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Distance to horizon 6.2km

Hidden height 125.6m
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Occam’s Razor

Flat Earth The earth is flat and the water surface is flat, therefore I can see the
building

Spherical Earth Due to the temperature gradient between the water and air,
there is a dispersion of water molecules into the air proportional to
the distance to the surface effectively creating a lens allowing us to
see "around the bend" of the earths curvature
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Curve Fitting
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Curve Fitting
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What is machine learning?

What is Machine Learning Machine Learning is the task of
combining/integrating knowledge with observations to perform
predictions using the subset of possible explanations that are
consistent with both my knowledge and the observations

Isn’t this Statistics? statistics cares about parameters of the knowledge while
ML cares about the predictions we get from using the parameters we
infer by combining knowledge and observations. (It is just a slight
change of narrative)
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Formalism [Shalev-Shwartz et al., 2014]

Domain Set X the set of measurements/objects that we want to label (input)

Label Set Y the set of outputs

Training Data S a finite sequence of pairs in X × Y
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Formalism [Shalev-Shwartz et al., 2014]

Data Distribution D probability distribution governing the measurements

Data Generation f : X → Y the underlying generating process that we wish
to recover

Prediction Rule h : X → Y what we wish to recover, the object that encodes
the recovered knowledge
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Classification
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Measure of Success

LD,f (h) := D({x : h(x) ̸= f(x)})

• measure of success as probability of misclassified points (true risk)

• we do not have access to D
• we do not have access to f
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Classification
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Empirical Risk Minimisation

LS(h) :=
|{i ∈ [m] : h(xi) ̸= yi}|

m

• We assume that S ∼ D
• Empirical measure of risk
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Curve Fitting
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Algorithm

LS(A(S)) :=
|{i ∈ [m] : h(xi) ̸= yi}|

m

• We use an algorithm A : S → h to find a hypothesis
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Finite Hypothesis Classes

hS ∈ argmin
h∈H

LS(h)

• We cannot parametrise all possible hypothesis
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Error Decomposition

h∗

ĥopt

ĥ

hopt

h∗ the optimal predictor

hopt the optimal hypothesis

ĥopt the optimal hypothesis on
training data

ĥ the hypothesis found by
learning algorithm
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Error Decomposition

h∗

ĥopt

ĥ

hopt

ϵ(ĥ)− ϵ(h∗)

= ϵ(hopt)− ϵ(h∗)︸ ︷︷ ︸
Approximation

+ ϵ(ĥopt)− ϵ(hopt)︸ ︷︷ ︸
Estimation

+ ϵ(ĥ)− ϵ(ĥopt)︸ ︷︷ ︸
Optimisation
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Assumptions: Algorithms

Statistical Learning

AH(S)
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Assumptions: Biased Sample

Statistical Learning

AH(S)
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Assumptions: Hypothesis space

Statistical Learning

AH(S)
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Quantifying Knowledge
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Bayes’ Rule

p(θ | D) =
p(D | θ)p(θ)

p(D)
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Marginalisation

p(D) =

∫
p(D | θ)p(θ)dθ
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Marginalisation

p(D) =

∫
p(D | θ) p(θ)dθ︸ ︷︷ ︸

dt(θ)
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Marginalisation
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Marginalisation
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Marginalisation
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Model Linear Linear
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Model Linear
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Bayesian

• The Bayesian argument implies that you try to re-parametrise the hypothesis
space to reflect your beliefs

• A good analogy is to think about "space", the believable parameters gets a
bigger space compared to the unlikely ones

• Massive composite models can be thought of as directly altering the
parameter space for the optimiser Roy et al., 2024
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"Good" parametrisation

Flexible such that we do not have to make trade-offs when including beliefs

Narrow such that we can reduce data-requirements

Interpretable so that we can translate our knowledge to the parametrisation
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Non-parametrics



Curve Fitting
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Non-parametrics
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Non-parametrics
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Example
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Non-parametric Models



Lets talk about functions
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Gaussian function values

f1 = N (µ1, k1)

f2 = N (µ2, k2)
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Non-parametric functions
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Non-parametric functions
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Jointly Gaussian function values

[
f1
f2

]
= N

([
µ1

µ2

]
,

[
k11 ?

? k22

])
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Conditional Gaussians

N

([
0

0

]
,

[
1 0.5

0.5 1

])
N

([
0

0

]
,

[
1 0.9

0.9 1

])
N

([
0

0

]
,

[
1 0

0 1

])
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Gaussian Samples
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Lets talk about functions
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Non-parametric functions
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Jointly Gaussian functions II

p(f) = N




f1
f2
...
fN


∣∣∣∣∣∣∣∣∣


µ1

µ2
...

µN

 ,


k11 k12 . . . k1N
k21 k22 . . . k2N
...

... . . . ...
kN1 kN2 . . . kNN
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Gaussian Distribution - Marginal

p(x1, x2) = N
(

x1
x2

∣∣∣∣∣ µ1

µ2
,
k11 k12
k21 k22

)
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k11 k12 · · · k1N
k21 k22 · · · k2N
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kN1 kN2 · · · kNN


⇒ p(x1) =

∫
x2,...,xN

p(x1, x2, . . . , xN ) = N (x1 | µ1, k11)
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Gaussian Distribution - Marginal
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Marginal Property (Consistency)

For all measurable sets Fi ⊆ Rn and probability measure N

Nt1·tk (F1 × · × Fk) = Nt1···tk,tk+1·tk+m
(F1 × · × Fk × Rn × · × Rn)
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Gaussian Samples
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Gaussian Samples
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Gaussian Samples
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Gaussian Samples
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Gaussian Samples
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Gaussian Samples
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Gaussian Samples
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Gaussian Samples
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Gaussian Samples
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Gaussian Samples
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Gaussian Samples
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Gaussian Processes
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Gaussian Processes: Formalism

p(f) = N




f1
f2
...
fN
...



∣∣∣∣∣∣∣∣∣∣∣∣


µ1

µ2
...

µN
...

 ,


k11 k12 . . . k1N . . .

k21 k22 . . . k2N . . .
...

... . . . ...
...

kN1 kN2 . . . kNN . . .
...

... . . .
... . . .
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Gaussian processes

GP(·, ·)

∞

M ∈ R∞×N

→

N (·, ·)

N

The Gaussian distribution is the projection of the infinite Gaussian process
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Gaussian Process

Definition (Gaussian Process)
A Gaussian process is a collection of random variables who are jointly Gaussian
distributed index by a infinite index set
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Gaussian Processes: Formalism II

p(f) = N




f1
f2
...
fN
...



∣∣∣∣∣∣∣∣∣∣∣∣


µ(x1)

µ(x2)
...

µ(xN )
...

 ,


k(x1, x1) k(x1, x2) . . . k(x1, xN ) . . .

k(x2, x1) k(x2, x2) . . . k(x2, xN ) . . .
...

... . . . ...
...

k(xN , x1) k(xN , x2) . . . k(xN , xN ) . . .
...

... . . .
... . . .
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"Parametrisation"

kij = k(xi, xj)

• We parameterise the covariance as a function of the input

• the index set of the measure is the uncountable infinity
• Your "handle" to input your knowledge into a GP is the covariance function

• you specify the degree of covariance between data-points

• If this "parametrisation" aligns well with your knowledge a GP is the way
forward!

88
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Gaussian Processes
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Gaussian Processes Samples

k(xi, xj) = 3 · e−
(xi−xj)

2

15 90



Gaussian Processes Samples
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2
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Gaussian Processes Samples

k(xi, xj) = 3 · e−
(xi−xj)

2
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Code

x = np.linspace(-5,5,200)
x = x.reshape((-1,1))

Sigma = 3.0*np.exp(-np.power(cdist(x,x),2)/lengthScale)
mu = np.zeros(x.shape)

y = np.random.multivariate_normal(mu.flatten(),Sigma,10)
ax.plot(x,y.T)
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Gaussian Processes
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Choosing Covariances1

k(x, x′) = ck1(x, x
′)

k(x, x′) = f(x)k1(x, x
′)f(x′)

k(x, x′) = q(k1(x, x
′)

k(x, x′) = exp(k1(x, x
′))

k(x, x′) = k1(x, x
′) + k2(x, x

′)

k(x, x′) = k1(x, x
′)k2(x, x

′)

k(x, x′) = k3(ϕ(x), ϕ(x
′))

k(x, x′) = xTAx′

k(x, x′) = ka(xa, x
′
a) + kb(xb, x

′
b)

k(x, x′) = ka(xa, x
′
a)kb(xb, x

′
b)

1Bishop, 2006.
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Curve Fitting
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Inference



Bayes’ Rule

p(f∗ | f) =
p(f , f∗)

p(f)
=

p(f , f∗)∫
p(f , f∗)df∗
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Marginal Likelihood

∫
p(f , f∗)df∗ =

∫
p(f | f∗)p(f∗)df∗

• Take every possible function value/marginal f∗ at location x∗ according to
their probability

• Check if these marginals are consistent with the marginals we observe f at
location x
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Gaussian Processes: Posterior Samples
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Gaussian Process: "Predictive Posterior"

p(f , f∗) = p(f∗ | f)p(f)

• We have defined p(f , f∗) as the infinite process

• We know through the marginal property of the Gaussian that p(f) is
consistent as a distribution

• We know that p(f∗ | f) is Gaussian process

• ⇒ We can just solve for p(f∗ | f)
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Gaussian Process: "Predictive Posterior"

• All instantiations are jointly Gaussian[
f

f∗

]
∼ N

([
0

0

]
,

[
k(x,x) k(x,x∗)

k(x∗,x) k(x∗,x∗)

])

• Conditional Gaussian

p(f∗|f) = N (k(x∗,x)
Tk(x,x)−1f ,

k(x∗,x∗)− k(x∗,x)
Tk(x,x)−1k(x,x∗)
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Intuition
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Does it make sense: Mean

k(x∗,X)Tk(X,X)−1f
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Does it make sense: Covariance

k(x∗,x∗)− k(x∗,x)
Tk(x,x)−1k(x,x∗)

105



Gaussian Processes: "Predictive Posterior Samples"
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Gaussian Processes: "Predictive Posterior Process"
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Posterior Processes
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Posterior Processes
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Posterior Processes
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Taking Stock

p(f) ∼ N (f | µ(·), k(·, ·)), p(f∗|f) = N (f∗(x∗,x)
Tk(x,x)−1f ,

k(x∗,x∗)− k(x∗,x)
Tk(x,x)−1k(x,x∗)

• we have defined a measure over functions

• we can parametrise this measure to reflect our knowledge

• we can get an updated measure that combines our knowledge with data
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Learning

yi

fi θ

x

D

p(y|x) =
∫

p(y | f)p(f | x)df

yi

fi θ

x

D

p(y) =

∫
p(y | f)p(f | x)p(x)dfdx
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Posterior Processes
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Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Being Bayesian

p(y) =

∫
p(y | f2)p(f2 | f1)df2df1

• The process of Marginalisation allows me to convert one measure to another
measure
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Gaussian Process Latent Variable Model

Regression there are infinite number of possible functions that connects the
data equally well. A GP provides a measure over these solutions that
makes the problem "well-posed".

Unsupervised Learning there are infinite number of possible combinations of
input locations and functions that generate the data equally well. A
GP and a latent space prior jointly provides a measure over these
solutions to make the problem "well-posed"
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Approximate Inference



Learning

θ̂ = argmaxθ p(y | θ) =
∫

p(y | f)p(f | x, θ)p(x)dfdx

• each evaluation of p(y | θ) is O(n3)

• integrating over p(x) is generally analytically intractable
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Machine Learning

p(y) =

∫
p(y | x)p(x)dx

132



Variational Inference

x

y y

x

y

p(y) =

∫
x

p(y|x)p(x) = p(y|x)p(x)
p(x|y)

x

y

θ

qθ(x) ≈ p(x|y)
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Variational Bayes

log p(y) =

∫
q(x)log

1

q(x)
dx+

∫
q(x)log p(x, y)dx+

∫
q(x) log

q(x)

p(x|y)dx

≥ −
∫

q(x)log q(x)dx+

∫
q(x)log p(x, y)dx

• The Evidence Lower BOnd

• Tight if q(x) = p(x|y)
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Deterministic Approximation

log p(y)

L(q)

KL(q||p)
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Inference

• All Bayesian models are generally computational expensive and intractable

• 90% of your work is on coming up with approximations

• As scientists, worry about formulating the best possible model to start with,
then worry about inference.

• Understand the Bayesian modelling principles, understand Gaussian
processes, first
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Summary

• There is no such thing as a free lunch, anything that learns something does
so by being biased

• Any explanation of a result can only ever be interpreted relative to the bias
that has been included

• Arguing religously about being Bayesian or not boils down to do if you agree
with the process of marginalisation

• I believe you can be pragmatically non-bayesian, but it is very hard to motivate
philosophically
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Non-parametrics

• infinite capacity by parametrising the model through relationship between
data

• model of non-parametric parametrisation leads to stochastic processes

• Gaussian processes

practical use simple manipulation with multi-variate normals
theoretically beautiful semantic in terms of stochastic processes
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Kolmogrovs Extension Theorem

For all permutations π, measurable sets Fi ⊆ Rn and probability measure ν

1. Exchangeable

νtπ(1)···tπ(k)

(
Fπ(1) × · × Fπ(k)

)
= νt1···tk (F1 × · · · × Fk)

2. Marginal

νt1·tk (F1 × · × Fk) = νt1···tk,tk+1·tk+m
(F1 × · × Fk × Rn × · × Rn)

In this case the finite dimensional probability measure is a realisation of an
underlying stochastic process
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Are Gaussian Processes good parametrisations?
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Are Gaussian Processes good parametrisations?

Yes being non-parametric it is only our lack of knowledge of appropriate
measures of correlation that forces us to compromise

Yes their parametrisation is very well aligned to the knowledge we have
of many problems, most complex knowledge (like beer) is relative

Yes they are incredibly "narrow" but have infinite coverage
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Composite Functions

f(x) = fL ◦ fL−1 ◦ · · · ◦ f0(x)
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Composite GP Step
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Composite GP Step
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Best of both worlds?

Composite GPs potentially interesting but inference is a huge issue and

BNN worst of both worlds, a prior we do not understand, in a structure
we do not get, means that we are effectively spending a huge
computational overload to implement a regulariser

When should we use composite models when our knowledge is composite
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Reinforcement Learning

p(st+1) =

∫
p(st+1 | f , st, at)p(at | π, st)p(st)p(f)p(π)datdstdfdπ,
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Windfarms Kaiser et al., 2018
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