Using GP emulation in [cardiovascular](#page-89-0) modelling

Mihaela Paun

Using GP emulation in cardiovascular modelling

Mihaela Paun

Joint work with: Sean McGinty, André Fensterseifer Schmidt, Mitchel Colebank, Dirk Husmeier

School of Mathematics and Statistics University of Glasgow

September, 2024

1 / 36

 QQ

Table of contents

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0) applications

1 [Overview of applications](#page-1-0)

2 [Pulmonary application](#page-3-0)

Overview of applications

Table of contents

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Pulmonary [application](#page-3-0)

1 [Overview of applications](#page-1-0)

2 [Pulmonary application](#page-3-0)

3 [Stents application](#page-39-0)

イロト イ押 トイヨ トイヨ トー E 299 4 / 36

Mihaela Paun

[Overview of](#page-1-0)

Pulmonary [application](#page-3-0)

Pulmonary hypertension diagnosis: invasive rightheart catheterisation Pulmonary artery
catheter Insertion into vein artery Right
inntricle O medinovie.com

イロト イ押 トイヨ トイヨ トー E $2Q$ 5 / 36

Pulmonary hypertension (PH): high blood pressure in the pulmonary arteries, which are stiff and thick

- **Pulmonary hypertension (PH): high blood pressure in the** pulmonary arteries, which are stiff and thick
- If PH left untreated \rightarrow right-heart damage, heart failure

- Pulmonary hypertension (PH) : high blood pressure in the pulmonary arteries, which are stiff and thick
- If PH left untreated \rightarrow right-heart damage, heart failure
- **PH** diagnosis: invasively measure pulmonary pressure with right-heart catheterisation \rightarrow excessive bleeding, partial lung collapse

- Pulmonary hypertension (PH) : high blood pressure in the pulmonary arteries, which are stiff and thick
- If PH left untreated \rightarrow right-heart damage, heart failure
- **PH** diagnosis: invasively measure pulmonary pressure with right-heart catheterisation \rightarrow excessive bleeding, partial lung collapse
- Aim: Develop a non-invasive alte[rn](#page-7-0)[ati](#page-9-0)[v](#page-3-0)[e](#page-38-0) [\(](#page-8-0)[fl](#page-9-0)[o](#page-2-0)[w](#page-3-0)[-](#page-38-0)[b](#page-39-0)[a](#page-2-0)[s](#page-3-0)e[d](#page-39-0)[\).](#page-0-0) $\overline{}_{5/36}$

Pulmonary model

Parameter inference

E. 7 / 36

 299

イロト イ押 トイヨ トイヨ トー

Workflow

 298 8 / 36

Output representation

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Pulmonary [application](#page-3-0)

Emulator in simulator output space (time series):

$$
f(\boldsymbol{\theta}) = \mathbf{y} = (y_1, \ldots y_m), \qquad (1)
$$

イロト イ押 トイヨ トイヨ トー

9 / 36

 299

E.

Output representation

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Pulmonary [application](#page-3-0)

Emulator in simulator output space (time series):

$$
f(\boldsymbol{\theta}) = \mathbf{y} = (y_1, \ldots y_m), \qquad (1)
$$

Emulator in PCA-reduced space:

$$
f(\theta) = \mu + \sum_{j=1}^{q} c_j(\theta) \gamma_j + \epsilon(\theta)
$$
 (2)

イロト イ押 トイヨ トイヨ トー

9 / 36

 QQQ

 \equiv

Output representation

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Pulmonary [application](#page-3-0)

■ Emulator in simulator output space (time series):

$$
f(\boldsymbol{\theta}) = \mathbf{y} = (y_1, \ldots y_m), \qquad (1)
$$

Emulator in PCA-reduced space:

$$
f(\theta) = \mu + \sum_{j=1}^{q} c_j(\theta)\gamma_j + \epsilon(\theta)
$$
 (2)

where $\boldsymbol{\mu}$: mean of training set; $\boldsymbol{\mathsf{\Gamma}}_q = (\boldsymbol{\gamma}_1, \dots, \boldsymbol{\gamma}_q)$: basis; $c_i(\theta)$: coefficient (or PC score), $\epsilon(\theta)$: residual.

Emulator PCA

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Pulmonary [application](#page-3-0)

Emulator in PCA-reduced space:

$$
f(\theta) = \mu + \sum_{j=1}^{q} c_j(\theta)\gamma_j + \epsilon(\theta)
$$
 (3)

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

10 / 36

 2990

÷.

Emulator PCA

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Pulmonary [application](#page-3-0)

Emulator in PCA-reduced space:

$$
f(\theta) = \mu + \sum_{j=1}^{q} c_j(\theta) \gamma_j + \epsilon(\theta)
$$
 (3)

Fit independent GP emulators for each PC score:

$$
c_j(\mathbf{\Theta})|\gamma \sim \text{GP}(\mathbf{0}, \mathbf{K}|\gamma), \quad j = 1, \ldots, q, \tag{4}
$$

イロト イ押 トイヨ トイヨ トー

10 / 36

重 QQ

Emulator PCA

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Pulmonary [application](#page-3-0)

Emulator in PCA-reduced space:

$$
f(\theta) = \mu + \sum_{j=1}^{q} c_j(\theta)\gamma_j + \epsilon(\theta)
$$
 (3)

Fit independent GP emulators for each PC score: $\mathcal{L}_{\mathcal{A}}$

$$
c_j(\mathbf{\Theta})|\gamma \sim \text{GP}(\mathbf{0}, \mathbf{K}|\gamma), \quad j = 1, \ldots, q,
$$
 (4)

where $\boldsymbol{\Theta} = (\boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_n)$: input set, $\boldsymbol{\mathsf{K}} = [k(\boldsymbol{\theta}_l, \boldsymbol{\theta}_p)]_{l,p=1}^n$: covariance matrix, $k(.)$: kernel

KO KARK KEK KEK EL YAN

Emulator time series

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Pulmonary [application](#page-3-0)

Emulator in simulator output space (time series):

$$
f(\boldsymbol{\theta}) = \mathbf{y} = (y_1, \ldots y_m), \tag{5}
$$

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶

11 / 36

÷. Ω

Emulator time series

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Pulmonary [application](#page-3-0)

Emulator in simulator output space (time series): $f(\theta) = y = (y_1, \ldots y_m),$ (5)

\n- $$
G\mathsf{P}
$$
 input: $(\theta, t) \rightarrow$ univariate output: $f(\theta, t) = y_t$ $f(\Theta_{\theta, t}) | \tilde{\gamma} \sim \text{GP}(\mathbf{0}, \tilde{\mathbf{K}} | \tilde{\gamma}),$ (6)
\n

11 / 36

 Ω

イロト イ押 トイヨト イヨト 一番

Using GP emulation in [cardiovascular](#page-0-0) modelling

Emulator time series

Mihaela Paun

[Overview of](#page-1-0)

Pulmonary [application](#page-3-0)

Emulator in simulator output space (time series): $f(\theta) = y = (y_1, \ldots, y_m),$ (5)

■ GP input:
$$
(\theta, t) \rightarrow
$$
 univariate output: $f(\theta, t) = y_t$

$$
f(\Theta_{\theta, t}) | \tilde{\gamma} \sim \text{GP}(\mathbf{0}, \tilde{\mathbf{K}} | \tilde{\gamma}),
$$
 (6)

Assume separability in kernels between inputs θ and t: $\mathcal{L}_{\mathcal{A}}$ $k((t_i, \theta_i), (t_j, \theta_j)) = k_t(t_i, t_j) k_{\theta}(\theta_i, \theta_j),$ (7)

11 / 36

KO KARK KEK KEK EL YAN

Using GP emulation in [cardiovascular](#page-0-0) modelling

Emulator time series

Mihaela Paun

[Overview of](#page-1-0)

Pulmonary [application](#page-3-0)

Emulator in simulator output space (time series): $f(\theta) = y = (y_1, \ldots, y_m),$ (5)

\n- $$
\blacksquare
$$
 GP input: $(\theta, t) \rightarrow$ *univariate* output: $f(\theta, t) = y_t$ $f(\Theta_{\theta, t}) | \tilde{\gamma} \sim \text{GP}(\mathbf{0}, \tilde{\mathbf{K}} | \tilde{\gamma}),$ (6)

Assume separability in kernels between inputs θ and t: $\mathcal{L}_{\mathcal{A}}$

$$
k((t_i, \theta_i), (t_j, \theta_j)) = k_t(t_i, t_j) k_{\theta}(\theta_i, \theta_j), \qquad (7)
$$

Represent full covariance matrix as the Kronecker product between two smaller matrices:

$$
\tilde{\mathsf{K}}(\Theta_{\theta,t},\Theta_{\theta,t})=\mathsf{K}_t(\mathsf{t},\mathsf{t})\underset{\scriptscriptstyle{\leftarrow}\ \square\ \rightarrow\ \leftarrow\ \emptyset}{\otimes} \mathsf{K}_\theta(\Theta,\Theta). \hspace{1cm} (8)\\ \underset{\scriptscriptstyle{\leftarrow}\ \square\ \rightarrow\ \leftarrow\ \emptyset}{\otimes} \mathsf{K}_\theta(\Theta,\Theta)\underset{\scriptscriptstyle{\leftarrow}\ \square\ \rightarrow\ \leftarrow\ \emptyset}{\otimes} \mathsf{K}_\theta(\Theta,\Theta)
$$

PCE[']

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Pulmonary [application](#page-3-0)

PCE emulators live in a polynomial function space.

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Pulmonary [application](#page-3-0)

- PCE emulators live in a polynomial function space.
- PCE approximates the simulator by finite truncation $\mathcal{L}_{\mathcal{A}}$

$$
f(\theta) = \sum_{j=0}^{\mathcal{J}-1} z_j \Psi_j(\theta), \quad \Psi_j(\theta) = \prod_{i=1}^d \psi_{ij}(\theta_i)
$$
 (9)

12 / 36

 $2Q$

重

イロト イ押 トイヨ トイヨ トー

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Pulmonary [application](#page-3-0)

PCE emulators live in a polynomial function space.

PCE approximates the simulator by finite truncation

$$
f(\theta) = \sum_{j=0}^{\mathcal{J}-1} z_j \Psi_j(\theta), \quad \Psi_j(\theta) = \prod_{i=1}^d \psi_{ij}(\theta_i)
$$
 (9)

where z_j : polynomial coefficients corresponding to a specific family of polynomials; $\Psi_i(\theta)$: multivariate polynomials for $\boldsymbol{\theta} = (\theta_1, \dots \theta_d)$, constructed from a product of univariate polynomials $\psi_{ij}(\theta_i);~\mathcal{J}=\binom{d+\mathcal{K}}{\mathcal{K}}$ $\mathcal{K}^{+\mathcal{K}}$): total number of polynomial basis functions for polynomial order of K .

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Pulmonary [application](#page-3-0)

- **PCE** emulators live in a polynomial function space.
- PCE approximates the simulator by finite truncation

$$
f(\theta) = \sum_{j=0}^{\mathcal{J}-1} z_j \Psi_j(\theta), \quad \Psi_j(\theta) = \prod_{i=1}^d \psi_{ij}(\theta_i)
$$
 (9)

where z_j : polynomial coefficients corresponding to a specific family of polynomials; $\Psi_i(\theta)$: multivariate polynomials for $\theta = (\theta_1, \dots, \theta_d)$, constructed from a product of univariate polynomials $\psi_{ij}(\theta_i);~\mathcal{J}=\binom{d+\mathcal{K}}{\mathcal{K}}$ $\mathcal{K}^{+\mathcal{K}}$): total number of polynomial basis functions for polynomial order of K .

Fit independent PCEs for each output time point: $f(\boldsymbol{\theta},t)=\sum_{j=0}^{\mathcal{J}-1} z_{jt} \Psi_j(\boldsymbol{\theta}).$

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Pulmonary [application](#page-3-0)

- **PCE** emulators live in a polynomial function space.
- PCE approximates the simulator by finite truncation

$$
f(\theta) = \sum_{j=0}^{\mathcal{J}-1} z_j \Psi_j(\theta), \quad \Psi_j(\theta) = \prod_{i=1}^d \psi_{ij}(\theta_i)
$$
 (9)

where z_j : polynomial coefficients corresponding to a specific family of polynomials; $\Psi_i(\theta)$: multivariate polynomials for $\theta = (\theta_1, \dots, \theta_d)$, constructed from a product of univariate polynomials $\psi_{ij}(\theta_i);~\mathcal{J}=\binom{d+\mathcal{K}}{\mathcal{K}}$ $\mathcal{K}^{+\mathcal{K}}$): total number of polynomial basis functions for polynomial order of K .

Fit independent PCEs for each output time point:

$$
f(\boldsymbol{\theta},t)=\sum_{j=0}^{\mathcal{J}-1} z_{jt} \Psi_j(\boldsymbol{\theta}).
$$

Fit independent PCEs for each PCA score: $c_k(\boldsymbol{\theta}) = \sum_{j=0}^{\mathcal{J}-1} z_{jk} \Psi_j(\boldsymbol{\theta}).$

Workflow

 2990 13 / 36

Forward problem

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Pulmonary [application](#page-3-0)

Investigate (1) effect of GP kernel type, PCE polynomial order, and training size on predictive performance; (2) time versus PCA representation; (3) PCE versus GP

Forward problem

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Pulmonary [application](#page-3-0)

- Investigate (1) effect of GP kernel type, PCE polynomial order, and training size on predictive performance; (2) time versus PCA representation; (3) PCE versus GP
- \blacksquare Error in output space:

$$
\text{MSE}(\boldsymbol{\theta}_{j}^{\text{test}}) = \frac{1}{m} \sum_{i=1}^{m} \left(y_{i} - \mathcal{M}(\boldsymbol{\theta}_{j}^{\text{test}}, t_{i}) \right)^{2}, \quad (10)
$$

where $\mathcal{M}(.)$: emulator (GP/PCE) prediction

Results - forward problem

Mihaela Paun

[Overview of](#page-1-0)

Pulmonary [application](#page-3-0)

Best methods: GP-time and GP-PCA with 1000 training points.

Inverse problem

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Pulmonary [application](#page-3-0)

Gradient-based optimisation using the emulators on simulated and noise-free data

16 / 36

 QQ

重

イロト イ押 トイヨ トイヨ トー

Inverse problem

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Pulmonary [application](#page-3-0)

Gradient-based optimisation using the emulators on simulated and noise-free data

■ Output error:

$$
\text{MSE}(\hat{\boldsymbol{\theta}}_j) = \frac{1}{m} \sum_{i=1}^m \left(y_i - f(\hat{\boldsymbol{\theta}}_j, t_i) \right)^2, \quad (11)
$$

where $\hat{\boldsymbol{\theta}}_j$: inferred parameter vector for j^{th} test data set, $f(.)$: simulator output.

Inverse problem

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Pulmonary [application](#page-3-0)

Gradient-based optimisation using the emulators on simulated and noise-free data

■ Output error:

$$
\text{MSE}(\hat{\boldsymbol{\theta}}_j) = \frac{1}{m} \sum_{i=1}^m \left(y_i - f(\hat{\boldsymbol{\theta}}_j, t_i) \right)^2, \quad (11)
$$

where $\hat{\boldsymbol{\theta}}_j$: inferred parameter vector for j^{th} test data set, $f(.)$: simulator output.

Input (parameter) error:

$$
RSE(\hat{\theta}_j) = \sum_{l=1}^d \left(\frac{\theta_{j,l}^{\text{test}} - \hat{\theta}_{j,l}}{\theta_{j,l}^{\text{test}}}\right)^2.
$$
 (12)

K ロ メ イ 団 メ マ ヨ メ ス ヨ メ ニ ヨ QQQ 16 / 36

Results - inverse problem

Mihaela Paun

[Overview of](#page-1-0)

Pulmonary [application](#page-3-0)

Best methods: GP-time and GP-PCA with 1000 training points.

Final remarks

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Pulmonary [application](#page-3-0)

We have constructed surrogates models for the pulmonary blood pressure with GPs and PCEs for two output representations: time series and PCA.

18 / 36

 QQQ

重

イロト イ押 トイヨ トイヨ トー
Final remarks

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

Pulmonary [application](#page-3-0)

- We have constructed surrogates models for the pulmonary blood pressure with GPs and PCEs for two output representations: time series and PCA.
- **Forward problem: we have assessed the effect of different** settings (GP kernel, PCE polynomial order, training size) on output prediction.

Final remarks

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

Pulmonary [application](#page-3-0)

- We have constructed surrogates models for the pulmonary blood pressure with GPs and PCEs for two output representations: time series and PCA.
- **Forward problem: we have assessed the effect of different** settings (GP kernel, PCE polynomial order, training size) on output prediction.
- \blacksquare We have taken forward the best settings w.r.t. the forward problem and assessed inference accuracy.

Final remarks

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

Pulmonary [application](#page-3-0)

- We have constructed surrogates models for the pulmonary blood pressure with GPs and PCEs for two output representations: time series and PCA.
- **Forward problem: we have assessed the effect of different** settings (GP kernel, PCE polynomial order, training size) on output prediction.
- \blacksquare We have taken forward the best settings w.r.t. the forward problem and assessed inference accuracy.
- **Finding: best methods are GP-time and GP-PCA with** 1000 training points for forward and inverse problems.

Table of contents

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Stents [application](#page-39-0)

1 [Overview of applications](#page-1-0)

2 [Pulmonary application](#page-3-0)

3 [Stents application](#page-39-0)

イロト イ押 トイヨ トイヨ トー ă. $2Q$ 19 / 36

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Stents [application](#page-39-0) Stent implantation with antiproliferative drugs treats obstructive coronary artery disease

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Stents [application](#page-39-0) Stent implantation with antiproliferative drugs treats obstructive coronary artery disease

20 / 36

 QQ

E

イロト イ押 トイヨ トイヨ トー

Safety: maintain drug levels below a toxic level

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

Stents [application](#page-39-0) ■ Stent implantation with antiproliferative drugs treats obstructive coronary artery disease

- Safety: maintain drug levels below a toxic level
- Efficacy: saturate with drug receptors target cells in $\mathcal{L}_{\mathcal{A}}$ arterial wall long enough

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

Stents [application](#page-39-0) ■ Stent implantation with antiproliferative drugs treats obstructive coronary artery disease

- Safety: maintain drug levels below a toxic level
- Efficacy: saturate with drug receptors target cells in arterial wall long enough
- Aim: find optimum stent design parameters to balance safety and efficacy

Stents model

Stents optimisation

Mihaela Paun

Conventional Bayesian optimisation

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Stents [application](#page-39-0) ■ Bayesian optimisation (BO): global method suitable for computationally expensive OFs

> イロト イ押 トイヨ トイヨ トー 重 QQQ 23 / 36

Conventional Bayesian optimisation

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Stents [application](#page-39-0) ■ Bayesian optimisation (BO): global method suitable for computationally expensive OFs

■ Conventional BO is unconstrained

Conventional Bayesian optimisation

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

- Bayesian optimisation (BO): global method suitable for computationally expensive OFs
- Conventional BO is unconstrained
- BO builds a surrogate model of $f(\mathbf{x})$ (with Gaussian Processes, GPs)

Acquisition functions

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Stents [application](#page-39-0) ■ BO maximises a computationally cheap acquisition function (AF) by balancing exploration (surrogate uncertainty) and exploitation (low surrogate values)

Acquisition functions

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Stents [application](#page-39-0) ■ BO maximises a computationally cheap acquisition function (AF) by balancing exploration (surrogate uncertainty) and exploitation (low surrogate values) Upper confidence bound (UCB):

$$
\alpha_{\text{UCB}}(\textbf{x}) = -m(\textbf{x}) + \beta \sigma(\textbf{x})
$$

where $m(.)$, $\sigma(.)$: GP posterior predictive mean & standard deviation

Acquisition functions

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

Stents [application](#page-39-0) ■ BO maximises a computationally cheap acquisition function (AF) by balancing exploration (surrogate uncertainty) and exploitation (low surrogate values) Upper confidence bound (UCB):

$$
\alpha_{\mathrm{UCB}}(\mathbf{x}) = -m(\mathbf{x}) + \beta \sigma(\mathbf{x})
$$

where $m(.)$, $\sigma(.)$: GP posterior predictive mean & standard deviation

Expected improvement (EI):

$$
\alpha_{\text{EI}}(\mathbf{x}) = (f_{\min} - m(\mathbf{x}))\Phi\left(\frac{f_{\min} - m(\mathbf{x})}{\sigma(\mathbf{x})}\right) + \frac{\sigma(\mathbf{x})\phi\left(\frac{f_{\min} - m(\mathbf{x})}{\sigma(\mathbf{x})}\right)}{\sigma(\mathbf{x})}
$$

24 / 36

Figure: Source: <https://medium.com/analytics-vidhya/bayesian-optimization-9ddb3aff0eb4>

Mihaela Paun

[Overview of](#page-1-0)

Stents [application](#page-39-0)

É 299 26 / 36

Mihaela Paun

[Overview of](#page-1-0)

Stents [application](#page-39-0)

É $2Q$ 27 / 36

Mihaela Paun

[Overview of](#page-1-0)

Stents [application](#page-39-0)

E. 299 28 / 36

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Stents [application](#page-39-0)

E Learn constraint function with GP classifier or regression

29 / 36

 Ω

メロメメ 御 メメ きょくきょうき

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Stents [application](#page-39-0)

- **E** Learn constraint function with GP classifier or regression
- GP-classifier based methods use predicted probability of constraint satisfaction:

29 / 36

 QQQ

 \Rightarrow

イロト イ押 トイヨ トイヨ トー

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Stents [application](#page-39-0)

- **E** Learn constraint function with GP classifier or regression
- GP-classifier based methods use predicted probability of constraint satisfaction:

■ Constrained (C) \rightarrow CEI, CUCB

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

- **E** Learn constraint function with GP classifier or regression
- GP-classifier based methods use predicted probability of constraint satisfaction:
	- Constrained (C) \rightarrow CEI, CUCB
	- Asymmetric entropy $(AE) \rightarrow EI-AE$, UCB-AE

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

- **E** Learn constraint function with GP classifier or regression
- GP-classifier based methods use predicted probability of constraint satisfaction:
	- Constrained (C) \rightarrow CEI, CUCB
	- **Asymmetric entropy (AE)** \rightarrow **EI-AE, UCB-AE**
- GP-regression based methods enforce a penalty in the critical input domain:
	- **Augmented Lagrangian (AL)** \rightarrow **EI-AL, UCB-AL**

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

- **E** Learn constraint function with GP classifier or regression
- GP-classifier based methods use predicted probability of constraint satisfaction:
	- Constrained (C) \rightarrow CEI, CUCB
	- **Asymmetric entropy (AE)** \rightarrow **EI-AE, UCB-AE**
- GP-regression based methods enforce a penalty in the critical input domain:
	- **Augmented Lagrangian (AL)** \rightarrow **EI-AL, UCB-AL**
	- **Barrier method (BM)** \rightarrow **EI-BM, UCB-BM, Mean-BM**

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

Stents [application](#page-39-0)

- **E** Learn constraint function with GP classifier or regression
- GP-classifier based methods use predicted probability of constraint satisfaction:
	- Constrained (C) \rightarrow CEI, CUCB
	- **Asymmetric entropy (AE)** \rightarrow **EI-AE, UCB-AE**
- GP-regression based methods enforce a penalty in the critical input domain:
	- **Augmented Lagrangian (AL)** \rightarrow **EI-AL, UCB-AL**
	- **Barrier method (BM)** \rightarrow **EI-BM, UCB-BM, Mean-BM**

K ロ メ イ 団 メ マ ヨ メ ス ヨ メ ニ ヨ

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Stents [application](#page-39-0) ■ Constrained (C) \rightarrow CEI, CUCB:

メロトメ 御 トメ 君 トメ 君 トッ 君 Ω 30 / 36

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Stents [application](#page-39-0) Gonstrained $(C) \rightarrow$ CEI, CUCB:

$$
\alpha_{\mathrm{CEI/CUCB}}(\mathbf{x}) = \alpha_{\mathrm{EI/UCB}}(\mathbf{x}) \prod_{j=1}^{m} p(c_j(\mathbf{x}) \leq 0)
$$

where $p(c(x) \le 0)$: predicted probability of constraint satisfaction.

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Stents [application](#page-39-0) ■ Constrained (C) \rightarrow CEI, CUCB:

$$
\alpha_{\mathrm{CEI}/\mathrm{CUCB}}(\mathbf{x}) = \alpha_{\mathrm{EI}/\mathrm{UCB}}(\mathbf{x}) \prod_{j=1}^{m} p(c_j(\mathbf{x}) \leq 0)
$$

where $p(c(x) \le 0)$: predicted probability of constraint satisfaction.

Asymmetric entropy $(AE) \rightarrow EI-AE$, UCB-AE:

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Stents [application](#page-39-0) ■ Constrained (C) \rightarrow CEI, CUCB:

$$
\alpha_{\mathrm{CEI}/\mathrm{CUCB}}(\mathbf{x}) = \alpha_{\mathrm{EI}/\mathrm{UCB}}(\mathbf{x}) \prod_{j=1}^{m} p(c_j(\mathbf{x}) \leq 0)
$$

where $p(c(x) \le 0)$: predicted probability of constraint satisfaction.

Asymmetric entropy $(AE) \rightarrow EI-AE$, UCB-AE:

$$
\alpha_{\mathrm{EI-AE/UCB-AE}}(\textbf{x}) = \alpha_{\mathrm{EI/UCB}}^{\omega_1}(\textbf{x}) S^{\omega_2}_{\textbf{a}}(\textbf{x})
$$

30 / 36

 Ω

イロト イ押 トイヨト イヨト 一番

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Stents [application](#page-39-0) ■ Constrained (C) \rightarrow CEI, CUCB:

$$
\alpha_{\mathrm{CEI}/\mathrm{CUCB}}(\mathbf{x}) = \alpha_{\mathrm{EI}/\mathrm{UCB}}(\mathbf{x}) \prod_{j=1}^{m} p(c_j(\mathbf{x}) \leq 0)
$$

where $p(c(x) \le 0)$: predicted probability of constraint satisfaction.

Asymmetric entropy (AE) \rightarrow **EI-AE, UCB-AE:**

$$
\alpha_{\mathrm{EI-AE/UCB-AE}}(\textbf{x}) = \alpha_{\mathrm{EI/UCB}}^{\omega_1}(\textbf{x}) S^{\omega_2}_{\textbf{a}}(\textbf{x})
$$

$$
S_a(\mathbf{x}) = \frac{2 \prod_{j=1}^m p(c_j(\mathbf{x}) \leq 0)(1 - \prod_{j=1}^m p(c_j(\mathbf{x}) \leq 0))}{\prod_{j=1}^m p(c_j(\mathbf{x}) \leq 0) - 2w \prod_{j=1}^m p(c_j(\mathbf{x}) \leq 0) + w^2}
$$

where $w = 2/3, \omega_1 = 1, \omega_2 = 5$. .
K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ X 경 η an

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Stents [application](#page-39-0) Augmented Lagrangian $(AL) \rightarrow EL$ -AL, UCB-AL:

イロト イ押 トイヨ トイヨ トー 重 Ω 31 / 36

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Stents [application](#page-39-0)

■ Augmented Lagrangian
$$
(AL) \rightarrow EL-AL
$$
, UCB-AL:

$$
L_{\text{A}}(\mathbf{x}; \boldsymbol{\lambda}, \rho) = f(\mathbf{x}) + \boldsymbol{\lambda}^{\text{T}} \mathbf{c}(\mathbf{x}) + \frac{1}{2\rho} \sum_{j=1}^{m} c_j(\mathbf{x})^2
$$

31 / 36

 QQ

 \Rightarrow

イロト イ押 トイヨ トイヨ トー

with tuning parameters ρ : penalty, λ : Lagrange multipliers.

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Stents [application](#page-39-0)

■ Augmented Lagrangian
$$
(AL) \rightarrow EL-AL
$$
, UCB-AL:

$$
L_{\text{A}}(\mathbf{x}; \boldsymbol{\lambda}, \rho) = f(\mathbf{x}) + \boldsymbol{\lambda}^{\text{T}} \mathbf{c}(\mathbf{x}) + \frac{1}{2\rho} \sum_{j=1}^{m} c_j(\mathbf{x})^2
$$

with tuning parameters ρ : penalty, λ : Lagrange multipliers.

$$
Y(\mathbf{x}) = Y_f(\mathbf{x}) + \boldsymbol{\lambda}^{\mathrm{T}} \mathbf{Y}_c(\mathbf{x}) + \frac{1}{2\rho} \sum_{j=1}^m (Y_{c_j}(\mathbf{x}))^2
$$

31 / 36

 QQQ

重

イロト イ押 トイヨ トイヨ トー

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Stents [application](#page-39-0)

■ Augmented Lagrangian
$$
(AL) \rightarrow EL-AL
$$
, UCB-AL:

$$
L_{\text{A}}(\mathbf{x}; \boldsymbol{\lambda}, \rho) = f(\mathbf{x}) + \boldsymbol{\lambda}^{\text{T}} \mathbf{c}(\mathbf{x}) + \frac{1}{2\rho} \sum_{j=1}^{m} c_j(\mathbf{x})^2
$$

with tuning parameters ρ : penalty, λ : Lagrange multipliers.

$$
Y(\mathbf{x}) = Y_f(\mathbf{x}) + \lambda^{\mathrm{T}} \mathbf{Y}_c(\mathbf{x}) + \frac{1}{2\rho} \sum_{j=1}^m (Y_{c_j}(\mathbf{x}))^2
$$

 $\alpha_\text{EI-AL}(\mathsf{x}) = \frac{1}{\mathsf{7}}$ \sum T $t=1$ max $(0, y_{\text{min}} - y^{t}(\mathbf{x})),$ via Monte Carlo

> KO KARA KE KAEK LE YO GO 31 / 36
Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Stents [application](#page-39-0)

■ Augmented Lagrangian
$$
(AL) \rightarrow EL-AL
$$
, UCB-AL:

$$
L_{\text{A}}(\mathbf{x}; \boldsymbol{\lambda}, \rho) = f(\mathbf{x}) + \boldsymbol{\lambda}^{\text{T}} \mathbf{c}(\mathbf{x}) + \frac{1}{2\rho} \sum_{j=1}^{m} c_j(\mathbf{x})^2
$$

with tuning parameters ρ : penalty, λ : Lagrange multipliers.

$$
Y(\mathbf{x}) = Y_f(\mathbf{x}) + \lambda^{\mathrm{T}} \mathbf{Y}_c(\mathbf{x}) + \frac{1}{2\rho} \sum_{j=1}^m (Y_{c_j}(\mathbf{x}))^2
$$

 $\alpha_\text{EI-AL}(\mathsf{x}) = \frac{1}{\mathsf{7}}$ \sum T $t=1$ max $(0, y_{\text{min}} - y^{t}(\mathbf{x})),$ via Monte Carlo

 $\alpha_{\text{UCB-AL}} = -m_Y(\mathbf{x}) + \beta \sigma_Y(\mathbf{x})$ $\alpha_{\text{UCB-AL}} = -m_Y(\mathbf{x}) + \beta \sigma_Y(\mathbf{x})$ [,](#page-73-0) a[n](#page-68-0)a[l](#page-38-0)[y](#page-38-0)[ti](#page-39-0)[ca](#page-89-0)l [f](#page-39-0)[or](#page-89-0)m -209 31 / 36

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Stents [application](#page-39-0)

Barrier method (BM) \rightarrow **EI-BM, UCB-BM, Mean-BM:**

イロト イ押 トイヨ トイヨ トー 重 QQ 32 / 36

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Stents [application](#page-39-0) **Barrier method (BM)** \rightarrow **EI-BM, UCB-BM, Mean-BM:**

$$
B(\mathbf{x};\gamma) = f(\mathbf{x}) - \frac{1}{\gamma} \sum_{j=1}^{m} \left(\log \left(\max \left(-c_j(\mathbf{x}), 10^{-10} \right) \right) \right)
$$

32 / 36

 QQQ

重

イロト イ押 トイヨ トイヨ トー

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Stents [application](#page-39-0) **Barrier method (BM)** \rightarrow **EI-BM, UCB-BM, Mean-BM:**

$$
B(\mathbf{x};\gamma) = f(\mathbf{x}) - \frac{1}{\gamma} \sum_{j=1}^{m} \left(\log \left(\max \left(-c_j(\mathbf{x}), 10^{-10} \right) \right) \right)
$$

$$
Y(\mathbf{x}) = Y_f(\mathbf{x}) - \frac{1}{\gamma} \sum_{j=1}^{m} \log \bigg(\max \bigg(-Y_{c_j}(\mathbf{x}), 10^{-10} \bigg) \bigg)
$$

32 / 36

 QQQ

重

イロト イ押 トイヨ トイヨ トー

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Stents [application](#page-39-0) **Barrier method (BM)** \rightarrow **EI-BM, UCB-BM, Mean-BM:**

$$
B(\mathbf{x}; \gamma) = f(\mathbf{x}) - \frac{1}{\gamma} \sum_{j=1}^{m} \left(\log \left(\max \left(-c_j(\mathbf{x}), 10^{-10} \right) \right) \right)
$$

$$
Y(\mathbf{x}) = Y_f(\mathbf{x}) - \frac{1}{\gamma} \sum_{j=1}^{m} \log \bigg(\max \bigg(-Y_{c_j}(\mathbf{x}), 10^{-10} \bigg) \bigg)
$$

32 / 36

 QQ

重

イロト イ押 トイヨ トイヨ トー

Set
$$
1/\gamma = \sigma_f^2
$$
, and $\mathbb{E}(Y(\mathbf{x})) = m_f(\mathbf{x}) - A$

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Stents [application](#page-39-0) **Barrier method (BM)** \rightarrow **EI-BM, UCB-BM, Mean-BM:**

$$
B(\mathbf{x}; \gamma) = f(\mathbf{x}) - \frac{1}{\gamma} \sum_{j=1}^{m} \left(\log \left(\max \left(-c_j(\mathbf{x}), 10^{-10} \right) \right) \right)
$$

$$
Y(\mathbf{x}) = Y_f(\mathbf{x}) - \frac{1}{\gamma} \sum_{j=1}^{m} \log \bigg(\max \bigg(-Y_{c_j}(\mathbf{x}), 10^{-10} \bigg) \bigg)
$$

Set $1/\gamma = \sigma_f^2$, and $\mathbb{E}(Y(\mathbf{x})) = m_f(\mathbf{x}) - A$

$$
A = \sigma_f^2 \sum_{j=1}^m \left(\log \left(\max \left(-m_{c_j}(\mathbf{x}), 10^{-10} \right) \right) + \frac{\sigma_{c_j}^2(\mathbf{x})}{2m_{c_j}^2(\mathbf{x})} \right)
$$

イロト イ押 トイヨト イヨト 一番 Ω 32 / 36

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Stents [application](#page-39-0) **Barrier method (BM)** \rightarrow **EI-BM, UCB-BM, Mean-BM:**

$$
B(\mathbf{x}; \gamma) = f(\mathbf{x}) - \frac{1}{\gamma} \sum_{j=1}^{m} \left(\log \left(\max \left(-c_j(\mathbf{x}), 10^{-10} \right) \right) \right)
$$

$$
Y(\mathbf{x}) = Y_f(\mathbf{x}) - \frac{1}{\gamma} \sum_{j=1}^{m} \log \bigg(\max \bigg(-Y_{c_j}(\mathbf{x}), 10^{-10} \bigg) \bigg)
$$

Set $1/\gamma = \sigma_f^2$, and $\mathbb{E}(Y(\mathbf{x})) = m_f(\mathbf{x}) - A$

$$
A = \sigma_f^2 \sum_{j=1}^m \left(\log \left(\max \left(-m_{c_j}(\mathbf{x}), 10^{-10} \right) \right) + \frac{\sigma_{c_j}^2(\mathbf{x})}{2m_{c_j}^2(\mathbf{x})} \right)
$$

$$
\alpha_{\text{Mean-BM}}(\mathbf{x}) = -m_f(\mathbf{x}) + A
$$

KO KARK KEK KEK EL YAN 32 / 36

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Stents [application](#page-39-0) **Barrier method (BM)** \rightarrow **EI-BM, UCB-BM, Mean-BM:**

$$
B(\mathbf{x}; \gamma) = f(\mathbf{x}) - \frac{1}{\gamma} \sum_{j=1}^{m} \left(\log \left(\max \left(-c_j(\mathbf{x}), 10^{-10} \right) \right) \right)
$$

$$
Y(\mathbf{x}) = Y_f(\mathbf{x}) - \frac{1}{\gamma} \sum_{j=1}^{m} \log \bigg(\max \bigg(-Y_{c_j}(\mathbf{x}), 10^{-10} \bigg) \bigg)
$$

Set $1/\gamma = \sigma_f^2$, and $\mathbb{E}(Y(\mathbf{x})) = m_f(\mathbf{x}) - A$

$$
A = \sigma_f^2 \sum_{j=1}^m \left(\log \left(\max \left(-m_{c_j}(\mathbf{x}), 10^{-10} \right) \right) + \frac{\sigma_{c_j}^2(\mathbf{x})}{2m_{c_j}^2(\mathbf{x})} \right)
$$

$$
\alpha_{\text{Mean-BM}}(\mathbf{x}) = -m_f(\mathbf{x}) + A
$$

$$
\alpha_{\text{EL-BM/UCB-BM}}(\mathbf{x}) = \alpha_{\text{EI/UCB}}(\mathbf{x}) + A
$$

Mihaela Paun

[Overview of](#page-1-0)

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Stents [application](#page-39-0)

(a) :
$$
f(x) = \sin(x)
$$
, $c(x) = x - 4$, $0 \le x \le 2\pi$

イロト イ押 トイヨ トイヨ トー G. 299 33 / 36

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Stents [application](#page-39-0)

(b) : $f(x) = -2x$, $c(x) = x$, $-10 \le x \le 10$

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Method comparison

Using GP

Stents

Accuracy: Incumbent minimum objective function (OF) value Accuracy-efficiency: low OF value and low % of points in the critical region

Stents optimisation results

イロト イ押ト イヨト イヨト É $na\alpha$ 35 / 36

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

[Overview of](#page-1-0)

Stents [application](#page-39-0) ■ We have employed constrained Bayesian optimisation to tackle the high computing times of the stents model and a difficult constrained optimisation problem, with the constrained global optimum at the constraint boundary.

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

- We have employed constrained Bayesian optimisation to tackle the high computing times of the stents model and a difficult constrained optimisation problem, with the constrained global optimum at the constraint boundary.
- We have performed an assessment of these methods with respect to accuracy and efficiency on several problems.

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

- We have employed constrained Bayesian optimisation to tackle the high computing times of the stents model and a difficult constrained optimisation problem, with the constrained global optimum at the constraint boundary.
- We have performed an assessment of these methods with respect to accuracy and efficiency on several problems.
- Best average method is Mean-BM wrt both accuracy and $\mathcal{L}_{\mathcal{A}}$ accuracy-efficiency

Using GP emulation in [cardiovascular](#page-0-0) modelling

Mihaela Paun

- We have employed constrained Bayesian optimisation to tackle the high computing times of the stents model and a difficult constrained optimisation problem, with the constrained global optimum at the constraint boundary.
- We have performed an assessment of these methods with respect to accuracy and efficiency on several problems.
- Best average method is Mean-BM wrt both accuracy and $\mathcal{L}_{\mathcal{A}}$ accuracy-efficiency
- No single best method across all applications