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Background

Pulmonary hypertension (PH): high blood pressure in the
pulmonary arteries, which are stiff and thick
If PH left untreated → right-heart damage, heart failure
PH diagnosis: invasively measure pulmonary pressure with
right-heart catheterisation → excessive bleeding, partial
lung collapse
Aim: Develop a non-invasive alternative (flow-based).
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Output representation

Emulator in simulator output space (time series):

f (θ) = y = (y1, . . . ym), (1)

Emulator in PCA-reduced space:

f (θ) = µ+

q∑
j=1

cj(θ)γ j + ϵ(θ) (2)

where µ: mean of training set; Γq = (γ1, . . . ,γq): basis;
cj(θ): coefficient (or PC score), ϵ(θ): residual.
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Emulator PCA

Emulator in PCA-reduced space:

f (θ) = µ+

q∑
j=1

cj(θ)γ j + ϵ(θ) (3)

Fit independent GP emulators for each PC score:

cj(Θ)|γ ∼ GP(0,K|γ), j = 1, . . . , q, (4)

where Θ = (θ1, . . . ,θn): input set, K = [k(θl ,θp)]
n
l ,p=1:

covariance matrix, k(·): kernel
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Emulator time series

Emulator in simulator output space (time series):

f (θ) = y = (y1, . . . ym), (5)

GP input: (θ, t) → univariate output: f (θ, t) = yt

f (Θθ,t)|γ̃ ∼ GP(0, K̃|γ̃), (6)

Assume separability in kernels between inputs θ and t:

k((ti ,θi ), (tj ,θj)) = kt(ti , tj)kθ(θi ,θj), (7)

Represent full covariance matrix as the Kronecker product
between two smaller matrices:

K̃(Θθ,t ,Θθ,t) = Kt(t, t)⊗Kθ(Θ,Θ). (8)
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PCE

PCE emulators live in a polynomial function space.

PCE approximates the simulator by finite truncation

f (θ) =
J−1∑
j=0

zjΨj(θ), Ψj(θ) =
d∏

i=1

ψij(θi ) (9)

where zj : polynomial coefficients corresponding to a
specific family of polynomials; Ψj(θ): multivariate
polynomials for θ = (θ1, . . . θd), constructed from a
product of univariate polynomials ψij(θi ); J =

(d+K
K

)
:

total number of polynomial basis functions for polynomial
order of K.
Fit independent PCEs for each output time point:
f (θ, t) =

∑J−1
j=0 zjtΨj(θ).

Fit independent PCEs for each PCA score:
ck(θ) =

∑J−1
j=0 zjkΨj(θ).
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Forward problem

Investigate (1) effect of GP kernel type, PCE polynomial
order, and training size on predictive performance; (2)
time versus PCA representation; (3) PCE versus GP

Error in output space:

MSE(θtest
j ) =

1

m

m∑
i=1

(
yi −M(θtest

j , ti )

)2

, (10)

where M(.): emulator (GP/PCE) prediction
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Results - forward problem

n=100

n=1000

Best methods: GP-time and GP-PCA with 1000 training points.

15 / 36



Using GP
emulation in
cardiovascular
modelling

Mihaela Paun

Overview of
applications

Pulmonary
application

Stents
application

Inverse problem

Gradient-based optimisation using the emulators on
simulated and noise-free data

Output error:

MSE(θ̂j) =
1

m

m∑
i=1

(
yi − f (θ̂j , ti )

)2

, (11)

where θ̂j : inferred parameter vector for j th test data set,
f (.): simulator output.

Input (parameter) error:

RSE(θ̂j) =
d∑

l=1

(
θtestj ,l − θ̂j ,l

θtestj ,l

)2

. (12)
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Results - inverse problem

n=100

n=1000

Best methods: GP-time and GP-PCA with 1000 training points.
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Final remarks

We have constructed surrogates models for the pulmonary
blood pressure with GPs and PCEs for two output
representations: time series and PCA.

Forward problem: we have assessed the effect of different
settings (GP kernel, PCE polynomial order, training size)
on output prediction.

We have taken forward the best settings w.r.t. the forward
problem and assessed inference accuracy.

Finding: best methods are GP-time and GP-PCA with
1000 training points for forward and inverse problems.
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Background

Stent implantation with antiproliferative drugs treats
obstructive coronary artery disease

Safety: maintain drug levels below a toxic level

Efficacy: saturate with drug receptors target cells in
arterial wall long enough

Aim: find optimum stent design parameters to balance
safety and efficacy
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Conventional Bayesian optimisation

Bayesian optimisation (BO): global method suitable for
computationally expensive OFs

Conventional BO is unconstrained

BO builds a surrogate model of f (x) (with Gaussian
Processes, GPs)
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Acquisition functions

BO maximises a computationally cheap acquisition
function (AF) by balancing exploration (surrogate
uncertainty) and exploitation (low surrogate values)

Upper confidence bound (UCB):

αUCB(x) = −m(x) + βσ(x)

where m(.), σ(.): GP posterior predictive mean &
standard deviation

Expected improvement (EI):

αEI(x) = (fmin −m(x))Φ

(
fmin −m(x)

σ(x)

)
+

σ(x)ϕ

(
fmin −m(x)

σ(x)

)
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Bayesian optimisation - Illustration

Figure: Source: https://medium.com/analytics-vidhya/bayesian-optimization-9ddb3aff0eb4
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Constrained BO

Learn constraint function with GP classifier or regression

GP-classifier based methods use predicted probability of
constraint satisfaction:

Constrained (C) → CEI, CUCB
Asymmetric entropy (AE) → EI-AE, UCB-AE

GP-regression based methods enforce a penalty in the
critical input domain:

Augmented Lagrangian (AL) → EI-AL, UCB-AL
Barrier method (BM) → EI-BM, UCB-BM, Mean-BM
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Constrained BO: GP-classifier based methods

Constrained (C) → CEI, CUCB:

αCEI/CUCB(x) = αEI/UCB(x)
m∏
j=1

p(cj(x) ≤ 0)

where p(c(x) ≤ 0): predicted probability of constraint
satisfaction.

Asymmetric entropy (AE) → EI-AE, UCB-AE:

αEI-AE/UCB-AE(x) = αω1

EI/UCB(x)S
ω2
a (x)

Sa(x) =
2
∏m

j=1 p(cj(x) ≤ 0)(1−
∏m

j=1 p(cj(x) ≤ 0))∏m
j=1 p(cj(x) ≤ 0)− 2w

∏m
j=1 p(cj(x) ≤ 0) + w2

where w = 2/3, ω1 = 1, ω2 = 5.
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Constrained BO: GP-regression based methods

Augmented Lagrangian (AL) → EI-AL, UCB-AL:

LA(x;λ, ρ) = f (x) + λTc(x) +
1

2ρ

m∑
j=1

cj(x)
2

with tuning parameters ρ: penalty, λ: Lagrange
multipliers.

Y (x) = Yf (x) + λTYc(x) +
1

2ρ

m∑
j=1

(Ycj (x))
2

αEI-AL(x) =
1

T

T∑
t=1

max(0, ymin − y t(x)), via Monte Carlo

αUCB-AL = −mY (x) + βσY (x), analytical form

31 / 36



Using GP
emulation in
cardiovascular
modelling

Mihaela Paun

Overview of
applications

Pulmonary
application

Stents
application

Constrained BO: GP-regression based methods

Augmented Lagrangian (AL) → EI-AL, UCB-AL:

LA(x;λ, ρ) = f (x) + λTc(x) +
1

2ρ

m∑
j=1

cj(x)
2

with tuning parameters ρ: penalty, λ: Lagrange
multipliers.

Y (x) = Yf (x) + λTYc(x) +
1

2ρ

m∑
j=1

(Ycj (x))
2

αEI-AL(x) =
1

T

T∑
t=1

max(0, ymin − y t(x)), via Monte Carlo

αUCB-AL = −mY (x) + βσY (x), analytical form

31 / 36



Using GP
emulation in
cardiovascular
modelling

Mihaela Paun

Overview of
applications

Pulmonary
application

Stents
application

Constrained BO: GP-regression based methods

Augmented Lagrangian (AL) → EI-AL, UCB-AL:

LA(x;λ, ρ) = f (x) + λTc(x) +
1

2ρ

m∑
j=1

cj(x)
2

with tuning parameters ρ: penalty, λ: Lagrange
multipliers.

Y (x) = Yf (x) + λTYc(x) +
1

2ρ

m∑
j=1

(Ycj (x))
2

αEI-AL(x) =
1

T

T∑
t=1

max(0, ymin − y t(x)), via Monte Carlo

αUCB-AL = −mY (x) + βσY (x), analytical form

31 / 36



Using GP
emulation in
cardiovascular
modelling

Mihaela Paun

Overview of
applications

Pulmonary
application

Stents
application

Constrained BO: GP-regression based methods

Augmented Lagrangian (AL) → EI-AL, UCB-AL:

LA(x;λ, ρ) = f (x) + λTc(x) +
1

2ρ

m∑
j=1

cj(x)
2

with tuning parameters ρ: penalty, λ: Lagrange
multipliers.

Y (x) = Yf (x) + λTYc(x) +
1

2ρ

m∑
j=1

(Ycj (x))
2

αEI-AL(x) =
1

T

T∑
t=1

max(0, ymin − y t(x)), via Monte Carlo

αUCB-AL = −mY (x) + βσY (x), analytical form

31 / 36



Using GP
emulation in
cardiovascular
modelling

Mihaela Paun

Overview of
applications

Pulmonary
application

Stents
application

Constrained BO: GP-regression based methods

Augmented Lagrangian (AL) → EI-AL, UCB-AL:

LA(x;λ, ρ) = f (x) + λTc(x) +
1

2ρ

m∑
j=1

cj(x)
2

with tuning parameters ρ: penalty, λ: Lagrange
multipliers.

Y (x) = Yf (x) + λTYc(x) +
1

2ρ

m∑
j=1

(Ycj (x))
2

αEI-AL(x) =
1

T

T∑
t=1

max(0, ymin − y t(x)), via Monte Carlo

αUCB-AL = −mY (x) + βσY (x), analytical form

31 / 36



Using GP
emulation in
cardiovascular
modelling

Mihaela Paun

Overview of
applications

Pulmonary
application

Stents
application

Constrained BO: GP-regression based methods

Barrier method (BM) → EI-BM, UCB-BM, Mean-BM:

B(x; γ) = f (x)− 1

γ

m∑
j=1

(
log

(
max

(
− cj(x), 10

−10

)))

Y (x) = Yf (x)−
1

γ

m∑
j=1

log

(
max

(
− Ycj (x), 10

−10

))
Set 1/γ = σ2f , and E(Y (x)) = mf (x)− A

A = σ2f

m∑
j=1

(
log

(
max

(
−mcj (x), 10

−10

))
+

σ2cj (x)

2m2
cj
(x)

)
αMean-BM(x) = −mf (x) + A

αEI-BM/UCB-BM(x) = αEI/UCB(x) + A
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Benchmark examples
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Monotonic example

Invalid region

Global minimum

(b) (c)

(a) : f (x) = sin(x), c(x) = x − 4, 0 ≤ x ≤ 2π

(b) : f (x) = −2x , c(x) = x , −10 ≤ x ≤ 10

(c) : f (x1, x2) = −(cos((x1 − 0.1)x2))
2 − x1 sin(3x1 + x2),

c(x1, x2) = x2
1+x2

2−
(
2 cos(t)−1

2
cos(2t)−1

4
cos(3t)−1

8
cos(4t)

)2

−(2 sin(t))2

t = arctan

(
x1
x2

)
, −2.25 ≤ x1 ≤ 2.5, −2.5 ≤ x2 ≤ 1.75
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)2

−(2 sin(t))2

t = arctan

(
x1
x2

)
, −2.25 ≤ x1 ≤ 2.5, −2.5 ≤ x2 ≤ 1.75
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Method comparison

Accuracy Accuracy-Efficiency

Accuracy: Incumbent minimum objective function (OF) value
Accuracy-efficiency: low OF value and low % of points in the
critical region
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Stents optimisation results
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Final remarks

We have employed constrained Bayesian optimisation to
tackle the high computing times of the stents model and a
difficult constrained optimisation problem, with the
constrained global optimum at the constraint boundary.

We have performed an assessment of these methods with
respect to accuracy and efficiency on several problems.

Best average method is Mean-BM wrt both accuracy and
accuracy-efficiency

No single best method across all applications
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