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Outline

Motivating example: Air pollution in Kampala

Inference for linear systems:

Lu = f

Given noisy measurements of u can we infer f ?

Adjoints
L⇤v such that hLu, vi = hu,L⇤vi

Examples



Air pollution

7 million people die every year from exposure to air pollution, the majority
in LMICs.

The UK government estimates the annual mortality of human-made air
pollution to be 28,000 to 36,000 deaths, and costs UK ⇠£1010



Kampala and AirQo
Smith et al. to appear JRSS C

Accurate gravimetric sensors costs $10,000s.
AirQo have developed cheap (but less accurate) sensors that cost < $100
and have deployed them around Kampala.
The sensors measure PM2.5 and PM10.



Kampala: PM2.5 snapshot from 2023 (midday)

London (2022 average): 9.6 µg/m3

20 year average for UK: 11 µg/m3

WHO guideline: 5µg/m3



Air pollution digital twin
Model pollution concentration u(x , t) at location x time t.
We want to

infer air pollution (and predict future pollution levels)

infer pollution sources

Standard non-parametric models (e.g., Gaussian processes) unable to do
this.

Instead build data models that know some physics

@u

@t
= r.(p1u) +r.(p2ru)� p3u +

X

i

fi

fi (x , t) are di↵erent pollution sources,

we may choose to model di↵erent pollution types (PM2.5, PM10 etc)

Hypothesis: The inclusion of mechanistic behaviour will allow us to infer
sources, plan interventions, and predict better.
NB: can also extend the model with a GP to capture missing physics
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Computational challenge

Given noisy measurements of pollution levels zi = hi (u) + ei .
Can we infer

the concentration field u(x , t)?

the unknown source terms fi (x , t)?

the di↵usion, advection and reaction parameters? Hyperparameters
etc?

Use Gaussian process priors for fi (x , t)

fi ⇠ GP(mi (·), ki (·, ·))

where we carefully choose each prior mean and covariance function:

Industrial regions

Major roads and power stations

Varying a✏uence levels between regions (related to paving of roads,
burning of garbage, cooking on solid fuel stoves etc).
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General linear systems
Lu = f



Linear systems with unknown parameters

Consider

Lpu = f

where

Lp = linear operator with non-linear dependence upon parameters p.

f = forcing function.

u is the quantity being modelled, e.g. pollution concentration.

Finding u given p and f is the forward problem.

Inverse problem: infer u, f , p given noisy observations of u

z = h(u) + N(0,⌃).

Note: MCMC likely to be prohibitively expensive: each iteration requires
a solution of the forward problem.
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Linear systems with unknown parameters

Least squares/maximum-likelihood estimation:

min
p,f

(z � h(u))>(z � h(u))

subject to Lpu = f .

Bayes: find
⇡(p, f , u|z).



What do we need?

We have a problem and a framework, what do we need to achieve our
goal of inferring u and f

A method to perform e�cient inference

A way to model f
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The adjoint operator
See Estep 2004

Let L : U ! V be our linear operator where U and V are Hilbert spaces

i.e. vector spaces with an inner product hu, u0i,
then the adjoint of L, L⇤ : V ! U satisfies

hLu, vi = v⇤(L(u)) = L⇤v⇤(u)

= hu,L⇤vi,

known as the bilinear identity.

NB: This formulation extends more generally to any Banach space, but
for our purposes today, Hilbert spaces are enough.
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Benefits of the adjoint
See Estep 2004

Adjoints have the additional properties of

allowing us to easily calculate the derivative of some cost function
between our inference and the observations

can be used to easily compute the least squares estimate



Example 0

In the finite dimensional case, U = Rn, V = Rm, then hu1, u2i = u>
1
u2 etc

and

Lu = Au for some m x n matrix A.

Then
L⇤v = A>v

That is
hAu, vi = hu,A>vi



Example 0

In the finite dimensional case, U = Rn, V = Rm, then hu1, u2i = u>
1
u2 etc

and

Lu = Au for some m x n matrix A.

Then
L⇤v = A>v

That is
hAu, vi = hu,A>vi



E�cient inference

Lu = f , zi = hi (u) + e

If the observation operator is linear

hi (u) = hhi , ui

we can consider the n adjoint systems

L⇤vi = hi for i = 1, . . . , n.

Then

hi (u) = hhi , ui = hL⇤vi , ui = hvi ,Lui
= hvi , f i,

by the bilinear identity.
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zi = hi (u) + ei = hvi , f i+ ei

where L⇤vi = hi

Suppose f is a parametric model with a linear dependence upon some
unknown parameters q:

f (·) =
MX

m=1

qm�m(·) (1)

then hi (u) = hvi ,
MX

m=1

qm�mi =
MX

m=1

qmhvi ,�mi.

A linear model!
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The complete observation vector z can then be written as

z =

0

B@
hv1,�1i . . . hv1,�Mi

...
...

hvn,�1i . . . hvn,�Mi

1

CA

0

@
q1

qM

1

A+ e (2)

= �q + e

Thus

min
f

S(f ) = (z � h(u))>(z � h(u))

subject to Lu = f

is equivalent to

min
q

S(q) = (z � �q)>(z � �q)

The solution is
q̂ = (�>�)�1�>z

with Var(q̂) = �2(�>�)�1 when ei are uncorrelated and homoscedastic
with variance �2.
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In a Bayesian setting, if we assume a priori that q ⇠ NM(µ0,⌃0), then
the posterior for q given z (and other parameters) is

q | z ⇠ NM(µn,⌃n) (3)

where

µn = ⌃n(
1

�2
�>z + ⌃�1

0
µ0), ⌃n =

✓
1

�2
�>�+ ⌃�1

0

◆�1

. (4)



Quick intro to Gaussian Processes
Suppose we model unknown function f = {f (x) : x 2 X} as a Gaussian
process (GP)

i.e. joint distribution of f (x1), . . . , f (xn) is Gaussian.

All we need to do is specify the prior mean and covariance functions

Ef (x) = m(x), Cov(f (x), f (x 0)) = k(x , x 0)

Write f ⇠ GP(m, k).
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Why use GPs?
Mathematically attractive family

I Closed under addition

f1, f2 ⇠ GP then f1 + f2 ⇠ GP

I Closed under Bayesian conditioning: if we observe
D = (f (x1), . . . , f (xn)) then

f |D ⇠ GP

but with updated mean and covariance functions.
I Closed under any linear operator. If f ⇠ GP(m(·), k(·, ·)), then

L is a linear operator

L � f ⇠ GP(L �m,L2 � k)

e.g. df
dx ,

R
f (x)dx , Af are all GPs

Natural - Best linear unbiased predictors etc

Relate to other methods such as kernel regression
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Parameterizing GPs

f (x) ⇠ GP(m(x), k(x , x 0)).

How can we use GPs within the adjoint framework developed earlier?

Let F be the RKHS (function space) associated with kernel k , i.e.,
f 2 F
Consider {�1(x),�2(x), . . .} an orthonormal basis for F .

We can then approximate f using a truncated basis expansion

f (x) ⇡ fq(x) =
MX

j=1

qi�i (x) where a priori qi ⇠ N(0,�2i )

= �q+ e

We’ve approximated the GP by a linear model.
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Choice of basis in fq(·) =
PM qi�i�i(·)

Mercer basis: �i (x) = �i (x) where �i ,�i (·) are eigenpairs of

Tk(f )(·) =
Z

X
k(x , ·)f (x)dx .

Karhunen-Loève theorem says this choice is mean square optimal

Random Fourier features: If k stationary, Bochner’s theorem:

k(x � x 0) =

Z
exp(iw>(x � x 0))p(w)dw = Ew⇠p exp(iw

>(x � x 0))

Thus we can use �i (x) = cos(w>
i x + bi ) where wi ⇠ p(·) and

bi ⇠ U[0, 2⇡]
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Laplacian basis: useful for non-Euclidean domains
Solin and Sarkka 2019, Coveney et al. 2019, 2020, 2021



Algorithm
For a given linear system L with unknown forcing function f , Lu = f and
observations zi = hi (u) + ✏

Choose a basis expression for f s.t.

f =
mX

m=1

qm�m

Determine the adjoint operator, L⇤ (and boundary conditions if
appropriate)
Solve the adjoint system L⇤vi = hi
Compute the regressor matrix � where [�]im = hvi ,�mi
Compute the posterior distribution for q

q | z ⇠ NM(µn,⌃n) (5)

where

µn = ⌃n(
1

�2
�>z + ⌃�1

0
µ0), ⌃n =

✓
1

�2
�>�+ ⌃�1

0

◆�1

. (6)
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Example 1: PDE
Advection-di↵usion-reaction is a linear operator:

Lu =
@u

@t
�r.(p1u)�r.(p2ru) + p3u

Forward problem: solve (for some initial and boundary conditions)

Lu = f on X ⇥ [0,T ].

Inverse problem: assume

f (x , t) ⇠ GP(m, k�((x , t), (x
0, t 0)))

and estimate f given zi = hhi , ui+ N(0,�).
hi are sensor functions that average the pollution at a specific location
over a short window

hhi , ui =
1

|Ti |

Z

Ti
u(xi , t)dt
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Example 1: PDE adjoint
The adjoint system is derived by integrating by parts twice:

L⇤v = �@v
@t

� p1.rv �r · (p2rv) + p3u.

For n observations we need n adjoint equations!

L⇤vi = hi in X ⇥ [0,T ] for i = 1, . . . , n.

If we use initial and boundary conditions

u(x , 0) = 0 for x 2 X and rnu = 0 for x 2 @X
then the final and boundary conditions on the adjoint system are

vi (x ,T ) = 0 for x 2 X
p1vi (x , t) + p2rvi (x , t) = 0 for x 2 @⌦ and t 2 [0,T ].

May find numerical issues: depends on the discretization, the sensor
functions hi , di↵usion rate etc
The cost of solving the adjoint is the same as solving the forward
problem.
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Results: n = 20 (4 sensors) and n = 80 (16), noise =10%
Posterior mean of time slice u(x , 5) - more sensors, improved estimates!

Variance of u(x , 5): Wind from the south west.
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E↵ect of length scale, � = 5, 2, 1

MSE 0.008 and
0.004

MSE 0.68 and
0.07

MSE 1.85 and
2.55



MCMC is fine as long as you have a small number of features.
But even with only 10 features, we need ⇠ 1000s of ODE solves vs 10
ODE solves for the adjoint method.

MCMC takes longer to converge when we use more features.



Example 1: Results
Mean square error vs number of features and sensors

Median MSE as a function of number of sensors and basis vectors.
Sensors # basis vectors

10 50 100 200 300 500

1 3.42 (2.82,4.39) 3.27 (3.13,3.38) 3.24 (3.10,3.37) 3.27 (3.17,3.44) 3.24 (3.12,3.36) 3.27 (3.17,3.35)

4 7.12 (1.57,28.81) 2.39 (2.06,2.62) 2.41 (2.13,2.60) 2.45 (2.32,2.57) 2.50 (2.41,2.69) 2.53 (2.32,2.60)

9 2.38 (1.41,4.40) 2.12 (1.48,3.98) 1.70 (1.49,2.07) 1.48 (1.40,1.72) 1.47 (1.32,1.61) 1.45 (1.40,1.50)

16 1.73 (1.23,3.28) 3.99 (2.32,10.90) 2.18 (1.72,3.54) 1.3 (1.02,1.68) 1.12 (0.98,1.37) 1.12 (1.02,1.21)

25 1.35 (1.19,3.09) 8.93 (4.92,39.86) 4.36 (2.53,8.20) 1.86 (1.43,2.75) 1.35 (1.07,1.81) 1.05 (0.89,1.45)

25 (MH) 3.27 (1.73,6.12) - - - - -

MH algorithm did not converge after 20,000 iterations for 50 or more RFFs.



Example 2: Round Hill II Experiment

We tested the approach using the Round Hill II advection-di↵usion
experiment (see Cramer & Record, 1957) using the
advection-di↵usion model.

A constant source of sulphur dioxide was released over a ten minute
period.

183 sensors were deployed in three partial concentric rings.



Example 3: Roundhill Results

Adjoint method inferred concentration GP inferred concentration



Example 2: Roundhill Results

Adjoint method source inference



Parameter estimation

A naive way to estimate the non-linear parameters is via Bayesian
optimization

use the adjoint sensitivity to estimate derivative information

estimate posterior using a variational approach



Parameter estimation: Identifiability

If we allow both the system parameters, p and the forcing function f to
vary with no constraints, we have too many degrees of freedom and have
non-unique solutions.

Source 1

Source 2

Observed Concentration

Forward model 
with 𝑝1 = −0.2 
 and 𝑝2 = 0.05 

Forward model 
with 𝑝1 = 1 
 and 𝑝2 = 0.2 



Parameter estimation: Identifiability

Possible solutions:

Constrain our parameter posterior distribution

Assume some parameters known

Constrain our source posterior distribution



Sequential data

z =

0

B@
hv1,�1i . . . hv1,�Mi

...
...

hvn,�1i . . . hvn,�Mi

1

CA

0

@
q1

qM

1

A+ e

= �q+ e

Adding features, or incorporating new data is easy

New features/basis vectors require new columns in � - no new
simulation is required

New data adds rows to � - each new data point necessitates one
additional simulation.



Costs

Adjoint method:

require n solves of the adjoint system to infer f .

(essentially) insensitive to the number of basis functions used.

The non-linear parameters (GP hyperparameters, PDE parameters)
can be inferred in an outer-loop

MCMC:

All parameters inferred together.

Hard to say how many iterations will be required, but likely to grow
with the the number of parameters (and hence number of GP
features).

Number of iterations required largely independent of n.

Derivative information generally helps, but may be unavailable
(autodi↵ often unstable for PDE solvers)



Conclusions

Developed a method to infer forcing functions of linear systems given
noisy observations

requires n adjoint solves to infer the posterior
I essentially insensitive to the number of basis functions used

Adjoint gives numerically stable derivatives of the cost function with
respect to other parameters, dS

dp etc.

Opportunities for additional e�ciencies...
I E�cient use of adjoint simulations
I Gradient based optimization
I Sequential data

Ref: Gahungu et al. NeurIPS 2022, Smith et al. 2024, (forthcoming
pre-prints).

Thank you for listening!
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