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m Pulmonary hypertension (PH): high blood pressure in the
pulmonary arteries, which are stiff and thick

m If PH left untreated — right-heart damage, heart failure

m PH diagnosis: invasively measure pulmonary pressure with
right-heart catheterisation — excessive bleeding, partial
lung collapse

m Aim: Develop a non-invasive alternative (flow-based).
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Pulmonary f(@.:)|7 ~ GP(0, RH,)7 (6)

application

m Assume separability in kernels between inputs 8 and t:

k((ti,0)), (t;,0;)) = ke(ti, tj) ko (i, 0;), (7)

m Represent full covariance matrix as the Kronecker product
between two smaller matrices:

k(eo,t, By:) = Ki(t, 1) © Ko(O, O). (8)
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order, and training size on predictive performance; (2)
time versus PCA representation; (3) PCE versus GP
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m

2
MSE(65*) = %Z <}/i - M(6;*, ti)) ; (10)

i=1

where M(.): emulator (GP/PCE) prediction
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blood pressure with GPs and PCEs for two output
representations: time series and PCA.

ey m Forward problem: we have assessed the effect of different

application . . L. 3

settings (GP kernel, PCE polynomial order, training size)
on output prediction.

m We have taken forward the best settings w.r.t. the forward
problem and assessed inference accuracy.

m Finding: best methods are GP-time and GP-PCA with
1000 training points for forward and inverse problems.
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m Safety: maintain drug levels below a toxic level

m Efficacy: saturate with drug receptors target cells in
arterial wall long enough

m Aim: find optimum stent design parameters to balance
safety and efficacy
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- Initial drug mass Fluid-dynamics model for the blood
- Polymer coating thickness flow in the lumen (Navier Stokes

- Drug diffusion coefficient equations)

Fluid flow across the (pourous)
arterial wall (Darcy's law)

Drug transport: drug release from
the stent coating => uptake by the
L arterial wall (therapeutic aspect)

0 Strut and exhaust via blood flow

!< (efficiency loss and possible toxic
effect) ; advection-diffusion-
reaction equation

Stents
application Domains:

J= =

Lumen Wwall

159 Coating

(20 axisymmetric eometry representing 2 blood vessel)
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e function (AF) by balancing exploration (surrogate
uncertainty) and exploitation (low surrogate values)

m Upper confidence bound (UCB):

Mihaela Paun

aycp(x) = —m(x) + Bo(x)

e where m(.), o(.): GP posterior predictive mean &
standard deviation

m Expected improvement (El):

ag1(x) = (finin — m(x))® <fmma—(xr)n(X)> +

(Mg )
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Stents m Augmented Lagrangian (AL) — EI-AL, UCB-AL
pplication
m Barrier method (BM) — EI-BM, UCB-BM, Mean-BM
Acquisition function
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j=1

where p(c(x) < 0): predicted probability of constraint
Stents satisfaction.

application m Asymmetric entropy (AE) — EI-AE, UCB-AE:

agLAE/UCB-AE(X) = app yop (%) 557 (X)

2[1;% pci(x) < 0)(1 — [I;Z, p(ci(x) <0))
Hjmzl p(ci(x) <0) — 2WH_] 1 P(ci(x) <0) + w?

where w =2/3,w; = 1,wy = 5.

Sa(x) =
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application (a) : f(x) =sin(x), c(x)=x—4,

(b): f(x) =—-2x, c(x)=x, —-10<x<10

(c) : f(x1,x) = —(cos((x1 — 0.1)x2))> — x1 sin(3x1 + x2),
c(x1, %) = xg+x3— (2 cos(t)—% cos(2t)—% cos(3t)—% cos(4t)) —(2sin(t))?

t = arctan (ﬁ) 225 < x <25, —25<x <1.75
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Method comparison
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0003652 0.07052 0 ’ [SWY 5.3580-06 0.009913  0.1305  7.145e-07

Mihaela Paun

SN 001617 00007686 0.07403  0.02488 Y S 003511 0.002099  0.1294 o 06

0.01012 - 3.36e-06 2.101e-06 0.02542

0.00695 0.07274 0.2598  6.349e-09 0.4

cucB 0.001968  0.000863 0.01983
EI-BM 0.01303 - oocce7 [HKEIN ootass | N

Stents UCB-AL 0.2874 0.1912

application 0 A . S s
e \© ) © 302 ¢ o< o
é\\\‘c"o\éa o(\°‘°“ «o“‘“ﬁz‘\ 7 é\‘\\‘BO\ ‘00“0\0 < e *
Example Example
Accuracy Accuracy-Efficiency

Accuracy: Incumbent minimum objective function (OF) value
Accuracy-efficiency: low OF value and low % of points in the
critical region
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difficult constrained optimisation problem, with the
constrained global optimum at the constraint boundary.

= m We have performed an assessment of these methods with
application ..
respect to accuracy and efficiency on several problems.

m Best average method is Mean-BM wrt both accuracy and
accuracy-efficiency

m No single best method across all applications
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