
Weaving the digital tapestry: emulating cohorts of
digital twins using Gaussian processes

Christopher Lanyon1, Cristobal Rodero2, Abdul Qayyum2,
Steven A. Niederer2,3, Richard D. Wilkinson1

1School of Mathematical Sciences, University of Nottingham
2Cardiac Electro-Mechanics Research Group (CEMRG), National Heart and Lung Institute,

Faculty of Medicine, Imperial College London, London, United Kingdom
3Turing Research and Innovation Cluster in Digital Twins (TRIC: DT), The Alan Turing

Institute, London, United Kingdom

GPSS 2024



Project team

Cristobal Abdul Steven Richard



Outline

Introduction to Digital twins and computer model emulation

Motivating example: Cohort of Cardiac Digital Twins

Cohort Learning methods



Digital Twins

Digital twins are in-silico representations of real world objects, usually
encoded into mathematical or computer models (a simulator), connected
by data.



The most frequently used digital twin?
Google maps is, arguably, a digital twin of the surface of the earth, with
one-billion active monthly users.



The most frequently used digital twin?

Data is collected by Google, alongside crowdsourced data, allowing
Google maps to model the world in near real-time.



Digital Twins: examples

Personalised cardiac models: meshes generated via imaging,
measurements used to inform parameter values, model outputs used
to guide treatment

Models of machinery in industrial settings: used to optimise
maintenance schedules.

Digital twins of energy grids: used to predict surges, and optimise
energy distribution to cities



Computer model emulation

To capture an appropriate amount of detail from the real world, digital
twins often require very complicated or computationally expensive
mathematical models. In these cases it can be helpful to use emulators or
surrogate models to speed up processing.
Possible surrogate models or emulators:

Simplified mathematical model (e.g. linearisation, symbolic
regression)

Statistical model (e.g. regression, clustering)

Machine learning models (e.g. Neural networks, Gaussian processes)



Computer model emulation

When might surrogate models be helpful?

Fast paced real-world settings:
▶ Clinical recomendations
▶ Structural fault identification

When many simulations are required:
▶ Sensitivity analysis
▶ Calibration
▶ Parameter optimisation



Cohorts of DTs: Weaving the digital tapestry

In some cases, one might have a cohort of digital twins, with
personalised models for each cohort member (e.g. vehicles, patients,
factories). Digital twin cohorts can be used for outlier detection,
scheduling and in-silico trials.

As with individual digital twins, emulators and surrogate models can
increase the efficiency and scalability of digital twin cohorts.

Traditionally, emulators for each individual digital twin would be
trained separately, requiring multiple runs of the computationally
expensive simulator.

If the underlying real world structures are sufficiently similar, we
believe it should be possible for new emulators to learn from the
existing emulated cohort simultaneously, reducing the required
number of simulations significantly.
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Cohorts of DTs: What makes a cohort of emulators?

A group of N real world objects, {On}Nn=1

▶ These objects differ from each other according to some set of latent
variables {ln}Nn=1, where ln describes some underlying quality of On.

▶ Note: we may not have an explicit expression for these latent
variables, but it might be possible to learn one

A digital representation or simulator, f (θ), such that a digital twin of
object n is given by

fn(θ) = f (θ, ln)

An emulator for f , g , such that fn(θ) = gn(θ) + ϵn.

If we add an N + 1th member of the cohort, we want to be able to utilise
our knowledge of the cohort to make emulating fN+1 faster and more
computationally efficient.
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Case study: A cohort of cardiac digital twins



Case study: A cohort of cardiac digital twins

Cohort: 18 patient specific cardiac meshes generated using CT
imaging

Simulator: Reaction-eikonal model of electrophysiology

Latent features: Outputs from a statistical shape model (each mesh
described uniquely by an array of real numbers)

See: Rodero, Cristobal, et al. ”Linking statistical shape models and simulated
function in the healthy adult human heart.” PLoS computational biology 17.4
(2021): e1008851.



Case study: Cohort

CT scans of patient hearts were converted to personalised cardiac
meshes using image segmentation

This generates personalised cardiac meshes for each cohort member
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Case study: Simulator

Heartbeats are governed by the propagation of electrical signals
across the heart. The reaction-eikonal model of electrophysiology
models this electrical wave propagation.

Our outputs from the model are the activation times across the
heart’s surface: how long it takes for the signal to travel from its
origin to a given point on the heart.

Chris! Remember to show the video here.
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Case study: Simulator

Simulator outputs:

Activation times across the entire heart, summarised as the total
activation times over the atria and ventricles:

▶ VTAT : Ventricle total activation time
▶ ATAT : Atrial total activation time



Case study: Simulator

Parameters:

CVventricles: Ventricle conduction velocity

CVatria: Atrial conduction velocity

kventricles: Ventricle anisotropy ratio

katria: Atria anisotropy ratio

kBB : Bachman bundle anisotropy ratio

kFEC : Fast endocardial conduction layer anisotropy ratio



Case study: Latent features

Rodero et al. generated a statistical shape model (SSM) to describe
the variance between meshes

Each mesh was uniquely described by an array of real numbers
(modes)

Principal component analysis was used to determine which modes
contributed most to variance

The first 9 modes capture ≈ 90% of the explained variance



Case study: Data summary

18 meshes, 180 simulations per mesh
6 input parameters

CVventricles: Ventricle conduction velocity

CVatria: Atrial conduction velocity

kventricles: Ventricle anisotropy ratio

katria: Atria anisotropy ratio

kBB : Bachman bundle anisotropy ratio

kFEC : Fast endocardial conduction layer anisotropy ratio

2 outputs

ATAT

VTAT

9 latent features

{Mode1,Mode2, ....,Mode9}



Gaussian process emulators

A gaussian process can be expressed via its mean, µ, and covariance
function, k :

g(·) = GP(µ(·), k(·, ·)). (1)

For our GPEs we used a linear mean function, such that

µ = β0 +
m∑
i=1

βiθi (2)

where m is the dimension of the data points and chose the radial basis
function (RBF) kernel for the covariance so that

k(θ, θ′) = δs exp

(
−1

2
(θ − θ′)Θ−2(θ − θ′)

)
(3)

where δs is the output scale and Θ is the lengthscale.



Baseline: individual emulators

As a baseline for our analysis we generated individual emulators for each
cohort member such that, for the n cohort member:

fn(θ) = gn(θ) + ϵn

where gn is a gaussian process trained using θ and fn(θ).



Latent feature emulator

We have a cohort of digital twins, each with known latent features which
differentiate the patients from each other:

{fn(θ)}Nn=1 = {f (θ, ln)}Nn=1.

Rather than constructing a single emulator for each DT (i.e.
fn(θ) = gn(θ) + ϵn), one could instead construct a single large emulator
for the entire cohort:

f (θ, l) = g(θ; l) + ϵ

Here, the semi-colon notation, as in ’(θ; l)’, refers to concatenating the
input parameters and the latent features to train the GP.



Latent feature emulator

Proposed advantages:

With large enough cohort sizes, may be able to predict for unseen
members

Only have to train a single emulator for the entire cohort

However

Requires the latent features to be known (or learned)

GPEs can become unwieldy for very large training sets



Discrepancy emulator

We propose that each member of the DT cohort differs from another by
some weight, a, and some discrepancy term δ:

f1(θ) = af0(θ) + δ

If g0(θ) is an emulator of f0(θ) then we propose a new emulator for f1(θ):

g1(θ) = ag0(θ) + δ(θ)

where δ(θ) is modelled using a gaussian process with mean mδ and kernel
kδ, and a is some constant weight that can either be set by the user or
learned statistically. NB: This method does not require an explicit
representation of the latent features of each cohort member
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Discrepancy emulator: Single reference

As g0 and δi are Guassian processes we can employ the conditional
property of gaussian processes:

ag0(θ)|θ ∼ N(am0(θ), a
2k0(θ, θ)

and
δ(θ)|θ ∼ N(mδ(θ), kδ(θ, θ))

and therefore

g1(θ)|θ ∼ N(am0(θ) +mδ(θ), a
2k0(θ, θ) + kδ(θ, θ))

.
Thus g1 is a Gaussian process with mean m1(·) = am0(·) +mδ(·) and
covariance ki (·, ·) = a2k0(·, ·) + kδ(·, ·)
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Discrepancy emulator: Full cohort
We extend the reference emulator approach to account for the full
emulator cohort, {gn}Nn=1, by using a weighted sum over the cohort as our
reference.

gN+1(θ) =
N∑

n=1

angn(θ) + δc(θ)

where δc is the cohort discrepancy. We model δc as a GP with mean µδc

and kernel kδc . As gi is a sum of Gaussian processes, it is a gaussian
process with mean

N∑
n=1

anmn(·) +mδc (·)

and covariance
N∑

n=1

a2nkn(·, ·) + kδc (·, ·)

and as the hyper-parameters for mn and kn are known, we only need to
learn the hyperparameters for mδc and kδc .



Discrepancy emulator: how should we learn {an}Na=1

User determined (if you have prior knowledge):

Choose a single reference: setting aj ̸= 0 and ai ̸=j = 0 is equivalent
to the single emulator case

Similarly you could choose a subset {am}m∈M ̸= 0 where M ⊂ 1...N
and {ai}i ̸∈ M = 0

Statistical methods:

Optimise {an}Nn=1 during GPE training, i.e., include them as a GPE
hyperparameter

Use lasso regression to learn {am}m∈M .

Use lasso regression as an indicator function and treat the non-zero
weights as hyperparameters.
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Model summary

Individual emulators

Inputs: θ, fi (θ)

Outputs: gi (θ) = (giA(θ), giV (θ))

Latent emulators

Inputs: (θ; l), {fn(θ)}Nn=1

Outputs: g((θ; l)) = (gA((θ; l)), gV ((θ; l))

Discrepancy emulators

Inputs: θ, fi (θ), {mn}, {kn}: means and covariances of reference
emulators

Outputs: gi (θ) = (giA(θ), giV (θ))



Results: individual emulators, 144 training points
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Results: Training set size for individual emulators

N ATAT VTAT

20 0.895 0.915
40 0.988 0.977
60 0.995 0.988
80 0.996 0.992
100 0.998 0.994
120 0.998 0.995
140 0.999 0.997



Results: Latent emulators

Latent emulators were trained using 17 out of the 18 possible meshes
then tested on test data from both the left in and left out meshes.

Results shown here are the averages over the 18 different latent
emulators (each one leaving out one mesh).



Results: Latent emulators, left in meshes
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Results: Latent emulators, left out meshes
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Results: Latent emulators, left out meshes
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Results:Discrepancy emulator models

g1, individual emulator, used as baseline

gδ : a = 1: One reference emulator and a = 1

gδ : a = ar : One reference emulator and a learned via regression

gδh : a = ah: One reference emulator and a learned as a GPE
hyperparameter

gδc : {an} = {anh}: Full cohort of reference emulators and {an}
learned as GPE hyperparameters

gδc : {an} = {anl}: Full cohort of reference emulators and {an}
learned using lasso regression

gδc : {an} = {aI}: Full cohort of reference emulators and
{aI} ∈ {an} learned as GPE hyperparameters using lasso regression
as an indicator function to select the subset



Results: Discrepancy emulators
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Results: Discrepancy emulators

60 70 80 90 100 110 120 130 140
training points

0.988

0.990

0.992

0.994

0.996

0.998

1.000

R
2

g1
g : a = 1
g : a = ar

g h : a = ah

g c : {an} = {anh}
g c : {an} = {anl}
g c : {an} = {aI}

60 70 80 90 100 110 120 130 140
training points

0.988

0.990

0.992

0.994

0.996

0.998

1.000

R
2

g1
g : a = 1
g : a = ar

g h : a = ah

g c : {an} = {anh}
g c : {an} = {anl}
g c : {an} = {aI}



Results: Discrepancy emulators

Model m=20 m=40 m=60

g1 0.895 0.915 0.988 0.977 0.995 0.988
gδ : a = 1 0.980 0.941 0.996 0.988 0.998 0.994
gδ : a = ar 0.976 0.952 0.996 0.989 0.997 0.993
gδh : a = ah 0.983 0.959 0.996 0.991 0.998 0.994

gδc : {an} = {anh} 0.976 0.959 0.995 0.994 0.997 0.996
gδc : {an} = {anl} 0.980 0.976 0.997 0.994 0.998 0.997
gδc : {an} = {aI} 0.993 0.984 0.998 0.994 0.999 0.996
IE Equivalent: m=50 m=100 m=140



Conclusions

Developed two methods for cohort emulation of digital twins

Latent feature mode:
▶ Could replace need for training any future emulators
▶ Suffers from inconsistency

Discrepancy emulator model:
▶ Learns directly from previous emulators, utilising properties of

Gaussian processes
▶ Halves the number of simulations required for equivalent accuracy
▶ Doesn’t require knowledge of latent features
▶ More computationally expensive than the latent model to add new

cohort members.

Thank you for listening!
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