IMPERIAL

Multi-task Bayesian Optimisation for Competitor DNA Molecule Design

Ruby Sedgwick¹, John P. Goertz¹, Molly M. Stevens^{1,2}, Ruth Misener¹, Mark van der Wilk^{1,2} 1Imperial College London

²University of Oxford

Presentation Overview

- Motivation
- Mathematical Formulation
- Design of Experiments Workflow
- Transfer Learning Surrogate Models
- Bayesian Optimisation
- Experimental Results
- Summary and Extensions

Motivation

- Diagnostic device for detect levels of gene expressions a.k.a. RNA molecules in the blood
- PCR based for quicker, cheaper diagnosis of diseases
- PCR is a method for amplifying DNA
	- This is done by repeatedly dividing and rebuilding the DNA molecules

How Does the Device Work?

- In our device, synthetic competitor DNA molecules compete with the wild type for resources
- By comparing the difference in fluorescence at the end of the reaction, we can get an end point readout

Multiplexed Sensing

- Each device detects multiple gene expressions
	- Each gene expression requires a unique competitor

Single Competitor Design

- Objective:
	- for the rate to be as close to a target rate T_{rate} as possible
	- for the drift to be below a threshold, T_{drift}
- Designing DNA is a large combinatorial problem
	- We simplify this problem into a 2D approximately continuous design space

 B P= number of base pairs, GC = % guanine-cytosine 6

Optimisation Objective

• Converting this into a mathematical objective:

$$
\underset{\text{GC,BP}}{\text{argmin}} \sqrt{(f_{\text{rate}} - T_{\text{rate}})^2} + \text{max}(0, f_{\text{drift}} - T_{\text{drift}})
$$

• For the multi-task case this becomes:

:

$$
\underset{\text{GC,BP}}{\text{argmin}} \sqrt{\left(f_{\text{rate},i} - T_{\text{rate},i}\right)^2 + \text{max}(0, f_{\text{drift},i} - T_{\text{drift}})}
$$

BP = number of base pairs, $GC = %$ guanine-cytosine $f_{\text{rate}} = \text{rate}$, $f_{\text{drift}} = \text{drift}$, $T_{\text{rate}} = \text{target}$ rate, T_{drift} =drift threshold

12/09/2024 7

Design of Experiments Workflow

Surrogate Model

- We use Gaussian processes as they give good uncertainty measures and work well in low data regimes
- $y(x) \in \mathbb{R}$, is assumed to be a function of input $x \in \mathbb{R}^D$ plus some noise defined by the noise variance, σ_n^2 :

$$
y(\mathbf{x}) = f(\mathbf{x}) + \epsilon, \qquad \epsilon \sim \mathcal{N}(0, \sigma_n^2)
$$

• A Gaussian process is fully defined by its mean function $m:$ $\mathbb{R}^D \mapsto \mathbb{R}$ and covariance function $k : \mathbb{R}^D \times \mathbb{R}^D \mapsto \mathbb{R}$.

$$
f(\pmb{x}) \sim \mathcal{GP}(m(\pmb{x}), \mathbf{k}(\pmb{x}, \pmb{x}'))
$$

Surrogate Model

- "Average" Gaussian Process
- Multioutput Gaussian Process
- Linear Model of Coregionalisation
- Latent Variable Multioutput Gaussian Process

Average Gaussian Process

- This is the simplest model, where all data is taken to be from the same output, regardless of it's true output function
- Can be thought of as "total transfer"

Multi-output Gaussian processes

- The multi-output Gaussian process (MOGP) extends the standard Gaussian process to multiple outputs, so $y(x) \in \mathbb{R}^P$.
- It assumes all outputs have the same kernel function and hyperparameters but function values on different outputs are uncorrelated, giving the kernel structure:

$$
\begin{bmatrix} f_1 \\ f_2 \end{bmatrix} \sim \mathcal{N} \begin{pmatrix} K(X_1, X_1) & \mathbf{0} \\ \mathbf{0} & K(X_2, X_2) \end{pmatrix}
$$

Linear Model of Coregionalisation

• The linear model of coregionalisation (LMC) extends the MOGP to model linear correlations between output surfaces by assuming they are linear combinations of Gaussian process latent functions:

Linear Model of Coregionalisation

• This leads to a Kronecker structured kernel with a joint distribution between two functions given by:

$$
\begin{bmatrix} f_1 \\ f_2 \end{bmatrix} \sim \mathcal{N} \begin{pmatrix} \sum_{q=1}^Q b_{11} k_q(X_1, X_1) & \sum_{q=1}^Q b_{12} k_q(X_1, X_2) \\ \sum_{q=1}^Q b_{21} k_q(X_2, X_1) & \sum_{q=1}^Q b_{22} k_q(X_2, X_2) \end{pmatrix}
$$

where $b_{pp'}$ is an element of $\bm{B} = \bm{W}\bm{W}^T + diag(\kappa)$ and Q is the number of different kernels the latent functions have.

• We use a special case of LMC called the Intrinsic Model of Coregionalization where $Q = 1$.

Latent Variable Multioutput Gaussian Process¹

• The latent variable multi-output Gaussian process (LVMOGP) augments the input domain with extra latent dimensions:

$$
y_p(\mathbf{x}) = f(\mathbf{x}, \mathbf{h}_p) + \epsilon, \qquad \mathbf{h}_p \sim \mathcal{N}\left(\mu_{h_p}, \Sigma_{h_p}\right), \qquad \epsilon \sim \mathcal{N}(0, \sigma_n^2).
$$

Latent variable

- Dimensionality of the latent variables is $H = \begin{bmatrix} \bm{h}_1, ..., \bm{h}_p \end{bmatrix}$ \overline{T} $\in \mathbb{R}^{P \times Q_H}$ where Q_H is the dimensions of the latent space
- The LVMOGP is trained using variational inference

[1] Dai, Z., Álvarez, M. and Lawrence, N. (2017) Efficient Modeling of Latent Information in Supervised Learning using Gaussian Processes. In Advances in Neural Information Processing Systems. 12/09/2024 15

Latent Variable Multioutput Gaussian Process¹

[1] Dai, Z., Álvarez, M. and Lawrence, N. (2017) Efficient Modeling of Latent Information in Supervised Learning using Gaussian Processes. In Advances in Neural Information Processing Systems.

12/09/2024 16

Multi-task Gaussian Process Surrogates

Bayesian Optimisation

• Now we have our surrogate functions, we want to optimise our molecules. Belief of f(x)

Bayesian Optimisation

- We wish to minimise the difference between the rate and the target rate.
- To do this we use the result of Uhrenholt et al.^[2] where a new stochastic variable is defined as:

$$
\delta |x = ||y_{\text{rate}}(x) - T_{\text{rate}}||_2^2.
$$

• The expected improvement for this variable can then be written as: $\boldsymbol{\delta}_{min}$

$$
\alpha_{EI} = \underbrace{\delta_{min} G_{\lambda}(\delta_{min}/\gamma^2)}_{\text{max}} - \gamma^2 \mathbb{E} \left[t \Big| \frac{t}{\gamma} \Big| < \frac{\sigma_{min}}{\gamma^2} \right] G_{\lambda}(\delta_{min}/\gamma^2),
$$

Min value of δ observed so far Approximate cumulative χ^2 distribution with $t = \delta \gamma^{-2}$ non-centrality parameter λ

Root mean of variances of each output evaluated at training points

[2] Uhrenholt, Anders Kirk and Bjøern Sand Jensen (Apr. 2019). "Efficient Bayesian Optimization for Target Vector Estimation". In: Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics. 12/09/2024 19

Penalty Term

- We also want to penalise any point with a drift value over a given threshold
- We use the probability of feasibility:

$$
PF(\mathbf{x}) = p(f_{drift}(\mathbf{x}) \leq T_{drift}).
$$

- Drift threshold
- To get our final acquisition function we then multiply the expected improvement by the probability of feasibility:

$$
\alpha = PF(\mathbf{x})\alpha_{EI}(\mathbf{x}).
$$

Design of Experiments Workflow

Cross Validation

• We performed cross validation on our dataset to assess fit

12/09/2024 22 RMSE= root mean squared error, NLPD = negative log predictive density

Latent Space

• The latent space of the LVMOGP uses the ARD property of the kernel

Bayesian Optimisation

- We performed retrospective Bayesian optimisation where each of the models is only allowed to choose the next point from the existing dataset
- Choice of starting point:
	- Centre
	- Model's choice
- Choice of learning problem:
	- Learning all surfaces at the same time
	- Learning one surface at a time, with all others in the training set

Bayes Opt: Learning Many Surfaces

- Two fully observed surfaces and then learning all other surfaces at the same time
- Cumulative regret
- LVMOGP has less cumulative regret
- The models that can choose their first point do better

Bayes Opt: Learning One Surface

- Learning only one surface, all others are fully observed
- LVMOGP has lower cumulative regret
- LMC performs better than in the learning many scenario

Summary

- We converted the problem of designing competitor DNA molecules into an optimisation problem
- We compared a number of multi-task learning surrogate functions and found that:
	- The LVMOGP had the best predictive accuracy
	- This translated to the least regret in Bayesian optimisation
- These results show this method can reduce the number of experiments needed both when developing many competitors at the same time and when optimising a new one

Possible Extensions

- Exploration of other acquisition functions
	- Especially ones that take the multi-task learning into account
- Better models for drift
- Further investigation of the ARD properties of the LVMOGP latent space
- The variational inference of the LVMOGP is a very non-convex problem and sensitive to initalisation
	- Better inference and simpler optimisation procedure would make this method more useable
- This approach can be extended to other problems

Thank you!

r.sedgwick19@ic.ac.uk

Ruby Sedgwick Dr. Mark van der Wilk Prof. Ruth Misener Dr. John Goertz Prof. Molly Stevens
Sedgwick19@ic.ac.uk mark.vdwilk@cs.ox.ac.uk rmisener@ic.ac.uk iohn@signatur.bio molly.stevens@dpag.ox.ac.u mark.vdwilk@cs.ox.ac.uk r.misener@ic.ac.uk john@signatur.bio molly.stevens@dpag.ox.ac.uk

