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Presentation Overview 

• Motivation

• Mathematical Formulation 

• Design of Experiments Workflow

• Transfer Learning Surrogate Models

• Bayesian Optimisation 

• Experimental Results 

• Summary and Extensions 
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Motivation

• Diagnostic device for detect levels 
of gene expressions a.k.a. RNA 
molecules in the blood 

• PCR based for quicker, cheaper 
diagnosis of diseases 

• PCR is a method for amplifying 
DNA 

• This is done by repeatedly dividing 
and rebuilding the DNA molecules
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How Does the Device Work? 

• In our device, synthetic competitor DNA molecules compete with 
the wild type for resources

• By comparing the difference in fluorescence at the end of the 
reaction, we can get an end point readout 
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Multiplexed Sensing

• Each device detects multiple gene expressions
• Each gene expression requires a unique competitor
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Single Competitor Design 

BP= number of base pairs, GC = % guanine-cytosine
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• Objective: 
• for the rate to be as close to a target rate 𝑇𝑟𝑎𝑡𝑒  as possible 

• for the drift to be below a threshold, 𝑇𝑑𝑟𝑖𝑓𝑡

• Designing DNA is a large combinatorial problem 
• We simplify this problem into a 2D approximately continuous design space 
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Optimisation Objective
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argmin
GC,BP

frate − Trate
2 + max(0, fdrift − Tdrift)

• Converting this into a mathematical objective:

BP = number of base pairs, GC = % guanine-cytosine  frate = rate, fdrift= drift,  Trate = target 

rate,  Tdrift=drift threshold

argmin
GC,BP

frate,i − Trate,i
2

+ max(0, fdrift,i − Tdrift)

• For the multi-task case this becomes:

𝑓𝑜𝑟 𝑖 𝑖𝑛 𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑜𝑟𝑠:
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Design of Experiments Workflow
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Surrogate Model

• We use Gaussian processes as they 
give good uncertainty measures and 
work well in low data regimes 

• y x ∈ ℝ, is assumed to be a function 
of  input x ∈ ℝD plus some noise 
defined by the noise variance, σn

2 : 

𝑦 𝒙 = 𝑓 𝒙 + ϵ, ϵ ∼ 𝒩 0, σ𝑛
2

• A Gaussian process is fully defined by its mean function 𝑚 ∶
ℝD ↦ ℝ and covariance function k ∶ ℝD × ℝD ↦ ℝ.  

𝑓 𝒙 ∼ 𝒢𝒫(𝑚(𝒙), k(𝒙, 𝒙’))
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Surrogate Model

• “Average” Gaussian Process 

• Multioutput Gaussian Process

• Linear Model of Coregionalisation 

• Latent Variable Multioutput Gaussian Process 
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Average Gaussian Process

• This is the simplest model, where all data is taken to be from the 
same output, regardless of it’s true output function 

• Can be thought of as “total transfer” 
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Multi-output Gaussian processes

• The multi-output Gaussian process (MOGP) 
extends the standard Gaussian process to multiple 
outputs, so y x ∈ ℝP.

• It assumes all outputs have the same kernel 
function and hyperparameters but function values 
on different outputs are uncorrelated, giving the 
kernel structure:

൩൥
𝑓1

𝑓2
~ ቇ𝒩 ቆ

𝐾 𝑋1, 𝑋1 𝟎

𝟎 𝐾 𝑋2, 𝑋2
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Linear Model of Coregionalisation 

•  The linear model of coregionalisation (LMC) extends the MOGP 
to model linear correlations between output surfaces by assuming 
they are linear combinations of Gaussian process latent functions:

𝑓𝑝 𝒙 = 𝑾𝑝 𝒈 𝒙 + 𝜅𝑝 𝜐𝑝 𝒙
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Linear Model of Coregionalisation 

• This leads to a Kronecker structured kernel with a joint distribution 
between two functions given by:

where 𝑏𝑝𝑝′ is an element of 𝑩 = 𝑾𝑾𝑇 + 𝑑𝑖𝑎𝑔 𝜅  and 𝑄 is the 

number of different kernels the latent functions have.

• We use a special case of LMC called the Intrinsic Model of 
Coregionalization where 𝑄 = 1. 

൩൥
𝑓1

𝑓2
~ 𝒩

෍
𝑞=1

𝑄

𝑏11 𝑘𝑞 𝑋1, 𝑋1 ෍
𝑞=1

𝑄

𝑏12𝑘𝑞 𝑋1, 𝑋2

෍
𝑞=1

𝑄

𝑏21𝑘𝑞 𝑋2, 𝑋1 ෍
𝑞=1

𝑄

𝑏22𝑘𝑞 𝑋2, 𝑋2
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Latent Variable Multioutput Gaussian Process1

• The latent variable multi-output Gaussian process (LVMOGP) 
augments the input domain with extra latent dimensions:

• Dimensionality of the latent variables is 𝐻 = 𝒉1, … , 𝒉𝑝
𝑇

∈ ℝ𝑃×𝑄𝐻  

where 𝑄𝐻 is the dimensions of the latent space

• The LVMOGP is trained using variational inference

[1] Dai, Z., Álvarez, M. and Lawrence, N. (2017) Efficient Modeling of Latent Information in Supervised Learning using Gaussian 
Processes. In Advances in Neural Information Processing Systems. 

𝑦𝑝 𝒙 = 𝑓 𝒙, 𝒉𝑝 + ϵ, 𝒉𝑝 ∼ 𝒩 𝜇ℎ𝑝
, Σℎ𝑝

, ϵ ∼ 𝒩 0, σ𝑛
2 .
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Latent Variable Multioutput Gaussian Process1

[1] Dai, Z., Álvarez, M. and Lawrence, N. (2017) Efficient Modeling of Latent Information in Supervised Learning using Gaussian 
Processes. In Advances in Neural Information Processing Systems. 
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Multi-task Gaussian Process Surrogates 
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Bayesian Optimisation

• Now we have our surrogate functions, we want to optimise our 
molecules.
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Bayesian Optimisation

• We wish to minimise the difference between the rate and the 
target rate. 

• To do this we use the result of Uhrenholt et al.[2] where a new 
stochastic variable is defined as:

δ|x = yrate x  − Trate 2
2.

• The expected improvement for this variable can then be written 
as: 

[2] Uhrenholt, Anders Kirk and Bjøern Sand Jensen (Apr. 2019). “Efficient Bayesian Optimization for Target Vector Estimation”. In: 
Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics. 

𝛼𝐸𝐼  = 𝜹𝑚𝑖𝑛 𝐺𝜆(𝜹𝑚𝑖𝑛/𝛾2)  − 𝛾2𝔼 𝑡 𝑡 <
𝜹𝑚𝑖𝑛

𝛾2 𝐺𝜆(𝜹𝑚𝑖𝑛/𝛾2),
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Penalty Term

• We also want to penalise any point with a drift value over a given 
threshold

• We use the probability of feasibility: 

• To get our final acquisition function we then multiply the expected 
improvement by the probability of feasibility:

𝑃𝐹 𝒙 =  𝑝 𝑓𝑑𝑟𝑖𝑓𝑡 𝒙 ≤ 𝑇𝑑𝑟𝑖𝑓𝑡 .

𝛼 = 𝑃𝐹 𝒙 𝛼𝐸𝐼 𝒙 .
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Design of Experiments Workflow 
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Cross Validation

• We performed cross validation on our dataset to assess fit  
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RMSE= root mean squared error, NLPD = negative log predictive density 



Latent Space 

• The latent space of the LVMOGP uses the ARD property of the 
kernel
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Bayesian Optimisation

• We performed retrospective Bayesian optimisation where each of 
the models is only allowed to choose the next point from the 
existing dataset

• Choice of starting point:
• Centre 

• Model’s choice

• Choice of learning problem: 
• Learning all surfaces at the same time

• Learning one surface at a time, with all others in the training set 
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Bayes Opt: Learning Many Surfaces

• Two fully observed surfaces and 
then learning all other surfaces 
at the same time

• Cumulative regret

• LVMOGP has less cumulative 
regret

• The models that can choose 
their first point do better 
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Bayes Opt: Learning One Surface

• Learning only one surface, all 
others are fully observed 

• LVMOGP has lower cumulative 
regret 

• LMC performs better than in the 
learning many scenario
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Summary

• We converted the problem of designing competitor DNA 
molecules into an optimisation problem 

• We compared a number of multi-task learning surrogate functions 
and found that:

• The LVMOGP had the best predictive accuracy 

• This translated to the least regret in Bayesian optimisation

• These results show this method can reduce the number of 
experiments needed both when developing many competitors at 
the same time and when optimising a new one 
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Possible Extensions

• Exploration of other acquisition functions
• Especially ones that take the multi-task learning into account

• Better models for drift 

• Further investigation of the ARD properties of the LVMOGP latent 
space 

• The variational inference of the LVMOGP is a very non-convex 
problem and sensitive to initalisation

• Better inference and simpler optimisation procedure would make this 
method more useable 

• This approach can be extended to other problems
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Thank you! 
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