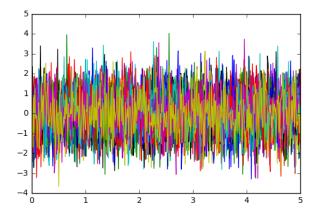
$$k(x,x') = \min(x,x')$$



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

White noise

$$k(x,x') = egin{cases} 1 & ext{if } x = x' \ 0 & ext{otherwise} \end{cases}$$



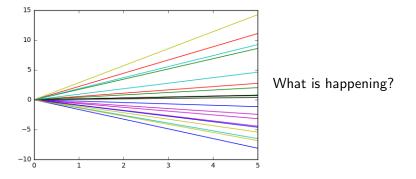
オロト オポト オヨト オヨト ヨー のみで

A final example:

$$k(x, x') = xx'$$

<ロ> (四) (四) (三) (三)

æ

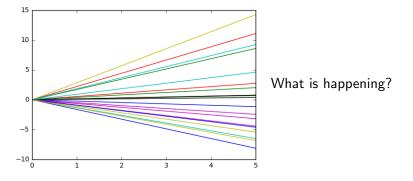


A final example:

$$k(x, x') = xx'$$

(日) (월) (분) (분)

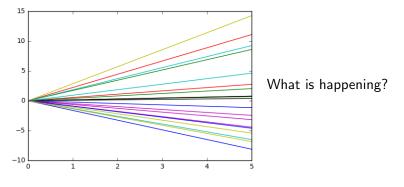
2



Suppose y(x) = cx where $c \sim N(0, 1)$.

A final example:

$$k(x, x') = xx'$$



Suppose y(x) = cx where $c \sim N(0, 1)$. Then $\mathbb{C}ov(y(x), y(x')) = \mathbb{C}ov(cx, cx') = x\mathbb{C}ov(c, c)x'$ = xx'

So $y(\cdot) \sim GP(0, k(x, x'))$ with k(x, x') = xx'

GP properties are inherited primarily from the covariance function k.Continuity

• Differentiability

• Variance and length-scale

- GP properties are inherited primarily from the covariance function k.
 - Continuity
 - ► f(x) ~ GP is (mean square) continuous at x* ifF k(x, x') and m(x) are continuous at x = x' = x*
 - For stationary kernels, require continuity at k(0)
 - Differentiability
 - $f(x) \sim GP$ is (mean square) differentiable if $k'(x, x') = \frac{\partial^2}{\partial x \partial x'} k(x, x')$ exists.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• Variance and length-scale

- GP properties are inherited primarily from the covariance function k.
 - Continuity
 - ► f(x) ~ GP is (mean square) continuous at x* ifF k(x, x') and m(x) are continuous at x = x' = x*
 - For stationary kernels, require continuity at k(0)
 - Differentiability
 - $f(x) \sim GP$ is (mean square) differentiable if $k'(x, x') = \frac{\partial^2}{\partial x \partial x'} k(x, x')$ exists.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Variance and length-scale controlled by hyper-parameters $k = k_{\psi}$:
 - how much f varies between samples
 - how fast f(x) changes with x within a sample.

- GP properties are inherited primarily from the covariance function k.
 - Continuity
 - ► f(x) ~ GP is (mean square) continuous at x* ifF k(x, x') and m(x) are continuous at x = x' = x*
 - For stationary kernels, require continuity at k(0)
 - Differentiability
 - $f(x) \sim GP$ is (mean square) differentiable if $k'(x, x') = \frac{\partial^2}{\partial x \partial x'} k(x, x')$ exists.
 - Variance and length-scale controlled by hyper-parameters $k = k_{\psi}$:
 - how much f varies between samples
 - how fast f(x) changes with x within a sample.
- Typically choose the family of kernels by
 - measures of fit (marginal likelihood, Bayes factors, ...)
 - predictive skill (held-out data, cross-validation, ...)

Choose hyperparameters by maximum likelihood, Bayes, etc.

Why use Gaussian processes?

Why would we want to use this very restricted class of model?

Gaussian **distributions** have several properties that make them easy to work with:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Why use Gaussian processes?

Why would we want to use this very restricted class of model?

Gaussian **distributions** have several properties that make them easy to work with:

Proposition:

 $Y \sim N_d(\mu, \Sigma)$ if and only if $AY \sim N_p(A\mu, A\Sigma A^{\top})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

for all $A \in \mathbb{R}^{p \times d}$.

Why use Gaussian processes?

Why would we want to use this very restricted class of model?

Gaussian **distributions** have several properties that make them easy to work with:

Proposition:

$$Y \sim N_d(\mu, \Sigma)$$
 if and only if $AY \sim N_p(A\mu, A\Sigma A^{ op})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

for all $A \in \mathbb{R}^{p \times d}$.

So sums of Gaussians are Gaussian, and marginal distributions of multivariate Gaussians are still Gaussian.

Property 2: Conditional distributions are still Gaussian

Suppose

$$Y = \left(egin{array}{c} Y_1 \ Y_2 \end{array}
ight) \sim N_2\left(\mu,\Sigma
ight)$$

where

$$\mu = \left(\begin{array}{c} \mu_1 \\ \mu_2 \end{array}\right) \qquad \Sigma = \left(\begin{array}{cc} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{array}\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Property 2: Conditional distributions are still Gaussian

Suppose

$$Y = \left(egin{array}{c} Y_1 \ Y_2 \end{array}
ight) \sim N_2\left(\mu,\Sigma
ight)$$

where

$$\mu = \left(\begin{array}{c} \mu_1\\ \mu_2 \end{array}\right) \qquad \Sigma = \left(\begin{array}{cc} \Sigma_{11} & \Sigma_{12}\\ \Sigma_{21} & \Sigma_{22} \end{array}\right)$$

Then

$$Y_2 \mid Y_1 = y_1 \sim N\left(\mu_2 + \Sigma_{21}\Sigma_{11}^{-1}(y_1 - \mu_1), \Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}
ight)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Proof:

$$\pi(y_2|y_1) = \frac{\pi(y_1, y_2)}{\pi(y_1)} \propto \pi(y_1, y_2)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Proof:

$$\pi(y_2|y_1) = \frac{\pi(y_1, y_2)}{\pi(y_1)} \propto \pi(y_1, y_2)$$
$$\propto \exp\left[-\frac{1}{2}(y - \mu)^{\top} \Sigma^{-1}(y - \mu)\right]$$
$$= \exp\left[-\frac{1}{2}\left(\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} - \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}\right)^{\top} \begin{pmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{pmatrix} \cdots\right]$$

where

$$\Sigma^{-1} := Q := \left(egin{array}{cc} Q_{11} & Q_{12} \ Q_{21} & Q_{22} \end{array}
ight)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Proof:

$$\pi(y_2|y_1) = \frac{\pi(y_1, y_2)}{\pi(y_1)} \propto \pi(y_1, y_2)$$

$$\propto \exp\left[-\frac{1}{2}(y - \mu)^{\top} \Sigma^{-1}(y - \mu)\right]$$

$$= \exp\left[-\frac{1}{2}\left(\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} - \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}\right)^{\top} \begin{pmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{pmatrix} \cdots\right]$$

$$\propto \exp\left[-\frac{1}{2}\left((y_2 - \mu_2)^{\top} Q_{22}(y_2 - \mu_2) + 2(y_2 - \mu_2)^{\top} Q_{21}(y_1 - \mu_1)\right)\right]$$

where

$$\Sigma^{-1} := Q := \left(egin{array}{cc} Q_{11} & Q_{12} \ Q_{21} & Q_{22} \end{array}
ight)$$

Proof:

$$\pi(y_2|y_1) = \frac{\pi(y_1, y_2)}{\pi(y_1)} \propto \pi(y_1, y_2)$$

$$\propto \exp\left[-\frac{1}{2}(y - \mu)^{\top} \Sigma^{-1}(y - \mu)\right]$$

$$= \exp\left[-\frac{1}{2}\left(\begin{pmatrix}y_1\\y_2\end{pmatrix} - \begin{pmatrix}\mu_1\\\mu_2\end{pmatrix}\right)^{\top}\begin{pmatrix}Q_{11} & Q_{12}\\Q_{21} & Q_{22}\end{pmatrix} \cdots\right]$$

$$\propto \exp\left[-\frac{1}{2}\left((y_2 - \mu_2)^{\top} Q_{22}(y_2 - \mu_2) + 2(y_2 - \mu_2)^{\top} Q_{21}(y_1 - \mu_1)\right)\right]$$

where

$$\Sigma^{-1} := Q := \left(egin{array}{cc} Q_{11} & Q_{12} \ Q_{21} & Q_{22} \end{array}
ight)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

So $Y_2|Y_1 = y_1$ is Gaussian.

$$\pi(y_2|y_1) \propto \exp\left(-\frac{1}{2}\left[(y_2 - \mu_2)^\top Q_{22}(y_2 - \mu_2) + 2(y_2 - \mu_2)^\top Q_{21}(y_1 - \mu_1)\right]\right)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$\pi(y_2|y_1) \propto \exp\left(-\frac{1}{2}\left[(y_2 - \mu_2)^\top Q_{22}(y_2 - \mu_2) + 2(y_2 - \mu_2)^\top Q_{21}(y_1 - \mu_1)\right]\right)$$
$$\propto \exp\left(-\frac{1}{2}\left[y_2^\top Q_{22}y_2 - 2y_2^\top (Q_{22}\mu_2 + Q_{21}(y_1 - \mu_1))\right]\right)$$

$$\pi(y_{2}|y_{1}) \propto \exp\left(-\frac{1}{2}\left[(y_{2}-\mu_{2})^{\top}Q_{22}(y_{2}-\mu_{2})+2(y_{2}-\mu_{2})^{\top}Q_{21}(y_{1}-\mu_{1})\right]\right)$$

$$\propto \exp\left(-\frac{1}{2}\left[y_{2}^{\top}Q_{22}y_{2}-2y_{2}^{\top}(Q_{22}\mu_{2}+Q_{21}(y_{1}-\mu_{1}))\right]\right)$$

$$\propto \exp\left(-\frac{1}{2}\left(y_{2}-Q_{22}^{-1}(Q_{22}\mu_{2}+Q_{21}(y_{1}-\mu_{1}))\right)^{\top}Q_{22}(y_{2}-\ldots)\right)$$

$$\pi(y_{2}|y_{1}) \propto \exp\left(-\frac{1}{2}\left[(y_{2}-\mu_{2})^{\top}Q_{22}(y_{2}-\mu_{2})+2(y_{2}-\mu_{2})^{\top}Q_{21}(y_{1}-\mu_{1})\right]\right)$$
$$\propto \exp\left(-\frac{1}{2}\left[y_{2}^{\top}Q_{22}y_{2}-2y_{2}^{\top}(Q_{22}\mu_{2}+Q_{21}(y_{1}-\mu_{1}))\right]\right)$$
$$\propto \exp\left(-\frac{1}{2}\left(y_{2}-Q_{22}^{-1}(Q_{22}\mu_{2}+Q_{21}(y_{1}-\mu_{1}))\right)^{\top}Q_{22}(y_{2}-\ldots)\right)$$
So

$$Y_2|Y_1 = y_1 \sim N(\mu_2 + Q_{22}^{-1}Q_{21}(y_1 - \mu_1), Q_{22}^{-1})$$

$$\pi(y_{2}|y_{1}) \propto \exp\left(-\frac{1}{2}\left[(y_{2}-\mu_{2})^{\top}Q_{22}(y_{2}-\mu_{2})+2(y_{2}-\mu_{2})^{\top}Q_{21}(y_{1}-\mu_{1})\right]\right)$$
$$\propto \exp\left(-\frac{1}{2}\left[y_{2}^{\top}Q_{22}y_{2}-2y_{2}^{\top}(Q_{22}\mu_{2}+Q_{21}(y_{1}-\mu_{1}))\right]\right)$$
$$\propto \exp\left(-\frac{1}{2}\left(y_{2}-Q_{22}^{-1}(Q_{22}\mu_{2}+Q_{21}(y_{1}-\mu_{1}))\right)^{\top}Q_{22}(y_{2}-\ldots)\right)$$
So
$$\sum_{i=1}^{N_{i}}|V_{i}| = v_{i} \propto N(w_{i}+Q_{21}^{-1}Q_{i}(v_{i}-u_{i}))Q_{i}^{-1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$Y_2|Y_1 = y_1 \sim N(\mu_2 + Q_{22}^{-1}Q_{21}(y_1 - \mu_1), Q_{22}^{-1})$$

A simple matrix inversion lemma gives

$$\begin{split} Q_{22}^{-1} &= \Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12} \\ \text{and} \, Q_{22}^{-1} \, Q_{21} &= \Sigma_{21} \Sigma_{11}^{-1} \end{split}$$

$$\pi(y_{2}|y_{1}) \propto \exp\left(-\frac{1}{2}\left[(y_{2}-\mu_{2})^{\top}Q_{22}(y_{2}-\mu_{2})+2(y_{2}-\mu_{2})^{\top}Q_{21}(y_{1}-\mu_{1})\right]\right)$$
$$\propto \exp\left(-\frac{1}{2}\left[y_{2}^{\top}Q_{22}y_{2}-2y_{2}^{\top}(Q_{22}\mu_{2}+Q_{21}(y_{1}-\mu_{1}))\right]\right)$$
$$\propto \exp\left(-\frac{1}{2}\left(y_{2}-Q_{22}^{-1}(Q_{22}\mu_{2}+Q_{21}(y_{1}-\mu_{1}))\right)^{\top}Q_{22}(y_{2}-\ldots)\right)$$
So

$$Y_2|Y_1 = y_1 \sim N(\mu_2 + Q_{22}^{-1}Q_{21}(y_1 - \mu_1), Q_{22}^{-1})$$

A simple matrix inversion lemma gives

$$\begin{split} Q_{22}^{-1} &= \Sigma_{22} - \Sigma_{21} \Sigma_{11}^{-1} \Sigma_{12} \\ \mathsf{and} \, Q_{22}^{-1} Q_{21} &= \Sigma_{21} \Sigma_{11}^{-1} \end{split}$$

giving

$$Y_2|Y_1 = y_1 \sim N\left(\mu_2 + \Sigma_{21}\Sigma_{11}^{-1}(y_1 - \mu_1), \Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

1

/

Conditional updates of Gaussian processes

If f is a Gaussian process, then

 $f(x_1),\ldots,f(x_n),f(x)\sim N_{n+1}(\mu,\Sigma)$

Conditional updates of Gaussian processes If *f* is a Gaussian process, then

$$f(x_1),\ldots,f(x_n),f(x)\sim N_{n+1}(\mu,\Sigma)$$

If we observe its value at x_1, \ldots, x_n then

$$f(x)|f(x_1),\ldots,f(x_n)\sim N(\mu^*,\sigma^*)$$

where μ^* and σ^* are as on the previous slide.

Conditional updates of Gaussian processes If *f* is a Gaussian process, then

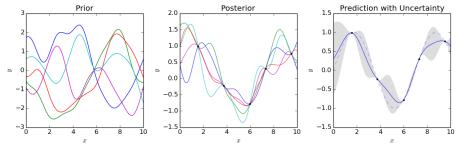
$$f(x_1),\ldots,f(x_n),f(x)\sim N_{n+1}(\mu,\Sigma)$$

If we observe its value at x_1, \ldots, x_n then

$$f(x)|f(x_1),\ldots,f(x_n)\sim N(\mu^*,\sigma^*)$$

where μ^* and σ^* are as on the previous slide.

• *f* is still a GP even though we've observed its value at a number of locations.



◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

The GP class of models is closed under various operations.

The GP class of models is closed under various operations.

• Closed under addition

 $f_1(\cdot), f_2(\cdot) \sim \textit{GP}$ then $(f_1 + f_2)(\cdot) \sim \textit{GP}$

The GP class of models is closed under various operations.

• Closed under addition

 $f_1(\cdot), f_2(\cdot) \sim GP$ then $(f_1 + f_2)(\cdot) \sim GP$

• Closed under Bayesian conditioning, i.e., if we observe

$$\mathbf{D}=(f(x_1),\ldots,f(x_n))$$

then

$$f|D \sim GP$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

but with updated mean and covariance functions.

The GP class of models is closed under various operations.

• Closed under addition

 $f_1(\cdot), f_2(\cdot) \sim GP$ then $(f_1 + f_2)(\cdot) \sim GP$

• Closed under Bayesian conditioning, i.e., if we observe

$$\mathbf{D}=(f(x_1),\ldots,f(x_n))$$

then

$$f|D \sim GP$$

but with updated mean and covariance functions.

Closed under any linear operator. If f ~ GP(m(·), k(·, ·)), then if L is a linear operator

$$\mathcal{L} \circ f \sim GP(\mathcal{L} \circ m, \mathcal{L}^2 \circ k)$$

e.g.
$$\frac{df}{dx}$$
, $\int f(x)dx$, Af are all GPs

Conditional updates of Gaussian processes – revisited Suppose f is a Gaussian process, then

$$f(x_1),\ldots,f(x_n),f(x)\sim N_{n+1}(0,\Sigma)$$

where

$$\Sigma = \begin{pmatrix} k(x_1, x_1) & \dots & k(x_1, x_n) & k(x_1, x) \\ \vdots & \vdots & \vdots \\ \frac{k(x_n, x_1) & \dots & k(x_n, x_n)}{k(x, x_1) & \dots & k(x, x_n)} & \frac{k(x_n, x)}{k(x, x)} \end{pmatrix}$$
$$= \begin{pmatrix} K_{XX} & k_X(x) \\ \hline & k_X(x)^\top & k(x, x) \end{pmatrix}$$

where $X = \{x_1, \ldots, x_n\}$, $[K_{XX}]_{ij} = k(x_i, x_j)$ is the Gram/kernel matrix, and $[k_X(x)]_j = k(x_j, x)$

Conditional updates of Gaussian processes – revisited Suppose f is a Gaussian process, then

$$f(x_1),\ldots,f(x_n),f(x)\sim N_{n+1}(0,\Sigma)$$

where

$$\Sigma = \begin{pmatrix} k(x_1, x_1) & \dots & k(x_1, x_n) & k(x_1, x) \\ \vdots & \vdots & \vdots \\ \frac{k(x_n, x_1) & \dots & k(x_n, x_n)}{k(x, x_1) & \dots & k(x, x_n)} & \frac{k(x_n, x)}{k(x, x)} \end{pmatrix}$$
$$= \begin{pmatrix} K_{XX} & k_X(x) \\ \hline & k_X(x)^\top & k(x, x) \end{pmatrix}$$

where $X = \{x_1, \ldots, x_n\}$, $[K_{XX}]_{ij} = k(x_i, x_j)$ is the Gram/kernel matrix, and $[k_X(x)]_j = k(x_j, x)$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 りへぐ

Conditional updates of Gaussian processes - revisited

Then

$$f(x)|f(x_1),\ldots,f(x_n) \sim N(\bar{m}(x),\bar{k}(x))$$

where

$$\bar{m}(x) = k_X(x)^\top K_{XX}^{-1} \mathbf{f}$$

with

$$\mathbf{f} = (f(x_1), \dots, f(x_n))^\top$$
$$k_X(x)^\top = (k(x, x_1) \ k(x, x_2) \ \dots \ k(x, x_n)) \in \mathbb{R}^{1 \times n}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

and

Conditional updates of Gaussian processes - revisited

Then

$$f(x)|f(x_1),\ldots,f(x_n)\sim N(\bar{m}(x),\bar{k}(x))$$

where

$$\bar{m}(x) = k_X(x)^\top K_{XX}^{-1} \mathbf{f}$$

with

$$\mathbf{f} = (f(x_1), \dots, f(x_n))^\top$$

$$k_X(x)^\top = (k(x, x_1) \ k(x, x_2) \ \dots \ k(x, x_n)) \in \mathbb{R}^{1 \times n}$$

and

$$\bar{k}(x) = k(x,x) - k_X(x)^\top K_{XX}^{-1} k_X(x)$$

More generally, if

$$f(\cdot) \sim GP(m(\cdot), k(\cdot, \cdot))$$

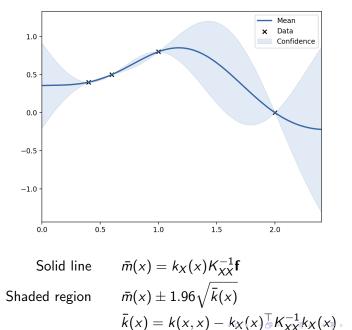
then

$$f(\cdot)|f(x_1),\ldots,f(x_n)\sim GP(\bar{m}(\cdot),\bar{k}(\cdot,\cdot))$$

with

$$\bar{m}(x) = m(x) + k_X(x)^\top K_{XX}^{-1} \mathbf{f}$$
$$\bar{k}(x, x') = k(x, x') - k_X(x)^\top K_{XX}^{-1} k_X(x')$$

No noise/nugget - Interpolation



æ

Noisy observations/with nugget - Regression

In practice, we don't usually observe f(x) directly. If we observe

$$y_i = f(x_i) + N(0, \sigma^2)$$

Noisy observations/with nugget - Regression

In practice, we don't usually observe f(x) directly. If we observe

$$y_{i} = f(x_{i}) + N(0, \sigma^{2})$$

then $y_{1}, \dots, y_{n}, f(x) \sim N_{n+1}(0, \Sigma)$
where $\Sigma = \begin{pmatrix} K_{XX} + \sigma^{2}I & k(x_{1}, x) \\ K_{XX} + \sigma^{2}I & k(x_{2}, x) \\ \vdots \\ k(x_{n}, x) & \vdots \\ k(x_{n}, x) & k(x, x_{2}) & \dots & k(x, x_{n}) & k(x, x) \end{pmatrix}$

Noisy observations/with nugget - Regression

() \downarrow N(0 2)

In practice, we don't usually observe f(x) directly. If we observe

$$y_{i} = f(x_{i}) + N(0, \sigma)$$

then $y_{1}, \dots, y_{n}, f(x) \sim N_{n+1}(0, \Sigma)$
where $\Sigma = \begin{pmatrix} K_{XX} + \sigma^{2}I & k(x_{1}, x) \\ K_{XX} + \sigma^{2}I & k(x_{2}, x) \\ \vdots \\ k(x_{n}, x) \\ k(x, x_{1}) & k(x, x_{2}) & \dots & k(x, x_{n}) & k(x, x) \end{pmatrix}$

Then

$$f(x) \mid y_1, \ldots, y_n \sim \mathcal{N}(\bar{m}(x), \bar{k}(x))$$

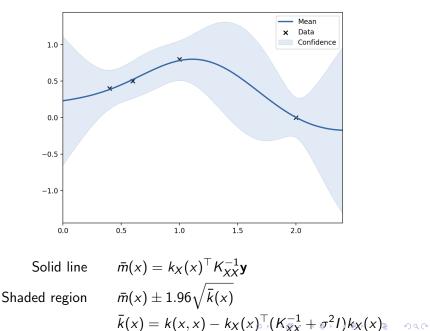
where

$$\bar{m}(x) = k_X(x)^\top (K_{XX} + \sigma^2 I)^{-1} \mathbf{y}$$

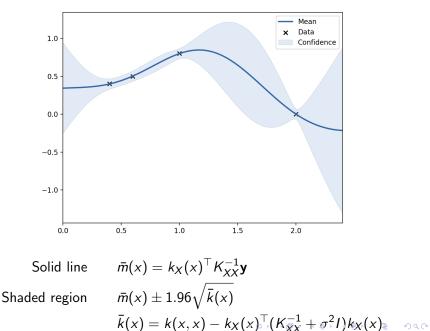
$$\bar{k}(x) = k(x, x) - k_X(x)^\top (K_{XX} + \sigma^2 I)^{-1} k_X(x)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > □ Ξ

Nugget standard deviation $\sigma = 0.1$



Nugget standard deviation $\sigma = 0.025$



• If mean is a linear combination of known regressor functions,

$$m(x) = \beta^{\top} h(x)$$
 for known $h(x)$

and β is given a normal prior distribution (including $\pi(\beta) \propto 1$), then $y(\cdot) \mid D, \beta \sim GP$ and

$$y(\cdot) \mid D \sim GP$$

with slightly modified mean and variance formulas.

• If mean is a linear combination of known regressor functions,

$$m(x) = \beta^{\top} h(x)$$
 for known $h(x)$

and β is given a normal prior distribution (including $\pi(\beta) \propto 1$), then $y(\cdot) \mid D, \beta \sim GP$ and

$$y(\cdot) \mid D \sim GP$$

with slightly modified mean and variance formulas.

If

$$k(x,x') = \sigma^2 c(x,x')$$

and we give σ^2 an inverse gamma prior (including $\pi(\sigma^2) \propto 1/\sigma^2$) then $y|D,\sigma^2 \sim GP$ and

$$y|D\sim$$
 t-process

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

with n - p degrees of freedom. In practice, for reasonable *n*, this is indistinguishable from a GP.

We can also view GPs as a non-parametric extension to linear regression.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

• k determines the space of functions that sample paths live in.

We can also view GPs as a non-parametric extension to linear regression.

• k determines the space of functions that sample paths live in.

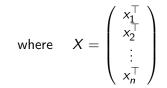
Suppose we're given data $\{(x_i, y_i)_{i=1}^n\}$ with $x_i \in \mathbb{R}^p, y_i \in \mathbb{R}$

We can also view GPs as a non-parametric extension to linear regression.

• k determines the space of functions that sample paths live in.

Suppose we're given data $\{(x_i, y_i)_{i=1}^n\}$ with $x_i \in \mathbb{R}^p, y_i \in \mathbb{R}$

$$\hat{eta} = rgmin_eta ||y - Xeta||_2^2 + \sigma^2 ||eta||_2^2 \quad ext{regularised least squares}$$

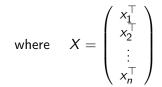


We can also view GPs as a non-parametric extension to linear regression.

• k determines the space of functions that sample paths live in.

Suppose we're given data $\{(x_i, y_i)_{i=1}^n\}$ with $x_i \in \mathbb{R}^p, y_i \in \mathbb{R}$

$$\begin{split} \hat{\beta} &= \arg\min_{\beta} ||y - X\beta||_2^2 + \sigma^2 ||\beta||_2^2 \quad \text{regularised least squares} \\ &= (X^\top X + \sigma^2 I)^{-1} X^\top y \quad \text{usual ridge regression estimator} \end{split}$$



We can also view GPs as a non-parametric extension to linear regression.

• k determines the space of functions that sample paths live in.

Suppose we're given data $\{(x_i, y_i)_{i=1}^n\}$ with $x_i \in \mathbb{R}^p, y_i \in \mathbb{R}$

$$\begin{split} \hat{\beta} &= \arg\min_{\beta} ||y - X\beta||_2^2 + \sigma^2 ||\beta||_2^2 \quad \text{regularised least squares} \\ &= (X^\top X + \sigma^2 I)^{-1} X^\top y \quad \text{usual ridge regression estimator} \\ &= X^\top (XX^\top + \sigma^2 I)^{-1} y \quad \text{the dual form} \end{split}$$

where $X = \begin{pmatrix} x_1^\top \\ x_2^\top \\ \vdots \\ x_n^\top \end{pmatrix}$

We can also view GPs as a non-parametric extension to linear regression.

• k determines the space of functions that sample paths live in.

Suppose we're given data $\{(x_i, y_i)_{i=1}^n\}$ with $x_i \in \mathbb{R}^p, y_i \in \mathbb{R}$

$$\begin{split} \hat{\beta} &= \arg\min_{\beta} ||y - X\beta||_{2}^{2} + \sigma^{2} ||\beta||_{2}^{2} \quad \text{regularised least squares} \\ &= (X^{\top}X + \sigma^{2}I)^{-1}X^{\top}y \quad \text{usual ridge regression estimator} \\ &= X^{\top}(XX^{\top} + \sigma^{2}I)^{-1}y \quad \text{the dual form} \\ &\quad \text{as} \qquad (X^{\top}X + \sigma^{2}I)X^{\top} = X^{\top}(XX^{\top} + \sigma^{2}I) \\ &\quad \text{so} \qquad X^{\top}(XX^{\top} + \sigma^{2}I)^{-1} = (X^{\top}X + \sigma^{2}I)^{-1}X^{\top} \end{split}$$

where $X = \begin{pmatrix} x_1^\top \\ x_2^\top \\ \vdots \\ \vdots \\ x_1^\top \end{pmatrix}$

At first the dual form

$$\hat{\beta} = X^{\top} (XX^{\top} + \sigma^2 I)^{-1} y$$

looks harder to compute than the usual

$$\hat{\beta} = (X^\top X + \sigma^2 I)^{-1} X^\top y$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• $X^{\top}X$ is $p \times p$ p = number of features/parameters • XX^{\top} is $n \times n$ n is the number of data points At first the dual form

$$\hat{\beta} = X^{\top} (XX^{\top} + \sigma^2 I)^{-1} y$$

looks harder to compute than the usual

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^\top \boldsymbol{X} + \sigma^2 \boldsymbol{I})^{-1} \boldsymbol{X}^\top \boldsymbol{y}$$

• $X^{\top}X$ is $p \times p$ p = number of features/parameters • XX^{\top} is $n \times n$ n is the number of data points

But the dual form only uses inner products between vectors in \mathbb{R}^n

$$XX^{\top} = \begin{pmatrix} x_1^{\top} \\ \vdots \\ x_n^{\top} \end{pmatrix} (x_1 \dots x_n) = \begin{pmatrix} x_1^{\top} x_1 & \dots & x_1^{\top} x_n \\ \vdots & & \\ x_n^{\top} x_1 & \dots & x_n^{\top} x_n \end{pmatrix}$$
$$= K_{XX} \text{ if } k(x, x') = x^{\top} x'$$

— This is useful!

Prediction

The best prediction of y at a new location x' is

$$\hat{y}' = x'^{\top} \hat{\beta}$$

= $x'^{\top} X^{\top} (XX^{\top} + \sigma^2 I)^{-1} y$
= $k_X (x')^{\top} (K_{XX} + \sigma^2 I)^{-1} y$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

where $k_X(x')^\top := (x'^\top x_1, \dots, x'^\top x_n)$ and $[K_{XX}]_{ij} := x_i^\top x_j$

Prediction

The best prediction of y at a new location x' is

$$\hat{y}' = x'^{\top} \hat{\beta}$$

= $x'^{\top} X^{\top} (XX^{\top} + \sigma^2 I)^{-1} y$
= $k_X (x')^{\top} (K_{XX} + \sigma^2 I)^{-1} y$

where $k_X(x')^\top := (x'^\top x_1, \dots, x'^\top x_n)$ and $[K_{XX}]_{ij} := x_i^\top x_j$ K_{XX} and $k_X(x)$ are kernel matrices:

• every element is an inner product between 2 points: $k(x, x') = x^{\top}x'$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Prediction

The best prediction of y at a new location x' is

$$\begin{aligned} \hat{y}' &= x'^{\top} \hat{\beta} \\ &= x'^{\top} X^{\top} (XX^{\top} + \sigma^2 I)^{-1} y \\ &= k_X (x')^{\top} (K_{XX} + \sigma^2 I)^{-1} y \end{aligned}$$

where $k_X(x')^{\top} := (x'^{\top}x_1, \dots, x'^{\top}x_n)$ and $[K_{XX}]_{ij} := x_i^{\top}x_j$ K_{XX} and $k_X(x)$ are kernel matrices:

• every element is an inner product between 2 points: $k(x, x') = x^{\top}x'$ Note this is exactly the GP conditional mean we derived before.

$$m(x) = k_X(x)^{\top} (K_{XX} + \sigma^2 I)^{-1} y$$

• linear regression and GP regression are equivalent when $k(x, x') = x^{\top}x'$.

We can replace x by a feature vector in linear regression, e.g., $\phi(x) = (1 \times x^2)$

It doesn't change the expressions other than the inner product

$$k(x',x)=x'^{\top}x$$

is replaced by

$$k(x',x) = \phi(x')^{\top} \phi(x)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

For some sets of features, $\phi(x)$, computation of the inner product doesn't require us to evaluate the individual features.

For some sets of features, $\phi(x)$, computation of the inner product doesn't require us to evaluate the individual features.

E.g., Consider $\mathcal{X}=\mathbb{R}^2$ and let

$$\phi: \mathbf{x} = (x_1, x_2) \mapsto (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, \sqrt{2}x_1x_2, x_2^2)^\top$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

i.e., linear regression using all the linear and quadratic terms, and first order interactions.

For some sets of features, $\phi(x)$, computation of the inner product doesn't require us to evaluate the individual features.

E.g., Consider $\mathcal{X}=\mathbb{R}^2$ and let

$$\phi: \mathbf{x} = (x_1, x_2) \mapsto (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, \sqrt{2}x_1x_2, x_2^2)^\top$$

i.e., linear regression using all the linear and quadratic terms, and first order interactions.

Then

$$\begin{aligned} k(\mathbf{x}, \mathbf{z}) &= \phi(x)^{\top} \phi(z) \\ &= (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, \sqrt{2}x_1x_2, x_2^2) (1, \sqrt{2}z_1, \sqrt{2}z_2, z_1^2, \sqrt{2}z_1z_2, z_2^2)^{\top} \\ &= (1 + (x_1, x_2)(z_1, z_2)^{\top})^2 \\ &= (1 + \mathbf{x}^{\top} \mathbf{z})^2 \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

For some sets of features, $\phi(x)$, computation of the inner product doesn't require us to evaluate the individual features.

E.g., Consider $\mathcal{X}=\mathbb{R}^2$ and let

$$\phi: \mathbf{x} = (x_1, x_2) \mapsto (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, \sqrt{2}x_1x_2, x_2^2)^\top$$

i.e., linear regression using all the linear and quadratic terms, and first order interactions.

Then

$$\begin{aligned} k(\mathbf{x}, \mathbf{z}) &= \phi(x)^{\top} \phi(z) \\ &= (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, \sqrt{2}x_1x_2, x_2^2) (1, \sqrt{2}z_1, \sqrt{2}z_2, z_1^2, \sqrt{2}z_1z_2, z_2^2)^{\top} \\ &= (1 + (x_1, x_2)(z_1, z_2)^{\top})^2 \\ &= (1 + \mathbf{x}^{\top} \mathbf{z})^2 \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

To evaluate $k({\bf x},{\bf z})$ we didn't need to explicitly compute the feature vector $\phi({\bf x})$

To evaluate $k(\mathbf{x}, \mathbf{z})$ we didn't need to explicitly compute the feature vectors $\phi(\mathbf{x}), \phi(\mathbf{z}) \in \mathbb{R}^6$ The same idea works with much larger feature vectors, sometimes even when $\phi(\mathbf{x}) \in \mathbb{R}^\infty$

 2 l'm being sloppy - really we should write this as an inner product $k(x,x')=\langle \phi(x),\phi(x')\rangle$

To evaluate $k(\mathbf{x}, \mathbf{z})$ we didn't need to explicitly compute the feature vectors $\phi(\mathbf{x}), \phi(\mathbf{z}) \in \mathbb{R}^6$ The same idea works with much larger feature vectors, sometimes even when $\phi(\mathbf{x}) \in \mathbb{R}^\infty$ **Theorem**: A function

$$k: \mathcal{X} imes \mathcal{X} o \mathbb{R}$$

is positive semi-definite (and thus a valid covariance function) if and only if we can write 2

$$k(x, x') = \phi(x)^{\top} \phi(x')$$

for some (possibly infinite dimensional) feature vector $\phi(x)$.

 $^{^2}$ l'm being sloppy - really we should write this as an inner product $k(x,x')=\langle \phi(x),\phi(x')\rangle$

To evaluate $k(\mathbf{x}, \mathbf{z})$ we didn't need to explicitly compute the feature vectors $\phi(\mathbf{x}), \phi(\mathbf{z}) \in \mathbb{R}^6$ The same idea works with much larger feature vectors, sometimes even when $\phi(\mathbf{x}) \in \mathbb{R}^\infty$ **Theorem**: A function

$$k: \mathcal{X} imes \mathcal{X} o \mathbb{R}$$

is positive semi-definite (and thus a valid covariance function) if and only if we can write 2

$$k(x,x') = \phi(x)^{\top} \phi(x')$$

for some (possibly infinite dimensional) feature vector $\phi(x)$.

So GP regression with k can be thought of as linear regression with $\phi(x)$.

 $^{^2}$ l'm being sloppy - really we should write this as an inner product $k(x,x')=\langle \phi(x),\phi(x')\rangle$

Example: If $\mathcal{X} = \mathbb{R}$, $c_0 = -\log N$, $c_N = \log N$, $c_{i+1} - c_i = 2\frac{\log N}{N}$ and

$$\phi_N(x) = \frac{1}{\sqrt{N}} (e^{-\frac{(x-c_0)^2}{2\lambda^2}}, \dots, e^{-\frac{(x-c_N)^2}{2\lambda^2}})$$

then

$$\lim_{N \to \infty} \phi_N(x)^\top \phi_N(x) \propto \exp\left(-\frac{(x-x')^2}{2\lambda^2}\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Example: If $\mathcal{X} = \mathbb{R}$, $c_0 = -\log N$, $c_N = \log N$, $c_{i+1} - c_i = 2\frac{\log N}{N}$ and

$$\phi_N(x) = \frac{1}{\sqrt{N}} (e^{-\frac{(x-c_0)^2}{2\lambda^2}}, \dots, e^{-\frac{(x-c_N)^2}{2\lambda^2}})$$

then

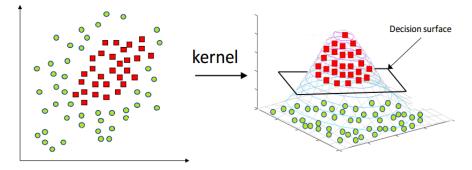
$$\lim_{N \to \infty} \phi_N(x)^\top \phi_N(x) \propto \exp\left(-\frac{(x-x')^2}{2\lambda^2}\right)$$

We can use an infinite dimensional feature vector $\phi(x)$, and because linear regression can be done solely in terms of inner-products (inverting a $n \times n$ matrix in the dual form) we never need evaluate the feature vector, only the kernel.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Kernel trick:

lift x into feature space by replacing inner products $x^{\top}x'$ by k(x, x')



・ロト ・ 日 ・ ・ モ ト ・

æ

≣ ▶

Kernel regression and GP regression are closely related.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Kernel regression and GP regression are closely related. Consider the space of functions

$$\mathcal{H}_k = \overline{\operatorname{span}}\{k(\cdot, x) : x \in \mathcal{X}\}$$

ie functions of the form $\sum_{i=1}^{n} \alpha_i k(x, x_i)$ with inner product

$$\langle \sum a_i k(\cdot, x_i), \sum b_i k(\cdot, y_i) \rangle = \sum_{ij} a_i b_j k(x_i, y_j)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Kernel regression and GP regression are closely related. Consider the space of functions

$$\mathcal{H}_k = \overline{\mathsf{span}}\{k(\cdot, x) : x \in \mathcal{X}\}$$

ie functions of the form $\sum_{i=1}^{n} \alpha_i k(x, x_i)$ with inner product

$$\langle \sum a_i k(\cdot, x_i), \sum b_i k(\cdot, y_i) \rangle = \sum_{ij} a_i b_j k(x_i, y_j)$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

This is the reproducing kernel Hilbert space (RKHS) associated with k.

Kernel regression and GP regression are closely related. Consider the space of functions

$$\mathcal{H}_k = \overline{\mathsf{span}}\{k(\cdot, x) : x \in \mathcal{X}\}$$

ie functions of the form $\sum_{i=1}^{n} \alpha_i k(x, x_i)$ with inner product

$$\langle \sum a_i k(\cdot, x_i), \sum b_i k(\cdot, y_i) \rangle = \sum_{ij} a_i b_j k(x_i, y_j)$$

This is the reproducing kernel Hilbert space (RKHS) associated with k. Kernel ridge regression chooses $f \in H_k$ to minimise

$$L(f) = \sum_{i} (f(x_i) - y_i)^2 + \sigma^2 ||f||^2_{\mathcal{H}_k}$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Kernel regression and GP regression are closely related. Consider the space of functions

$$\mathcal{H}_k = \overline{\mathsf{span}}\{k(\cdot, x) : x \in \mathcal{X}\}$$

ie functions of the form $\sum_{i=1}^{n} \alpha_i k(x, x_i)$ with inner product

$$\langle \sum a_i k(\cdot, x_i), \sum b_i k(\cdot, y_i) \rangle = \sum_{ij} a_i b_j k(x_i, y_j)$$

This is the reproducing kernel Hilbert space (RKHS) associated with k. Kernel ridge regression chooses $f \in \mathcal{H}_k$ to minimise

$$L(f) = \sum_{i} (f(x_i) - y_i)^2 + \sigma^2 ||f||_{\mathcal{H}_k}^2$$

We can show that

$$\bar{m}(x) = \arg\min_{f\in\mathcal{H}_k} L(f)$$

where $\bar{m}(x)$ is the same as the posterior mean when we assume $y_i = f(x_i) + N(0, \sigma^2)$ and $f(\cdot) \sim GP(0, k(\cdot, \cdot))$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○ ○

Kernel regression and GP regression are closely related. Consider the space of functions

$$\mathcal{H}_k = \overline{\mathsf{span}}\{k(\cdot, x) : x \in \mathcal{X}\}$$

ie functions of the form $\sum_{i=1}^{n} \alpha_i k(x, x_i)$ with inner product

$$\langle \sum a_i k(\cdot, x_i), \sum b_i k(\cdot, y_i) \rangle = \sum_{ij} a_i b_j k(x_i, y_j)$$

This is the reproducing kernel Hilbert space (RKHS) associated with k. Kernel ridge regression chooses $f \in H_k$ to minimise

$$L(f) = \sum_{i} (f(x_i) - y_i)^2 + \sigma^2 ||f||_{\mathcal{H}_k}^2$$

We can show that

$$ar{m}(x) = rg\min_{f\in\mathcal{H}_k} L(f)$$

where $\bar{m}(x)$ is the same as the posterior mean when we assume $y_i = f(x_i) + N(0, \sigma^2)$ and $f(\cdot) \sim GP(0, k(\cdot, \cdot))$ Note that $\bar{m}(\cdot) \in \mathcal{H}_k$ (samples from a GP live in a slightly larger RKHS)

TL;DR

Functions live in function spaces (vector spaces with inner products). There are lots of different function spaces: the GP kernel implicitly determines which particular (RKHS) space we work with - our hypothesis space.

• Generally, we don't think too hard about this space/features, we just choose a kernel and validate our choice.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

³and can be dense in some sets of continuous bounded functions

TL;DR

Functions live in function spaces (vector spaces with inner products). There are lots of different function spaces: the GP kernel implicitly determines which particular (RKHS) space we work with - our hypothesis space.

• Generally, we don't think too hard about this space/features, we just choose a kernel and validate our choice.

Although reality may not lie in the RKHS defined by k, this space is much richer than any parametric regression model ³,

• thus is more likely to contain an element close to the true functional form than any class of models that contains only a finite number of features.

This is the motivation for non-parametric methods.

³and can be dense in some sets of continuous bounded functions

Why use GPs? Answer 3: Naturalness of GP framework

Why use Gaussian processes as non-parametric models?



Why use GPs? Answer 3: Naturalness of GP framework

Why use Gaussian processes as non-parametric models?

If we only knew the expectation and variance of some random variables, X and Y, then how should we best do statistics?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Why use GPs? Answer 3: Naturalness of GP framework

Why use Gaussian processes as non-parametric models?

If we only knew the expectation and variance of some random variables, X and Y, then how should we best do statistics?

It has been shown, using coherency arguments, or geometric arguments, or..., that the best second-order inference we can do to update our beliefs about X given Y is

$$\mathbb{E}(X|Y) = \mathbb{E}(X) + \mathbb{C}\mathsf{ov}(X,Y)\mathbb{V}\mathsf{ar}(Y)^{-1}(Y - \mathbb{E}(Y))$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

i.e., exactly the Gaussian process update for the posterior mean. So GPs are in some sense second-order optimal.

- ◆ □ ▶ → 御 ▶ → 注 ▶ → 注 → りへで

Suppose Y(x) is a (second order stationary) stochastic process with

$$\mathbb{E}Y(x) = \mu \ \forall \ x$$
$$\mathbb{C}\mathsf{ov}(Y(x), Y(x')) = k(x - x') \ \forall \ x, x'$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

NB we're not assuming Y has a Gaussian distribution.

Suppose Y(x) is a (second order stationary) stochastic process with

$$\mathbb{E}Y(x) = \mu \ \forall \ x$$
$$\mathbb{C}\mathsf{ov}(Y(x), Y(x')) = k(x - x') \ \forall \ x, x'$$

NB we're not assuming Y has a Gaussian distribution.

If someone tells you $\mathbf{y} = (Y(x_1), \dots, Y(x_n))^\top$, how would you predict Y(x)?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Suppose Y(x) is a (second order stationary) stochastic process with

$$\mathbb{E}Y(x) = \mu \ \forall \ x$$
$$\mathbb{C}\mathsf{ov}(Y(x), Y(x')) = k(x - x') \ \forall \ x, x'$$

NB we're not assuming Y has a Gaussian distribution.

If someone tells you $\mathbf{y} = (Y(x_1), \dots, Y(x_n))^\top$, how would you predict Y(x)?

One option is to find the best linear unbiased predictor (BLUP) of Y(x).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Best Linear Unbiased Predictors (BLUP)

Consider the linear estimator

$$\hat{Y}(x) = c + \sum w_i Y(x_i) = c + \mathbf{w}^\top \mathbf{y}$$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

Best Linear Unbiased Predictors (BLUP)

Consider the linear estimator

$$\hat{Y}(x) = c + \sum w_i Y(x_i) = c + \mathbf{w}^\top \mathbf{y}$$

If we require $\hat{Y}(x)$ to be unbiased,

$$egin{aligned} \mu &= \mathbb{E}\,\hat{Y}(x) \ &= \mathbb{E}(c + \mathbf{w}^{ op}\mathbf{y}) \ &= c + \mathbf{w}^{ op} \mu \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

where $\boldsymbol{\mu} = (\mu, \dots, \mu)^{\top}$.

Best Linear Unbiased Predictors (BLUP)

Consider the linear estimator

$$\hat{Y}(x) = c + \sum w_i Y(x_i) = c + \mathbf{w}^\top \mathbf{y}$$

If we require $\hat{Y}(x)$ to be unbiased,

$$egin{aligned} \mu &= \mathbb{E}\,\hat{Y}(x) \ &= \mathbb{E}(c + \mathbf{w}^{ op}\mathbf{y}) \ &= c + \mathbf{w}^{ op}m{\mu} \end{aligned}$$

where $\boldsymbol{\mu} = (\mu, \dots, \mu)^{\top}$. Thus $\boldsymbol{c} = \mu - \boldsymbol{w}^{\top} \boldsymbol{\mu}$ and we must have

$$\hat{Y}(x) = \mu + \mathbf{w}^{\top}(\mathbf{y} - \boldsymbol{\mu})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Best Linear Unbiased Predictors (BLUP) - II

The best linear unbiased predictor minimises the mean square error

$$MSE(\hat{Y}(x)) = \mathbb{E}((\hat{Y}(x) - Y(x))^2)$$

= $\mathbb{E}\left((\mathbf{w}^{\top}(\mathbf{y} - \boldsymbol{\mu}) + (\boldsymbol{\mu} - Y(x))^2\right)$
= $\mathbf{w}^{\top} \mathbb{V}ar(\mathbf{y})\mathbf{w} + \mathbb{V}ar(Y(x)) - 2\mathbf{w}^{\top} \mathbb{C}ov(\mathbf{y}, Y(x))$
= $\mathbf{w}^{\top} K_{XX} \mathbf{w} + k(0) - 2\mathbf{w}^{\top} \mathbf{k}_X(x)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Best Linear Unbiased Predictors (BLUP) - II

The best linear unbiased predictor minimises the mean square error

$$MSE(\hat{Y}(x)) = \mathbb{E}((\hat{Y}(x) - Y(x))^2)$$

= $\mathbb{E}\left((\mathbf{w}^{\top}(\mathbf{y} - \boldsymbol{\mu}) + (\boldsymbol{\mu} - Y(x))^2\right)$
= $\mathbf{w}^{\top} \mathbb{V}ar(\mathbf{y})\mathbf{w} + \mathbb{V}ar(Y(x)) - 2\mathbf{w}^{\top} \mathbb{C}ov(\mathbf{y}, Y(x))$
= $\mathbf{w}^{\top} K_{XX} \mathbf{w} + k(0) - 2\mathbf{w}^{\top} \mathbf{k}_X(x)$

If we differentiate wrt w and set the gradient equal to zero, we find

$$0=2K_{XX}\mathbf{w}-2\mathbf{k}_X(x)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Best Linear Unbiased Predictors (BLUP) - II

The best linear unbiased predictor minimises the mean square error

$$MSE(\hat{Y}(x)) = \mathbb{E}((\hat{Y}(x) - Y(x))^2)$$

= $\mathbb{E}\left((\mathbf{w}^{\top}(\mathbf{y} - \boldsymbol{\mu}) + (\boldsymbol{\mu} - Y(x))^2\right)$
= $\mathbf{w}^{\top} \mathbb{V}ar(\mathbf{y})\mathbf{w} + \mathbb{V}ar(Y(x)) - 2\mathbf{w}^{\top} \mathbb{C}ov(\mathbf{y}, Y(x))$
= $\mathbf{w}^{\top} K_{XX} \mathbf{w} + k(0) - 2\mathbf{w}^{\top} \mathbf{k}_X(x)$

If we differentiate wrt w and set the gradient equal to zero, we find

$$0=2K_{XX}\mathbf{w}-2\mathbf{k}_X(x)$$

and thus

$$\hat{Y}(x) = \mu + \mathbf{k}_X(x)^\top K_{XX}^{-1}(\mathbf{y} - \mu)$$

as before.

So the Gaussian process posterior mean is optimal (i.e. is the BLUP) even if we don't assume Gaussianity.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Why use GPs? Answer 4: Uncertainty estimates

We often think of our prediction as consisting of two parts

- point estimate
- uncertainty in that estimate

That GPs come equipped with the uncertainty in their prediction is seen as one of their main advantages.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Why use GPs? Answer 4: Uncertainty estimates

We often think of our prediction as consisting of two parts

- point estimate
- uncertainty in that estimate

That GPs come equipped with the uncertainty in their prediction is seen as one of their main advantages.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

It is important to check both aspects.

Why use GPs? Answer 4: Uncertainty estimates

We often think of our prediction as consisting of two parts

- point estimate
- uncertainty in that estimate

That GPs come equipped with the uncertainty in their prediction is seen as one of their main advantages.

It is important to check both aspects.

Warning: the uncertainty estimates from a GP can be flawed. Note that given data $D = \{X, y\}$

$$\mathbb{V}\operatorname{ar}(f(x)|X,y) = k(x,x) - k_X(x)K_{XX}^{-1}k_X(x)$$

The posterior variance of f(x) does not directly depend upon y! Variance estimates are particularly sensitive to the hyper-parameter estimates.

If we know what RKHS/hypothesis space/covariance function we should use, GPs work great!

If we know what RKHS/hypothesis space/covariance function we should use, GPs work great!

Unfortunately, we don't usually know this.

• We pick a covariance function from a small set, based usually on differentiability considerations.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

If we know what $\mathsf{RKHS}/\mathsf{hypothesis}\xspace/covariance\ function\ we\ should\ use,\ \mathsf{GPs}\ work\ \mathsf{great}!$

Unfortunately, we don't usually know this.

- We pick a covariance function from a small set, based usually on differentiability considerations.
- Possibly try a few (plus combinations of a few) covariance functions, and attempt to make a good choice using some sort of empirical evaluation.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

If we know what $\mathsf{RKHS}/\mathsf{hypothesis}\xspace/covariance\ function\ we\ should\ use,\ \mathsf{GPs}\ work\ \mathsf{great}!$

Unfortunately, we don't usually know this.

- We pick a covariance function from a small set, based usually on differentiability considerations.
- Possibly try a few (plus combinations of a few) covariance functions, and attempt to make a good choice using some sort of empirical evaluation.
- Covariance functions often contain hyper-parameters. E.g
 - RBF kernel

$$k(x, x') = \sigma^2 \exp\left(-\frac{1}{2}\frac{(x - x')^2}{\lambda^2}\right)$$

Estimate these using your favourite statistical procedure (maximum likelihood, cross-validation, Bayes, expert judgement etc)

Gelman et al. 2017, Bachoc 2020

Assuming a GP model for your data imposes a complex structure on the data.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Gelman et al. 2017, Bachoc 2020

Assuming a GP model for your data imposes a complex structure on the data.

The number of parameters in a GP is essentially infinite, and so they are not always identified even asymptotically.

Gelman et al. 2017, Bachoc 2020

Assuming a GP model for your data imposes a complex structure on the data.

The number of parameters in a GP is essentially infinite, and so they are not always identified even asymptotically.

So the posterior can concentrate not on a point, but on some submanifold of parameter space, and the projection of the prior on this space continues to impact the posterior even as more and more data are collected.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Gelman et al. 2017, Bachoc 2020

Assuming a GP model for your data imposes a complex structure on the data.

The number of parameters in a GP is essentially infinite, and so they are not always identified even asymptotically.

So the posterior can concentrate not on a point, but on some submanifold of parameter space, and the projection of the prior on this space continues to impact the posterior even as more and more data are collected.

E.g. consider a zero mean GP on [0,1] with covariance function

$$k(x, x') = \sigma^2 \exp(-\kappa^2 |x - x|)$$

We can consistently estimate $\sigma^2 \kappa$, but not σ^2 or κ , even as $n \to \infty$.

Problems with hyper-parameter optimization

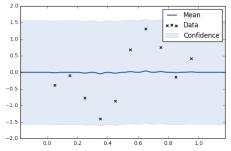
As well as problems of identifiability, the likelihood surface that is being maximized is often flat and multi-modal, and thus the optimizer can sometimes fail to converge, or gets stuck in local-maxima.

Problems with hyper-parameter optimization

As well as problems of identifiability, the likelihood surface that is being maximized is often flat and multi-modal, and thus the optimizer can sometimes fail to converge, or gets stuck in local-maxima. In practice, it is not uncommon to optimize hyper parameters and find solutions such as

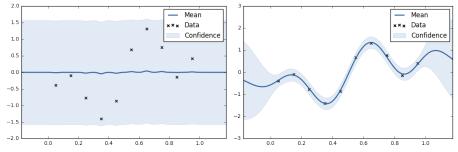
< 日 > (四 > (2 > (2 >)))

- 2



Problems with hyper-parameter optimization

As well as problems of identifiability, the likelihood surface that is being maximized is often flat and multi-modal, and thus the optimizer can sometimes fail to converge, or gets stuck in local-maxima. In practice, it is not uncommon to optimize hyper parameters and find solutions such as



We often work around these problems by running the optimizer multiple times from random start points, using prior distributions, constraining or fixing hyper-parameters, or adding white noise.

One difficulty with GP is the computational cost of training them is $O(n^3)$ (and $O(n^2)$ memory)

One difficulty with GP is the computational cost of training them is $O(n^3)$ (and $O(n^2)$ memory)

There are many ways to side-step this cost, but one approach is to consider basis expansions and switching back to the primal form for linear regression.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

One difficulty with GP is the computational cost of training them is $O(n^3)$ (and $O(n^2)$ memory)

There are many ways to side-step this cost, but one approach is to consider basis expansions and switching back to the primal form for linear regression.

Suppose

$$k(x,x') = \sum_{i=1}^m \phi_i(x)\phi_i(x') = \phi(x)^\top \phi(x')$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

One difficulty with GP is the computational cost of training them is $O(n^3)$ (and $O(n^2)$ memory)

There are many ways to side-step this cost, but one approach is to consider basis expansions and switching back to the primal form for linear regression.

Suppose

$$k(x,x') = \sum_{i=1}^m \phi_i(x)\phi_i(x') = \phi(x)^\top \phi(x')$$

Then GP regression is equivalent to linear regression with covariates $\phi(x)$

 Dual form for regression coefficients costs O(n³), but primal solution only costs O(m³)

In practice we may use a basis expansion with $m \ll n$ such that

$$k(x,x') \approx \sum_{i=1}^{m} \phi_i(x) \phi_i(x')$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

There are many choices of basis. Two examples:

• Mercer basis: Consider the map

$$T_k(f)(\cdot) = \int_{\mathcal{X}} k(x, \cdot) f(x) \mathrm{d}x$$

Consider the eigenfunctions of this map, i.e., $\phi : \mathcal{X} \mapsto \mathbb{R}$ s.t. $T_k(\phi)(\cdot) = \lambda \phi(\cdot)$. Then Mercer's theorem says that

$$k(x,x') = \sum_{i=1}^{\infty} \lambda_i \phi_i(x) \phi_i(x')$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

There are many choices of basis. Two examples:

• Mercer basis: Consider the map

$$T_k(f)(\cdot) = \int_{\mathcal{X}} k(x, \cdot) f(x) \mathrm{d}x$$

Consider the eigenfunctions of this map, i.e., $\phi : \mathcal{X} \mapsto \mathbb{R}$ s.t. $T_k(\phi)(\cdot) = \lambda \phi(\cdot)$. Then Mercer's theorem says that

$$k(x,x') = \sum_{i=1}^{\infty} \lambda_i \phi_i(x) \phi_i(x')$$

The Karhunen-Loeve thm says we can write $f(\cdot) \sim GP(0, k(\cdot, \cdot))$ as

$$f(x) = \sum_{i=1}^{\infty} Z_i \sqrt{\lambda_i} \phi_i(x)$$
 where $Z_i \stackrel{iid}{\sim} N(0,1)$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

There are many choices of basis. Two examples:

• Mercer basis: Consider the map

$$T_k(f)(\cdot) = \int_{\mathcal{X}} k(x, \cdot) f(x) \mathrm{d}x$$

Consider the eigenfunctions of this map, i.e., $\phi : \mathcal{X} \mapsto \mathbb{R}$ s.t. $T_k(\phi)(\cdot) = \lambda \phi(\cdot)$. Then Mercer's theorem says that

$$k(x,x') = \sum_{i=1}^{\infty} \lambda_i \phi_i(x) \phi_i(x')$$

The Karhunen-Loeve thm says we can write $f(\cdot) \sim GP(0, k(\cdot, \cdot))$ as

$$f(x) = \sum_{i=1}^{\infty} Z_i \sqrt{\lambda_i} \phi_i(x)$$
 where $Z_i \stackrel{iid}{\sim} N(0,1)$

We can approximate the process (& reduce cost to $O(m^3)$) by truncating the sum $f(x) = \sum_{i=1}^m Z_i \sqrt{\lambda_i} \phi_i(x)$

The Mercer/KL basis minimizes the mean square truncation error.

There are many choices of basis. Two examples:

• Random Fourier features:

Bochner's theorem says that a stationary kernel can be represented as a Fourier transform of a distribution

$$\begin{split} k(x-x') &= \int \exp(iw^\top (x-x')) p(w) dw = \mathbb{E}_{w \sim p} \exp(iw^\top (x-x')) \\ &\approx \frac{1}{m} \sum (\cos(w_i^\top x), \ \sin(w_i^\top x)) \left(\begin{array}{c} \cos(w_i^\top x) \\ \sin(w_i^\top x) \end{array} \right) \ \text{if} \ w_i \sim p(\cdot) \end{split}$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

by using Euler's identity and discarding the imaginary part

There are many choices of basis. Two examples:

• Random Fourier features:

Bochner's theorem says that a stationary kernel can be represented as a Fourier transform of a distribution

$$\begin{split} k(x-x') &= \int \exp(iw^\top (x-x')) p(w) dw = \mathbb{E}_{w \sim p} \exp(iw^\top (x-x')) \\ &\approx \frac{1}{m} \sum (\cos(w_i^\top x), \, \sin(w_i^\top x)) \left(\begin{array}{c} \cos(w_i^\top x) \\ \sin(w_i^\top x) \end{array} \right) \text{ if } w_i \sim p(\cdot) \end{split}$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

by using Euler's identity and discarding the imaginary part Using the primal form for linear regression again reduces the complexity to $O(m^3)$.

There are many choices of basis. Two examples:

• Random Fourier features:

Bochner's theorem says that a stationary kernel can be represented as a Fourier transform of a distribution

$$\begin{split} k(x-x') &= \int \exp(iw^\top (x-x')) p(w) dw = \mathbb{E}_{w \sim p} \exp(iw^\top (x-x')) \\ &\approx \frac{1}{m} \sum (\cos(w_i^\top x), \ \sin(w_i^\top x)) \left(\begin{array}{c} \cos(w_i^\top x) \\ \sin(w_i^\top x) \end{array} \right) \ \text{if} \ w_i \sim p(\cdot) \end{split}$$

by using Euler's identity and discarding the imaginary part Using the primal form for linear regression again reduces the complexity to $O(m^3)$.

Recent work by Rudi and Rosasco (2017) shows that using $m = \sqrt{n} \log(n)$ features achieve similar performance to using the full kernel.

Conclusions

• GPs are now ubiquitous in statistics/ML.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Popularity stems from
 - Naturalness of the framework
 - Mathematical tractability
 - Empirical success

Conclusions

- GPs are now ubiquitous in statistics/ML.
- Popularity stems from
 - Naturalness of the framework
 - Mathematical tractability
 - Empirical success

Thank you for listening!

References

- Rasmussen and Williams. Gaussian processes for machine learning. MIT press, 2006.
- Stein. Interpolation of Spatial Data: Some Theory for Kriging. Springer, 1999
- Kanagawa, Hennig, Sejdinovic, and Sriperumbudur. *Gaussian* processes and kernel methods: A review on connections and equivalences.. arXiv:1807.02582 2018.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで