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Gene expression

DNA

RNA

Protein
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Gene expression time course data help us understand 
how genes switch on and off during a biological process



Differential gene expression – one sample test
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Data are noisy and high-dimensional (e.g. 20K genes) with signal-to-noise varying by orders of magnitude

Gaussian processes are useful for identifying genes with evidence of differential expression



Modelling counts data from RNA-sequencing  



Differential gene expression – two sample test

Gaussian likelihood

Counts likelihood 
(negative binomial)



Differential gene expression – spatial



Differential gene expression – spatial

Using a counts likelihood improves 
sensitivity to detect DE genes 



Code

https://github.com/ManchesterBioinference/GPcounts

Uses:

GPflow
Sparse variational inference
Non-Gaussian likelihoods (negative binomial)

Also implements branching kernel (discussed later)

https://github.com/ManchesterBioinference/GPcounts
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Heat-induced protein denaturation







Hierarchical Gaussian processes: GPmelt



Hierarchical Gaussian process



Hierarchical Gaussian process



Code

https://embl-community.io/grp-savitski/gpmelt

Uses:

GPyTorch
Hadamard multi-task GP regression 
Nextflow for whole pipeline 
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Embryonic development: transition from maternal to zygotic expression 

Newly transcribed “pre-mRNA” 
contains both introns and exons

The introns are spliced out to make 
mature mRNA containing only exons

Embryos inherit some mature mRNA 
from their mothers (maternal RNA)

mRNA produced by the embryo is 
called zygotic RNA



Embryonic development: transition from maternal to zygotic expression 



pre-mRNA expression precedes mature RNA production 



transcriptional rate pre-mRNA (introns) 

mRNA (exons) 

splicing rate 

mRNA degradation rate  

Drosophila splicing half-lives are short (median 2 min) so we make large      approximation   

as 

Modelling mRNA production & degradation 



pre-mRNA (intronic reads) 

splicing rate 

mRNA degradation rate  

How can we model pre-mRNA dynamics          and infer parameters? 

mRNA (exonic reads) 

Modelling mRNA production & degradation 



Low     
Long half-life

High    
Short half-life 

Modelling mRNA production & degradation 



Gaussian process estimation of half-lives  



Short half-life: cell-adhesion proteins, transcription factors

Long half-life: signalling receptor binding 

Zygotic transcripts exhibit a broad range of half-lives   



mRNA degradation shapes gene expression dynamics 



Code

https://github.com/ManchesterBioinference/GP_Transcription_Dynamics

Uses:

GPFlow (to implement latent force covariance) 
Tensorflow probability (for MCMC over hyper-parameters)



Talk outline

Biological applications: 

(1) Differential gene expression

(2) Protein melting curves

(3) mRNA production and degradation 

(4) Single-cell pseudotime and branching



Gaussian process model of branching dynamics
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Gaussian process model of branching dynamics



Gaussian process model of branching dynamics



Gaussian process model of branching dynamics



Joint distribution to two functions crossing at tp



Joint distribution of two datasets diverging at tp



Inference tasks



Application to gene expression time-series data



Modelling branching in single-cell gene expression data



Gaussian process models can be used  for pseudotime inference



Modelling branching in single-cell snapshot data



Code

https://github.com/ManchesterBioinference/BranchedGP/

Uses:

GPflow and Tensorflow
Sparse variational inference
Mean-field variational inference of branch labels 

https://github.com/ManchesterBioinference/GPcounts


Summary

Differential expression: Using GPs to model differential expression avoids 
assuming simple parametric forms (alternative to negative binomial GLMs)

Protein melting: Hierarchical GP models can be used to share data across 
complex experimental designs (e.g. different protein isoforms/conditions). 

mRNA degradation: GPs are tractable under linear operations, so we can 
use a simple linear ODE with a GP “force” term to model degradation.

Branching: GPs are tractable under marginalization, so by marginalized out 
the point where two samples cross one can derive a branching model 
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