Imperial College
London

From geostatistics to graphs:
(Gaussian processes in practice.

Gaussian Process Summer School, 10 September 2024

Elizaveta Semenova,

Department of Epidemiology and
Biostatistics

I Table of contents

@ [:troduction: MCMC for spatial inference

© Different views on Gaussian processes

@ Thc practical aspects

“%
IntroductionsZ/MCMC for spatial inference

/ 7/

2

/

What do Gaussian processes and John Snow have in common?

What do Gaussian processes and John Snow have in common?

© Jon Snow: This is a summer school, but winter is coming.

© John Snow: spatial epidemiology.

I Uses of Gaussian processes in epidemiology

Common uses of Gaussian processes in epidemiology:

@ nowcasting,
@ surrogates for decision making,

e disease mapping.

I Disease mapping and public health

e A map of a three-stage containment field in Italy, 1691

| ?dné della,

voumncia di

Caputanaia’

‘./ ...L,

N : i
7{ ‘\f‘v; Fofirttele 7oy
(Parte dlella Provincia o - o @
| di PrinaipatoUltra. 6™ ‘\q‘ . Elnﬁm e ﬁ E Iiw' ?; 3

Aiﬂlﬂ&ﬁ:?:;ﬂm neds Hﬂqrmu!l: ‘_ ‘\n \ Gpasina 2 : C}Im-t ‘,F? ; ‘
o ifif ELrpg K’- k. bRk f:...f‘ ks |
; oo:::: i 'm n:u iy pw Mandyzel, ¥ " é&m o 5 T
| #‘m’i” d‘i :‘umug;jmr.r{i':ﬂ 'ﬁ %nede”a d%d‘bcﬂm N W . GBM&I’GP ud‘otrﬂnn 1
) mmllm"} l(z;:rl:‘!w"-) V X 4!1 Calad 1214}”67891»-
D Cotoné Bnvah ¢ cheduid] - L o ‘- I w5
| m;:ﬂ:.:ug“ﬂ: Cnﬁum con le ; : E . s £, ;

| , . ;

”Disease mapping and innovation: A history from wood-block prints to Web 3.0”, Tom Koch (2022)

I The map that changed how we fight outbreaks

@ Dr. John Snow mapped cholera cases in London, 1854.

— /N o f o 3
Rt 3 “ Iy P
.Y ' ¥ >)
') - y . 4 1} L
o ; = y \ i [\
: Ay .
W), } .€ :' l‘, i
e . {
sovieel GO ORI
AT i, -
5 ’ f 2
b)
L] L}

e - | tf"a R ”“- '
CHOLERA TRAMPLES THE VICTOR S THE FANQUISHD BOTH.

I The map that changed how we fight outbreaks

e He also mapped different water companies’ service areas.

Credit: British Library

I The map that changed how we fight outbreaks

@ Dr. John Snow mapped cholera cases in London, 1854.

Credit: ESRI, “John Snow’s cholera map”

I The map that changed how we fight outbreaks

@ This pump has started the field of spatial epidemiology:.

#& The John Snow Society

q’ John Snow not only persuaded the authorities that factory fumes were not
the main source of disease, he also famously convinced them to remove a
handle from the contaminated Broad street water pump in 1854.

170 years to this very day 30 4.

I Disease mapping and public health

Piaret

BEPERENEES TO TME APFEETED vAMOR

T T
caad o
ke i LT
: EEITETELE
. .~ B
o MAP OF OXFORD,
a o ALSarE E estease
R R e
e N -V Fren SR AGCLANDS MEMOIR ON CHOLERA N OXFORD IN Mis
'Kl’f‘&w = ok e
B n T THE LOCALITIES IN WHICH CHOLERA & CHOLERAIC DIARRWGEA OCCURRED IN 1354,
QORI el é AND CHOLERA IN 1832 & 1840;
s i ey ® vesareun wire
TR e - THC AT OF THE TeW OENCAINS AB UNeEAATRY. BY
arany wassacene | 2UTY T < SEMEMOD, CHREMMILL B ALLEM. AND A WRITER W THE GXFOSD MERALS

e S < TV TS AaMEE weR THE SATE 07 Trcm ST
Ot o £ oy THE DRTRATE ETRL UNORAMNES(
| Yo Ak av - e A ST wemreaTa SO, i e

s o e
LT A o oot
B) —i e
Ry =
|3
e | T
o S

mEFERENGES

NEw MNGHIE Y Q "' " " & : s, P j ‘4 ; g 7 / 0 / : JE2)

"Memoir on the cholera at Oxford, in the year 1854 : with considerations suggested by the epidemic’, Acland (1856)

I Disease mapping and technology

. Tl
\ s
NS b Wem’“‘?}”f@%ﬂﬂmu
N s Cserted.

Tlhe Narmie of yo town cuccepr.

I Modern technology for disease mapping

Data Methods
geo-tagged Bayesian inference + spatial statistics
spatiotemporal Gaussian processes

Image Credit: ESRI

Non-Gaussian likelihoods

I Non-Gaussian likelihoods

@ Hierarchical Bayesian modelling using Gaussian Processes.

I Non-Gaussian likelihoods

Y= (Y1, e, Yn)

y ~ plylg~'(n),0)

n=X'B+f

f~p(f]0)

0 ~ p(0)

- outcome data over a set of n locations

- observational model (likelihood)

- additive model for the mean, combines a {ixed effect and
random effect terms

- random effect term: CGaussian process

- hyperparameters

I Non-Gaussian likelihoods

@ If the likelihood is GGaussian, the posterior is also a Gaussian process, and all computation
can be performed analytically.

@ If the likelihood is non-Gaussian, we can no longer compute the posterior exactly.

I Non-Gaussian likelihoods

e Some typical likelihoods:

Model Likelihood
Regression N(fi,o 5)
Binary classification Bern(o(f;))
Multiclass classification Cat(softmax(f;))
Poisson regression Poisson(exp(f;))
Negative binomial regression | NegBin(exp(f;), ¢)

Types of spatial data

Types of spatial data:

there is only three of them

I Types of spatial data

@ Type: arcal data
® Task: small area estimation

US vaccinations at county level.

Credit: The New York Times

I Types of spatial data

@ Type: ccostatistical or point-referenced data
e Task: kriging

Raw prevalence
0 75 150 00 Kms T 0%-10%

@ 104%-20%
@ 201%-30%
301%-40%
& 201%-76%

Observed malaria prevalence at

survey locations in Uganda.

Credit: J Ssempiira

I Types of spatial data

@ Type: point pattern
@ Task: surface reconstruction and point pattern analysis

latitude
T
k|
L]
@
G e
;’ :
o. @
e %
[
e 9
ol
LR,
©
..'

longitude

Observed local (blue) and imported (red)

malaria cases in Eswatini, 2015.

I Models of areal data

Solving the small area estimation task.

y ~ plylg~t(n),0) observational model (likelihood)

f ~MVN(0,Q 1) () - precision matrix

Q=11 1.i.d.

Q=71(D—aA) Conditional auto-regressive (CAR): A and D are

defined by the neighbourhood structure, A -
adjacency matrix

Q=D 4

ICAR
Ql=r'T+7D—A)"

BYM

I Models of geostatistical data
Solving the kriging task.

y ~ plylg~'(n),0) observational model (likelihood)
n=X'B+f additive model for the mean

f ~ GP(0, K) Gaussian process

I Modelling point pattern data

Solving point pattern analysis task

@ \(s),s € D - intensity function.
@ Log-Gaussian Cox process is a common model of spatial point patterns:

L(s1,...,50:\(s)) = exp(—A(D)) H A(s;),

I What about networks?

I What about networks?

Stay tuned!

I Inference methods

e Laplace approximation
e Variational Bayes

@ Lixpectation propagation
@ Markov Chain Monte Carlo

I Markov chain Monte Carlo (MCMC)

We will not talk about MCMC in details
today:.

What is important is that
e Random number generation can
be useful to estimate even deterministic
quantities, e.g.

1 M

/f(x)p(iﬂ)daf ~ i Z f(xi), xi~plx).

1=1

e MCMC is a group of elaborate
iterative algorithms with theoretical
convergence guarantees [12].

Monte Carlo
Statistical
% Methods

|
i

Christian P. Robert
George Casella

I Inference methods: Bayesian inference

@ y - data, 6 - parameters,

ply) o< plyl0) Q@

posterior likelihood prior

e Gold standard inference algorithms: Narkov chain Monte Carlo (MCMC) - theoretical
ouarantees; diagnostic tools

e Probabilistic programming languages: Stan, PyMC3, Numpyro, Turing.jl

= L

Stan PyMC Pyro Turing.jl

I Probabilistic programming languages (PPLs)

e PPLs allow users to specify probabilistic models and perform inference automatically.

@ Inference is performed by an MCMC algorithm (Gibbs, Metropolis-Hastings, HMC).

@ Users need to specify
@ prior,
e likelihood,
e (sometimes) inference algorithn.

I Example of a PPL programme

yi ~ N(p,0%), i
p~ N(0,1),
o~ Exp(l)

I
—_
S

I Example of a PPL programme

What does it take to write a generic model with Numpyro and run inference?

1 def model(data):

2

3 # define prior distributions for model parameters

4 mu = numpyro.sample("mu", dist.Normal(O, 1))

5 sigma = numpyro.sample("sigma", dist.Exponential (1))
6

7 # define likelihood with a data plate

8 with numpyro.plate("data_plate", len(data)):

9 y = numpyro.sample("y", dist.Normal (mu, sigma), obs=data)
10

11 # data

12 data = jnp.array([2.3, 3.9, 1.7, -0.8, 2.5])

13

14 # choose inference algorithm

15 nuts_kernel = NUTS(model)

16 mcmc = MCMC(nuts_kernel, num_samples=1000, num_warmup=1000, num_chains=2)
17mcmc . run (jax.random.PRNGKey (0) , data)

18

19# get posterior samples

20 posterior_samples = mcmc.get_samples ()

Listing 1: Sample Numpyro programme

I Example of a PPL programme with a GP

How can we include GPs into a Numpyro pogramme??

1 def model(x, y=None, kernel_func=rbf_kernel, lengthcsale=0.2, jitter=1e-5, noise=0.5):

2 niain

3 Args:

4 - x (jax.numpy.ndarray): input data points of shape (n, d), where n is the number of
points and d is the number of dimensions.

5 - kernel_func (function): kernel function to use.

6 - lengthscale (float): lengthscale parameter.

7 - jitter (float): small constant added for numerical stability.

8

9 Returns:

10 - y (jax.numpy.ndarray): a sample from the Multivariate Normal distribution
representing the function values at input points.

11 nimnn

12

13 n = x.shape[0]

14

15 K = kernel_func(x, x, lengthcsale) + jitter*jnp.eye(n)

16

17 f = numpyro.sample("f", dist.MultivariateNormal (jnp.zeros(n), covariance_matrix=K))

18

19 numpyro.sample("y", dist.Normal(f, noise), obs=y)

Listing 2: Numpyro programme with a GP

1See the full example at https://elizavetasemenova.github.io/prob-epi/18_GP_inference.html

https://elizavetasemenova.github.io/prob-epi/18_GP_inference.html

I Analyzing MCMC outputs

e Diagnostics for MCMC samples:

e Trace plots

I Analyzing MCMC outputs

@ Good traceplot of bad traceplot?

chain
— 1

l\
il

theta

I — 2
— 3

\H'
\

1 10 100 1000

I Analyzing MCMC outputs

@ Good traceplot of bad traceplot?

1.0 chain
© — 1
o —_—2
= £
- — 3

0.5 - 4

0 250 500 750 1000

I Analyzing MCMC outputs

@ Diagnostics for MCMC samples:

e Trace plots,

A

e Gelman-Rubin statistic (R),

e Effective sample size (ESS).

I GPs with a PPL

@ In a PPL to perform GP inference, we (only) need to specify how to sample from
the GP prior.

How to sample from a Gaussian process prior?

How would you sample from a Gaussian process prior?

Kernel view

I (Gaussian process definition

(Gaussian process as a prior over functions

A Gaussian random vector f = (f1,..., fy)' is defined by its mean vector p and covariance
matrix K

u=E(f), K =Cov(f).

I (Gaussian process definition

(Gaussian process as a prior over functions

A Gaussian random vector f = (f1,..., fy)' is defined by its mean vector p and covariance
matrix K

u=E(f), K =Cov(f).

Consider a function f(z): X — R evaluated at a set of points X = {x; € X},

fx = (f(@1), ..., flan)".

I (Gaussian process definition

(Gaussian process as a prior over functions

A Gaussian random vector f = (f1,..., fy)' is defined by its mean vector p and covariance
matrix K

u=E(f), K =Cov(f).

Consider a function f(z): X — R evaluated at a set of points X = {x; € X},

fx = (f(@1), ..., flan)".

If fx is jointly Gaussian for any set of N > 1 points, then f(x): X — R is a Gaussian
process.

I (Gaussian process definition

GPs as a prior over functions

Definition
A Gaussian process is an infinite set of random

variables, any finite subset of which follows a
multivariate normal distribution.

I (Gaussian process definition

GPs as a prior over functions

Definition
A Gaussian process is an infinite set of random

variables, any finite subset of which follows a
multivariate normal distribution.

@ Such a process is defined by its mean function
m(z) and a covariance function, k(z,z’) > 0.

@ Kernels encode prior knowledge about the
similarity of two input vectors x, x'.

I (Gaussian process definition

GPs as a prior over functions

Samples from a GP prior

A Gaussian process is an infinite set of random

variables, any finite subset of which follows a 2]
multivariate normal distribution.
@ Such a process is defined by its mean function [A\

m(z) and a covariance function, k(z,z’) > 0. /‘/‘

f(x)

@ Kernels encode prior knowledge about the

X/
similarity of two input vectors x, x. 01 "/ ‘
Key point ’

GPs can be thought of as a prior over continuous -11
functions.

1.0 05 0.0 0.5 1.0
X

I Kernels

@ Can any function k(-,-) serve as a kernel?

I Kernels

@ Can any function k(-,-) serve as a kernel?

@ k(-,-) needs to be positive semi-definite.

I Positive definite matrix

Positive definite matrix
A symmetric N x N matrix A is called a positive definite matrix if

N N
’UTA’U = Z Z Aij’Uﬂ}j > ()

i=1 j=1

for any non-zero vector v € RY.

I Valid kernels

Definition
A positive semi-definite kernel is any symmetric function

E: X xX >R

such that
N N
Z Z k(l‘z, .Tj)CZ'Cj > 0
i=1 j=1

for any set of N (unique) points x; € X, and any choice of constants ¢; € R.

[.e. we want the kernel to generate positive semi-definite matrices.

I Valid kernels

Given a set of IV points, we can define the Gram matrix linked to the similarity between
points:
k(xi,x1) k(xy,20) ... k(x1,2n)
o k(xo,x1) k(xo,x0) ... Kk(19,2N)

k(xn, 1) k(zn,z0) ... k(zy,zN)

k is a valid kernel iff the Gram matrix is positive definite for any set of (distinct) inputs

(581, c.e ,$N).

I (Gaussian process definition

Notation

Samples from a GP prior

Let z, 2" € R be two inputs. The notation for a GP is

f(x) ~ GP(m(x), k(z,).

bz, ') = El(f(x) = m(z))(f(a') = m(a")] /ﬁ s

are the mean function and covariance function

}7
(kernel), respectively. 0 "/ »
We set m(z) = 0 when we don’t have any prior /
knowledge about the mean function, giving us \ '

f(z) ~GP(0, k(x,x")).

f(x)

1.0 05 0.0 0.5 1.0
X

I The definition of a Gaussian process
Looking under the hood

Let x = (x1,...,2y)" be a vector of inputs®. Then,

where the covariance matrix K is the Gram matrix

k(xy,21) k(zy,29) ... k(z1,2N)

o k(xo,x1) k(zo,x9) ... Kk(mo,TN)

k(xn,x1) k(zy,z2) ... k(xyn, xN)

2] will be sloppy with the notation, i.e. not making = bold even when it is a vector. Dimensionality will be clear from
context.

I The kernel view

@ Kernel view is the moment representation of GPs.

I The kernel view

@ Kernel view is the moment representation of GPs.

e It is convenient for model specification as it allows to utilise prior information about
function properties, such as continuity, differentiability, periodicicty, symmetry:.

Covariance kernels: examples
Squared Exponential (SE) kernel

Squared exponential kernel

= — /|
ke,) = aexp (152

Here
e «: amplitude, shows how far the function values can be from the mean,
@ /: the lengthscale determines how ‘wiggly’ the function is.

These parameters are often unknown and are estimated during inference.

For fixed o and /¢, as the distance between x and z’ increases, k(x, x’) approaches 0.

Key point
Kernels encode similarity between points.

I Covariance kernels: examples

Matérn kernels

@ The SE kernel produces very smooth trajectories.
e Matérn kernels can generate ‘rougher’ functions:

o1 <\F2y||x _ x'||> ’ . <\F2y||x _ :13’||>

kMatérn(xa 33/) =

['(v) 14 14

Here K, is a modified Bessel function and [is the length scale.

Key point

Matérn is a more flexible family than SE. As v — oo, Matérn becomes the SE kernel.

I Covariance kernels: examples

How to encode different function properties

Let 7 = ||z — 2/||. The following table shows examples of covariance kernels and the types of functions they can
model. o, ay, o, > 0

Name Definition Type of functions

Squared Exponential o exp (—%) Infinitely differentiable functions
Matérn 1/2 Qv exp (—%) Continuous but not differentiable
Matérn 3/2 a(l+ @) exp (—@ 1 time differentiable functions
Matérn 5/2 all+ @ + %) exp —@) 2 time differentiable functions
Linear Kernel ap + ap(z — ¢)(z’ —¢) Linear functions

Periodic Kernel Qv exp —w Periodic functions

Locally Periodic Kernel o exp —w exp (—#) Functions that are periodic at cer-

tain locations

https://www.cs.toronto.edu/~duvenaud/cookbook/

Key point

The covariance kernel determines the type of functions the GP can model.

https://www.cs.toronto.edu/~duvenaud/cookbook/

I Covariance kernels: examples

Play online

® https://distill.pub/2019/
visual-exploration-gaussian-processes/

® http://infinitecuriosity.org/vizgp/

@ https://peterroelants.github.io/

posts/gaussian-process-kernels/

® https://smlbook.org/GP/ H-20

Interactive online GP demos

https://distill.pub/2019/visual-exploration-gaussian-processes/
https://distill.pub/2019/visual-exploration-gaussian-processes/
http://infinitecuriosity.org/vizgp/
https://peterroelants.github.io/posts/gaussian-process-kernels/
https://peterroelants.github.io/posts/gaussian-process-kernels/
https://smlbook.org/GP/

I Covariance kernels: examples

Sampled trajectories

A comparison between functions sampled from GPs with different covariance kernels

Squared exponential Matern 3/2 Matern 5/2
_///\y\ \\ ~ N\ /\
=T \/ \A/ AR /N

N/ \
Linear Periodic Locally periodic

R

T

[

I Making new kernels

Given two kernels ki (z, z') and ko(z, 2"), we can create a valid new kernel using any of the
following methods [9]:
o k(x,a') =cky(x,2'), ¢>0
= f(x)ki(x,2") f(2) for any function f
= exp(ki(x, 2'))

Key point

Kernels can be combined to make new kernels.

I Posterior predictive inference

Assume we have N observation pairs (x;,y;) generated by the model

yi = f(zi) + €,
e; ~ N(0,0%),
i=1,...N.

How to obtain predictions f, at /N, unobserved locations x,7

I Posterior predictive inference

Covariance matrix of the training points
k(x1,21) ... k(xi,zn)
Vector of training points K = : o :

T = (x1,T2,...,ZN)" k(zy,z1) ... klzy,zN)
Ty = (T14y Tony - - -y TNx) | k(x1, 214 k(x1, xn)
k(xn,x1e) .. k(xn, Tys)
o= Fo) = (Fa), o) fan)
fo= f(x) = (f(@1), f(@2), - .., flans)) " k(i x1e) oo k(T1s, Tns)
Ko = : E :

k(ﬂ?N*, «Tl*) S k(&?N*, .CUN*>

I The Gaussian conditioning rule

When x1, x5 are random vectors that follow a multivariate normal distribution, 1.e.
1~ N(p, E), z2 ~ N(ug, Xoo)
then the joint distribution can be written as
T a1 211 212
o)~ ()5 52))
and the conditional distribution of x5 given x; is

To|z1 ~ N (o + o120 (21 — 1), Bog — o121 S12).

Key point
The conditional expectation and variance of x5 given x; is

Elzs)71] = pig + Zon iy (w1 — poa)
V]zo|z1] = Yg — Lo X1 T

I Posterior predictive
Analytically deriving the posterior predictive distribution

Assuming Gaussian noise, the joint distribution of y and f, can be written as:

Y K+0o% K,
ARGl

The Gaussian conditioning rule gives us

foly ~ N(KJK + 0[]y, Koo — KK + %171 KL,

Key point
Given training data y, the expectation and covariance of f, are:

Elf.]y] = K [K + 0’1"y
Cov|fily] = K — KJ[K + 021]_1[(*

I The computational bottleneck

For N data points,

@ Space complexity: the cost of computing a N x N covariance matrix is O(N?).

e Tine complexity: the cost of computing the inverse covariance matrix is O(N?).

I Posterior inference with a PPL

While using a PPL (e.g. Stan, Numpyro, etc) we do not need to derive the posterior
analytically. We only need to specifty the generative model, e.g.

y ~N(u(x),0%)
p(x) = By + f(x)

with priors, e.g.

o* ~ InvGamma(5, 5)
By ~ N<O> 1)
f(x) ~GP(0, K)
a ~ InvGamma(5, 1)
¢ ~ InvGamma(5, 1)

Key point
In a PPL, once we define the log-likelihood and priors, a sophisticated MCMC algorithm will
take care of the rest.

I Posterior inference with a PPL

In a PPL, the main GP-related effort is in specifying how to sample from a GP prior.

I The computational bottleneck

For non-Gaussian likelihoods an analytical expression is not available. We can use T' iterations
of MCMC to sample from the posterior. Time complexity becomes

O(TN?).

Key point
Inferring GPs with MCMC is feasible up to a few hundred data points. Computations become
unbearably slow after surpassing N > 1000 and thus is not very practical.

I Kernel view: summary

@ Kernel view is the moment representation.
@ [t allows us to think of the GP as a distribution over functions.

@ The key information is encoded by the covariance function k(-,-) which is based on
similarity between points and shows their association.

Weights view

I Bayesian linear regression

Bayesian linear regression is a special case of a GP.

I Curve fitting

Given pairs of observed points
(xiayi)a 7;:17°"7N7

consider the regression task, i.e. we want to fit a curve by fitting a model of the form

yi ~ N (fe(il?z'),UQ) :

I Bayesian linear regression

In the case of lincar regression, fy(x;) takes a Samples from the prior
parametric form:

fo(xi) = Bo + Brx; = 5T¢($;
¢(x) = (do(x), pr(x))" = (1,2)".

In the Bayesian framework, we need to give priors to
the parameters 6 = (3, 51), e.g.

6() ~ N (,u()ao-g))

By ~ N (11, 07) V
-1- \

Every time we draw Sy, 81 from the prior, fy is a
different line.

f(x)

Key point
We can interpret fy as a stochastic process which
can be used as a prior over the space of

linear functions. o e X

I Bayesian linear regression

Bayesian inference

In Bayesian inference, we apply the Bayes rule

p(0]y) o< p(y|0)p(0)

to remove lines drawn from the prior that do not fit
the observed data.

Here Yy = (y17 s 7yN)T7 0 = <60751>-

Issues
Linear functions can only model linear relationships.

We would like to model complex non-linear
relationships as well.

I Bayesian polynomial regression

Extending the linear model
We can extend the linear function to a polynomial:

yi ~ N (fe(il?z'), 02) Basis functions

fows) = Bo+ Biai + B 4+« + By | N

M
= Bl = BTo(x).
j=0

where
o(x) = (¢r(x), -+ dulx)) ' L)
The functions : | é
o1(x) =z, ¢ox) =2 ..., oulx)=2a" Prior samples

are basis functions. Parameters
0 = (6o, B1, - - -, Bar) are given priors, e.g.

By ~ N(O, 102), 0
B ™ N (p,02) (m=1,..., M).

Key point

We can view fy as a prior over non-linear
functions.

I Bayesian polynomial regression

Bayesian inference

Polynomial basis, M =9

Issues

Polynomial regression is flexible enough to fit
non-linear functions but it is...

@ prone to over-fitting,

@ gives unrealistic predictions when
extrapolating.

I Other basis functions

Fourier basis

Basis functions

Another example is the Fourier basis:

M)
Z (o sin(2mmaz /L) + By, cos(2mma /L)) Prior samples

i %’1 i ”

I Other basis functions

Fourier basis: no extreme outputs

Fourier basis, M = 10

Fourier basis functions are bounded in
output i.e., |p(x)| < co. This prevents
extreme output values.

I Other basis functions

Fourier basis: non-local update of uncertainty

Fourier basis, M = 10

When new data is added to or removed from
the training set, the posterior estimates
and uncertainty change non-locally,
even though we only acquired / lost data in a Fourier basis, M = 10
specific region.

@ Fourier basis function are non local. 21

I Squared Exponential basis functions

The Squared Exponential basis function:

de(x) = exp (—(x — 0)2)

e Prevents wild extrapolation,
@ Prevents sensitivity on distant values.

Basis functions

2 0 2

Prior samples

I Squared Exponential basis functions
Still not quite there...

Squared Exponential basis, M = 10

The good:
@ more sensible posterior,
@ better interpolation.

The bad:

@ the model is too certain that nothing
happens outside of the observed range,

@ no good justification for the choice of
where to place the basis functions.

Key point
What if we placed the SE basis
function everywhere?

I Infinite basis functions

To place basis functions everywhere, we need infinitely many basis functions.

[t is impossible to compute the posterior predictive when M — oo as the computational cost
will also be infinite.

[t turns out, that the components we need are

O(2)0(x) € RN, d(2)¢(x,) € RV

which means we only need the inner products between feature vectors:

[q)(fﬁ)q)(il?)T]zj = ¢(ﬂ7z‘)T¢(ij)

What it we could compute the inner products directly without computing the basis functions?
This is the kernel trick!

I Kernel trick

An example: Polynomial kernel

If we can compute the matrices ®(x)®(z)" € RN and ®(z)¢(x,) € RY*! directly, we could
do computations without incurring cost for a large number of basis functions. For example the

Polynomial kernel is

b, o) = (o' + 1) f(e = o) ot

m=0

where ¢(z) = (1,v2x,2%)" if M = 3.

I Kernel trick

Infinite dimensional feature spaces

If the limit of the inner product exists, we can even consider infinite dimensional feature
spaces.

RRY
gbm(x) — CXpP (_ <x 2€§m>) y Cm — %(Cmax — Cmin)

ke, 2') = 223 (@) ()

. 1 M / Cmax)2 o)\2
]\}gnooﬂn;qu(x)qu(x) = / €Xp <_<x2£26>) eXp (_ (x2£2c>) de

A N\2

which is called the Squared Exponential (SE) kernel and it is equivalent to
placing SE basis functions everywhere.

I Kernel trick

For convenience, let’s introduce notation for the scalar product

< ¢(x), d(z') >1,:= ¢ (z)o(2).

I Kernel trick

For convenience, let’s introduce notation for the scalar product

< ¢(x), d(z') >1,:= ¢ (z)o(2).

Any valid covariance function can be written as

k(z,2') = ¢(z) d()

for some feature map ¢(x). Such a map is not unique.

I Weights view: summary

Choice of a feature map ¢(x) leads to choosing a kernel:

k(z,2') = ¢ (v)p(2)) = Z ¢j(x)¢;(x),

fw)=B"é(w) = 3 _ B¢/ (@)

I Weights view: summary

Choice of a feature map ¢(x) leads to choosing a kernel:
k(z,a') = ¢ (2)0(a) =) ¢;(w)¢;(a),
j=1

fw)=B"é(w) = 3 _ B¢/ (@)

The sum can become finite for an approximation.

Spectral (Fourier) view

I Spectral (Fourier) view

The weights view:

How to chose functions ¢?

I Mercer’s theorem

Mercer’s theorem
Define the integral operator

Then 50
k(x,z") = Z Ai(x)ehi(2')
i=1

where 1);(x) are eignefunctions of the operator L, i.e.

L) = M.

Intuition: we can think of functions as vectors, and of operators as matrices. Then

“L(y) = Mp” is analogous to “Av = A\v”.

I Mercer’s theorem

Mercer’s theorem
Define the integral operator

Then o
Mot = Sl
i=1
where 1);(x) are eignefunctions of the operator L, i.e.
L(Y) = M.

Intuition: we can think of functions as vectors, and of operators as matrices. Then

“L() = M)” is analogous to “Av = Av”.

Intuition: If the sum was finite: K = UAU ', A = diag{\;}, U - orthogonal.

I Mercer’s theorem

Mercer’s theorem
Define the integral operator

Then o
Kz, o) = > Xpi(@)yu(a)
i=1
where 1);(x) are eignefunctions of the operator L, i.e.
L() = M.

Intuition: we can think of functions as vectors, and of operators as matrices. Then

“L() = M)” is analogous to “Av = Av”.
Intuition: If the sum was finite: K = UAU ', A = diag{\;}, U - orthogonal.

Key point
Mercer’s theorem says that kernel can be computed using eigenfunctions of the integral
operator and gives the spectral decomposition of the kernel.

I Mercer’s and Karhunen-Loeéve theorems

Mercer’s theorem
Define the integral operator

Then 0
k(x,x') = Z Ai(z)ei(2')
i=1

where 1);(x) are eignefunctions of the operator L, i.e.

L(h) = M.

Karhunen-Loeéve theorem

For a GP with kernel k(-,)
flz) = Z \/Tmz(x)zz,
i=1
2 " N0, 1),

I Summary so far

The weights view in summary:

Weights view: ¢(x) — k(x,z")
Mercer’s theorem:) (x) — k(z, ')

I The Fourier transtorm

The Fourier transform

The Fourier transform S(w) := F[f](w) of a function f(z): R — R is
/f _27mwxd33
where
e i is the imaginary number with 2 = —1 and ¢ = 1,

@ w € R is a frequency.

I The Fourier transtorm

The Fourier transform

The Fourier transform S(w) := F[f](w) of a function f(z): R — R is
/f —27rzwxdx
where
e 7 is the imaginary number with > = —1 and " = 1,

@ w € R is a frequency.

Fuler's formula helps compute the integral:

" = cos(z) + i sin(z)
Hence
e = cos(2maw) + isin(2raw),
e A — cos(2maw) — isin(2maw).

I Inverse Fourier transtorm

The Fourier transform

The Fourier transform S(w) of a function f(z): R — R is

/ f —27mwa: dr

Inverse Fourier transform

The Inverse Fourier transform f(x) of spectral density S(w):

fla) = [Sw)er=da

I Stationary covariance kernels

Invariance to translations

Stationary covariance kernels
A covariance kernel k(z, z') is stationary if it can be written as a function of
T=z—1 €RY:

k(z,z") = k(7).

[.e. stationary covariance kernels are those which are imvariant to translations in the input
space.

I Spectral kernel representation

Bochner’s (and Wiener-Khinchin) theorem

Any stationary kernel k£ : RY — R and its spectral density S : R — R are Fourier
duals [17]:

S(w) = /k’(T)e_Qm“’Twa = Flk](w),

k(T) = / S(w)e?™ Tdw = FYS]|(r).

@ For every stationary covariance kernel there is a spectral density:.

e All spectral densities define a covariance function.

I Spectral density functions: examples

Every stationary covariance kernel has a corresponding spectral density function [7]. For
instance, the d-dimensional Matérn class covariance kernel has the following spectral density

function i +d/2)
202 (v + d/2)(2v)" [2v oo\
Sy(w) =« O 7 + 47w w

Here, w € R? is a vector in the frequency domain.

1-dimensional Matérn class covariance kernels and respective spectral densities

Name kernel k(r) Spectral density S(w)
Squared exponential o exp (—27“—;2) S (W) = a2l exp(— % 202)
Matérn 3/2 a1+ Q) Cyp (_@ S3/9(w) = 4043;;# (% + w2) -
i 52 a1+) o () Syate) =20 (3+)

I Spectral kernel representation

From Bochner’s theorem, for a stationary kernel function we have

k(1) = / S (w)em“TT dw = Ey5(0) [ezmwTT} .

. . T - .
Using Fuler’s formula €™ 7 = cos(2mw ' 7) + i sin(27w ' 7) this becomes

Eys(w) [eQmwTT] =E,s5) [cos(2rw ' T) + isin(2rw ' 7)] .

Since the kernel is real-valued, we take the real part:
Re (em“’TT) — cos(2mw ' T),

and get [)]

k(1) = Euus [cos(2mw ' 7)] .

I Spectral kernel representation

The formula
k(T) = Euos) [cos(2mw ' 7)]
means that all real-valued stationary kernels are S(w)-weighted combinations of harmonics

cos(2rw ' 7), e.g.

ksg(T / Ssp(w) cos(2mw ' 7)dw,

k3/o(T) / S3/9(w) cos(2mw ' 7)dw.

SPDE view

I SPDE view

Gaussian processes with Matérn kernels are given as solutions of stochastic partial differential
equations (SPDE) [10, &]:

(v)2+d/4)
(2_” _ A) f@) = W(z), zcR"

Here

o A=Y 0" is the (differential) Laplace operator,

i=1 927
@)V is the Gaussian white noise process with unit variance.

I SPDE view

How to understand this the pseudo-differential operator

(v/2+d/4)
(%-2) :

12

I SPDE view

How to understand this the pseudo-differential operator

9, (v/2+d/4)
(z—Z‘A) :

What is even a fractional derivative?

I The Fourier transtorm and derivatives

Assume that y = y(x) and its Fourier transform is Fly|(w) = S(w). Then?

Flyl(w) = iwS(w),
Fly' (w) = (iw)*S(w) = —w'S(w),

and so on.

Key point
Taking Fourier transform of the k-th derivative leads to multiplying the image by iw.

3This is derived by integration by parts and requires f(4o00), f(—oo) — 0.

I The Fourier transtorm and derivatives

Assume that y = y(x) and its Fourier transform is Fly|(w) = S(w). Then?

Flyl(w) = iwS(w),
Fly' (w) = (iw)*S(w) = —w'S(w),

and so on.
Taking Fourier transform of the k-th derivative leads to multiplying the image by iw.

This can help us solve differential equations.

Key point

The Fourier transform turns differential expressions into algebraic.

3This is derived by integration by parts and requires f(4o00), f(—oo) — 0.

I Solving an ODE with Fourier transform

Consider the ordinary differential equation:

y(z)+ylx) =€

Applying the Fourier transform to the ODE:

Fy'(x) +y(z)} = F{e™"}

This gives .
wS(w) + S(w) = i
Factor out S(w):
1
1) —
S(w)(iw + 1) i
Solve for S(w):
1 1

W) = o D) w1

To find y(z), take the inverse Fourier transform of S(w): y(z) = F {m} .

I Fractional derivatives
Example of half-derivative

Using the Fourier transform, a halt-cerivative of a function y(x) corresponds to multiplying its
Fourier transform S(w) by (iw)'/?.

Example:
Take

flx)=e".
[ts Fourier transform is ,
S(w) = /me </,

To find the half-derivative of f(x), we need to compute the inverse Fourier transform of

(iw)Y? - S(w):
Fl {(m)”? - S(w)} ().

This provides a function that represents the half-derivative of f(x), meaning it has been
“differentiated” halfway:.

I SPDE view

I Several views: summary

o Kernel view:

@ 1s a moment representation,
o k(x,x') uses similarity between points to show association,
e views GPs as priors over functions.

e Weights view:
o f(x) = B"¢(x) with, possibly, infinite feature map ¢(x),
o k(z,2') = ¢(x) ¢(a'),

e views GPs as a generalisation of Bayesian linear regression.

@ Spectral (Fourier) view:

o k(x,z') = > A\wi(x);(x’): positive definite kernels, can be represented as a series expansion of
eigenfunctions weighted by corresponding eigenvalues.

o k(z —a) =K, g |cos2mw’ (z — 2"))].

e SPDE view:
e Matérn and SE GPs as a solutions of corresponding SPDESs.

/
T'he practica /épects

2

/

The nugget effect

I Numerical issues
The nugget

If two inputs are too close, the covariance matrix may no longer be positive
definite numerically.

Example: Assume, we have 4 points, and points 2 and 3 are close. Then for the SE kernel we

get

I Numerical issues
The nugget

If two inputs are too close, the covariance matrix may no longer be positive
definite numerically.

Example: Assume, we have 4 points, and points 2 and 3 are close. Then for the SE kernel we
get

a a
L1
11
c c

StQe e =
o o o

To resolve this issue, we can add a small value to the diagonal of the covariance matrix for
numerical stability. This is the nugget effect.

Nugget
[f Kisa N x N covariance matrix and [is an identity matrix, the covariance matrix with the
nugget K is

~

K=K+ Ie

where, € is a “small enough” value (e.g., 1.0 x 107%).

Cholesky decomposition

I Numerical issues
Numerically unstable K

@ It is not advisable to directly invert K due to issues with numerical stability.

@ A more reliable option is to perform a Cholesky decomposition.

I Cholesky decomposition

Cholesky decomposition
Any positive definite matrix can be decomposed in to the product of a lower triangular matrix

and its transpose:
LL'=A

Here, L is called the Cholesky factor.

Cholesky factors are numerically stable. They possess O(N?) time complexity.

I Cholesky decomposition

The multivariate version of standard deviation

The covariance matrices are positive definite. Thus we can apply Cholesky decomposition:

K=LL"

Key point
In the case of covariance matrices, we can interpret their Cholesky factors to be the
multivariate version of the standard deviation.

When z € R and x ~ N (i, 0%), x can be expressed as x = p + oz where 2z ~ N (0, 1):

Elz] = Elp+ 0z = p,

Viz] = Viu+0z] = o*.

Similarly, when f € RY and f ~ N (u, K), we can write f = p + Lz where z ~ N(0, I):

E[f]
Cov| f]

Elp+ Lz] = p,
Cov[p+ Lz] = LIL' = K.

I Cholesky decomposition
Sampling from GP prior N (0, K) using Cholesky decomposition

Algorithm 1 Sampling GP prior using Cholesky decomposition

1
2

3
4
5

; Step 1:
. Step 2:
. Step 3:
. Step 4:
. Step b5:

Sample the parameters of the covariance kernel k, e.g. a,
Compute the covariance matrix K.

Compute the Cholesky factor L = Cholesky(K).

Sample z ~ N(0,).

Sample from a GP with mean 0 and covariance kernel k as f = Lz.

I Cholesky decomposition

Centered parameterization

Consider the model

f~N(0,K),
y ~N(f,0%).

This is a natural centered parameterization [0], i.e. each observation y; is independent given

the corresponding latent f;.

@ This parameterization works well if the data are informative (small o) because each
observation y; constrains the corresponding latent parameter f;.

I Cholesky decomposition

Non-centered parameterization

e If the data y are weak (large o), they cannot independently constrain each element of f
and the GP prior dominates the posterior.

@ The resulting correlation among elements of f frustrates samplers, especially if the
correlation length is large.

@ We can overcome this challenge by employing a non-centered parameterization such that
the parameters of the model are uncorrelated under the prior.

@ The reparameterized model is

2z~ N(0,1),
f= 1Lz,
y ~N(f, o).

Kronecker decomposition

I Kronecker product

Kronecker product

The Kronecker product of two matrices A,,, and B,y,, denoted by

A® B,

is an mp X ng matrix given by

CL11B alzB alnB

A ® B — Clng a22B s agnB

axmlB amQB ¢ amnB

I Kronecker product

Kronecker product

The Kronecker product of two matrices A,,, and B,y,, denoted by

A® B,

is an mp X ng matrix given by

CL11B alzB alnB

A ® B — Clng a22B s aan

axmlB amQB ¢ amnB

Key point

Kronecker product is the “each with each” product.

I Kronecker product
Useful identities

(A B)' =A"@B',
(A B '=A1'® B!,
det(A ® B) = det(A)"det(B)"
(A® B)(C ® D) = (AC ® BD)

I Kronecker product

The vec operator
The vec operator, denoted as vec(-), is an operation that converts a matrix into a column

vector by stacking the columns of the matrix on top of one another.

If Ais an m X n matrix, then vec(A) is an mn x 1 column vector defined as:

aii

vec(A) =

I Kronecker product
Key Kronecker identity

A key Kronecker identity states that for matrices A, B, and C of compatible sizes, the
following relation holds:

(A ® B)vec(C) = vec(BCA")

where vec(C') is the vectorization of matrix C.

I The Kronecker trick

Separable kernel
A kernel is separable
k=Fk Xky- -+ Xky

if its covariance function can be expressed as the product of two or more simpler
kernels, typically corresponding to different input dimensions, allowing for independent
modelling of each dimension:

k(z,x") = ki(x1,27) X ko(xe,) X « -+ X kyg(xg,)

I The Kronecker trick

Separable kernel
A kernel is separable

k’:]ﬁXk’Q"'Xkd

if its covariance function can be expressed as the product of two or more simpler
kernels, typically corresponding to different input dimensions, allowing for independent
modelling of each dimension:

k(z,x") = ki(x1,27) X ko(xe,) X « -+ X kyg(xg,)

Under the assumptions of

e multivariate grid X = &} x &y, x --- A,
@ separable kernel,

we can use the Kronecker trick [11, 1].

I The Kronecker trick

Example: Assume that we work in 2d on an n X m grid using the SE kernel. We get

k(x,x') = kp(x,2") - ky(y,y)

ko(z,2') = 0 exp (—(‘” _ ‘”')2) ky(y,y) = o2 exp (—(y _ W) .

where

202

I The Kronecker trick

Example: Assume that we work in 2d on an n X m grid using the SE kernel. Hence,

K:c — LxL;—a
K, = LyLyT ,
K=K, @K,=(LL])&(LL,) = (L, ® L)L, & L,)",

I The Kronecker trick

Example: Assume that we work in 2d on an n X m grid using the SE kernel. Hence,

KZE — LxL;gra
K, = LyLyT ,
K=K, @K,=(LL])&(LL,) = (L, ® L)L, & L,)",

How to sample a GP now? Remember the reparametrisation trick f = Lz, and Kronecker
vector property (A ® B)vec(C') = vec(BCA"):

f=Lz=(L,®L,)z=vec(L,ZL)),
where

Z N(Oa [mn)v
Z = vec !(2)

i.e. Z is an m X n matrix obtained by unstacking the mn x 1 vector z.

I The Kronecker trick

Sampling GP prior using Kronecker product in 2d

Algorithm 2 Sampling GP prior using Kronecker product in 2d

1: Step 1: Sample the parameters of the covariance kernel k. e.g. «, [
2. Step 2: Compute the n X n matrix K, and m X m matrix K,
3: Step 3: Compute Cholesky factors

L, = Cholesky(K}), L, = Cholesky (k)

1: Step 4: Sample z ~ N (0, I,,,,)
5. Step 5: Sample from a GP with mean 0 and covariance kernel & as

f=vee(L,ZL,), Z =vec '(z).

I The Kronecker trick

(Gains

Instead of working with an mn X mn matrix K, we now only need to work with matrices K,
and K, which are m x m and n X n, correspondingly.

For N = mn data points, assume n > m:

@ Space complexity: is reduced from O(m*n?) to O(n?).

o Tine complexity: is reduced from O(m?*n?) to O(n?).

Random Fourier Features

I Random Fourier Features

Recall the spectral representation:
k(z — 2') = E o5 [cos(2mw ' (z — 2))] .
This is nice, we would like something of the form ¢(z)¢(x’), and not just z — x'.
Using the fact that
Ey [cos(a + nb)| = 0,

for all @ € R,n € N*, where b ~ Uniform|0, 27|, we can re-write the expectation as

Epnsw) [cos2mw ' T)] = K, [cos(2mw ' 7) + cos(2mw ' 7 + 2b)]
=E, [cos2rw ' (z — 2')) + cos(2nw ' (z — 2') + 2b)]
=K, :2 COS (27rcuT:c + b) COS (27erx' + b)] .

I Random Fourier Features

The expression
k(z —2') = By [2cos (2w '@ + b) cos (2w "2’ + b)]

is exact. How can we compute it practically? The options are

@ quadrature,

@ approximate using randomness (Monte Carlo).

I Random Fourier Features

We can approximate the integral |10]
k(T) = Eypus) [cos(2mw ' 7)]
using the Monte Carlo method:

@ sample wy,ws, ..., wys from the distribution with density proportional to S(w):
w; ~ S(w),

@ approximate k(7) as

M

1

k(1) ~ v Z cos(2mw ' 7).
i=1

I Random Fourier Features

We can approximate the integral
k(z,2') = Eyp [2cos (27w 'z 4+ b) cos (2w '’ +b)]
using random Fourier features.

Define the random Fourier feature mapping ¢(x) as

- cos(2mw{ x +by)
2 | cos(2mwy T + by)

</5RFF(113) — M

cos(2mw iz + bay) |

where
w; ~ S(w), b; ~ Uniform|0, 27].

The kernel can then be approximated by the dot product

k(z,2") = ¢rpr(z) ' drper()).

[13] shows that using m = y/nlog(n) features achieve similar performance to using the full
kernel.

HSGP

I Hilbert space approximate Gaussian process

Hilbert space approximate Gaussian process |15, | 1] (HSGP) provides a useful
approximation.

@ It solves the eigenvalue problem for the Laplacian operator:

—AQ%(CE) =)\Qﬁz(.flf), T & Q,
qbz(fli‘) =0, x € .

@ The eigenfunctions ¢,(+) are orthonormal w.r.t. inner product

/ gi(x)d;(x) = 0ij

@ The negative Laplacian has the kernel k(x,2") = > . \igi(z)i(2") on the sense that

CAf(r) = / ke, o) f(2')de’

I Hilbert space approximate Gaussian process

Approximations of the differential operator lead to

k(z,2') ~ Z S(VA))j(x)d;(2).

I Representing kernels with spectral density functions

Spectral density + eigenvalues + eigenvectors

The boundary problem can solved analytically for some domains.

Expressing stationary kernels using spectral density functions
In a compact range 2 = [—L, L] C R, stationary kernels can be written as the following
infinite sum:

k(w,2') = Y So(v/ An)dm(@)dm()

where, Sy is the spectral density, and \,,, ¢,,,(x) are given as,

A = (%)2, Om(T) = \/%sin (\/m(x + L))

respectively. Note that the eigenvalues and eigenfunctions do not depend on the spectral
density.

I Approximating the kernel
Removing the high finer details

Notice that the eigenfunction ¢,,(x) is a periodic function which increases its frequency with
m. Most information about the kernel is contained within the low frequency components.
Thus we may truncate the infinite sum

Z SH)Qbm()

to the first m terms, and approximate the kernel as

Z S&)¢m()

Key point
Covariance kernels can be approximated using the spectral density and the first m terms of

the infinite sum.

I (Gaussian process approximations

Rewriting in matrix notation

Rewriting the approximation using matrix notation, we obtain

M
k(z, ') =) So(v/ Am) () (z') = p(z) T Ad(a)
m=1

RMXM

where ¢(x) = {¢(2)}7_; € RM is a column vector of eigenfunction values and A €
is a diagonal matrix consisting of spectral densities evaluated at the square root of the
eigenvalues.

[So(v/A1)

I (Gaussian process approximation

The covariance matrix

When using this approximation, the covariance matrix becomes
K ~ ®AD".
Here, & € RV*M is a matrix of eigenfunctions.

O1(x1) ... du(x)
O = : - :

Pi(zn) - | durley)

From this we obtain,

f o~ N(p, ®AD).

This is equivalent to,

Fl@) =Y (So(v/An) 2 bu(@) 2

m=1

where z, ~ N (0, 1).

I Reduction in the computational cost

How much did we gain

In the approximation

Z 1/2¢m()

m=1
we notice the following:
Q@)\, and ¢,,(x) does not depend on the parameters of the GP. Thus we only need to
compute them once beforehand and reuse them.
@ Only the m spectral density Sp(+/A,) is dependent on the GP parameters

Key point
For each MCMC iteration we need to calculate

@ The value of M spectral densities Sg(v/Ay,) and (O(M)),
© the M term sum of N data points (O(MN))
Hence, the total computational cost works out to be O(MN + M).

In general M < N thus compared to O(N?), we significantly reduce the necessary
computations.

I HS5GP

The computational cost for unapproximated GPs per MCMC step is O(N?), where n is the
number of data points. For HSGPs, it is O(M N + M), where M is the number of basis

vectors.
@ can only be used with stationary covariance kernels
@ does not scale well with the input dimension
@ may struggle with more rapidly varying processes

e For smaller data sets, the full unapproximated GP may still be more efficient.

What about graphs?

I GPs on graphs

How should we approach constructing a GP over a graph?

I GPs on graphs

How should we approach constructing a GP over a weighted graph?

I Graphs

Formalising graphs

Weighted graphs can emerge when measure
similarity between areas via

e travel time,
e number of flights or train journeys,
@ social networks.

I Graphs

Formalising graphs

Let us denote
@ I/ - aset of vertices,
@ F - aset of weighted edges

Then we denote the whole weighted
undirected graph as

G=(V,E)

I Graphs

Formalising graphs

@ The aim is to define a GP indexed by
the vertices V', which reflects the notion
of closeness induced by the edges E.

I Graphs

Formalising graphs

@ The aim is to define a GP indexed by
the vertices V', which reflects the notion
of closeness induced by the edges E.

e In particular, let’s focus on Matérn
kernels.

I GPs on graphs

We want to be able to evaluate a kernel k(-, -) and draw samples from GP(0, k) |2].

I GPs on graphs

Generalising distance-based approach

Can we use this kernel directly

2
ksg = aexp (—2—l2>?

Typically, this approach will not result in a well-defined covariance kernel [3].

Hence, another generalisation is needed.

I Graph Laplacian

Recall the SPDE representation:

97 v/2+d/4
(l_2 — A) flx)=W(z), zeR"

Maybe this can be genearlised?

We would need to redefine what the operator “—A” is.

I How to compute on graphs?

Adjacency matrix

Adjacency matrix is defined as

A i weight of edge(i,),
Y 0 :1if no edge between 1, 5.

I How to compute on graphs?
Graph Laplacian

Adjacency matrix is defined as

) w;; - weight of edge (¢, 7),
Y10 sifno edge between 1, 5.

Degree matrix is a diagonal matrix with

n
dz': E wij
1=1

Graph Laplacian is defined as

A=A—-D.

I Graph Laplacian

Graph Laplacian is defined as
A=A-D,

i.e. 1t is a matrix with entries
(d;, ifi=j
Ay = —w;; if (¢,7) is and edge ,

0 if no edge between ¢ and j.

I Graph Laplacian

Graph Laplacian is a symmetric, positive semi-definite matrix
A > 0.
Hence, it admits an eigenvalue decomposition

A=UANU"

where
e A is diagonal with non-negative entries,

e U is orthogonal.

I Functional calculus for A

Let g : R — R be a function. Then functional calculus for A can be introduced as follows:

g(A) =Ug(\)UT

where g(A) is a diagonal matrix defined by applying g to the diagonal of A element-wise.

I Functional calculus for A

Taking

2V 2 2
g(A) = (l_2 +)\) and g(A\) =eTA
gives the operator similar to the one on the left-hand side of the Whittle SPDE, and we get

the following generalisations of SPDEs for graphs:

; :
(2—V+A) F=W and eTAf=W,

I Deriving GP on graphs

2V 2 A
(1—2+A> f=W and ,e;f),fz)/\/

v

(*)

We can think of expressions () as matrices! I.e. what is written above is
Af =z, z~N(0,1)
with A = (% + A)? . Hence,

f=AT2~ N(0,471A7T)
~ N(0, (A" A)7)

~N (O, (212V+A)V) .
f~N (0,6_§A> .

Analogously,

I Graph Matérn and graph diffusion kernels

Replacing Gaussian white noise process with a standard Gaussian W ~ N(0, I) in

corresponding SPDEs gives
2 —V
fNN<O,(2‘|‘A>),
K

f~N (0,6£4%A) .

These are graph Matern and graph diffusion processes.

I Graph Fourier Features

Define 1(\) = g(A)~2. Then

Here
@)\, are eigenvalues of A,
@ u,(7), us(j) are the i-th and j-th component of the eigenvector us corresponding to As.

This mirrors ideas in HSGP, where GPs are specified via Karhunen — Loeve type
decompositions.

Outro

I References |

[1] Sudipto Banerjee, Bradley P Carlin, and Alan E Gelfand. Hierarchical modeling and
analysis for spatial data. Chapman and Hall/CRC, 2003.

2] Viacheslav Borovitskiy, Iskander Azangulov, Alexander Terenin, Peter Mostowsky, Marc
Deisenroth, and Nicolas Durrande. Matérn gaussian processes on graphs. In
International Conference on Artificial Intelligence and Statistics, pages 2593-2601.
PMLR, 2021.

3] Aasa Feragen, Francois Lauze, and Soren Hauberg. Geodesic exponential kernels: When
curvature and linearity conflict. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 3032-3042, 2015.

[4] Seth Flaxman, Andrew Wilson, Daniel Neill, Hannes Nickisch, and Alex Smola. Fast
kronecker inference in gaussian processes with non-gaussian likelihoods. In International
conference on machine learning, pages 607-616. PMLR, 2015.

5] James Hensman, Nicolas Durrande, and Arno Solin. Variational fourier features for
gaussian processes. Journal of Machine Learning Research, 18(151):1-52, 2018.

6] Till Hoffmann and Jukka-Pekka Onnela. Scalable gaussian process inference with stan.
arXiwv preprint arXiw:2301.085836, 2023.

I Reterences 11

7]

8]

10

11

12
13

14

Motonobu Kanagawa, Philipp Hennig, Dino Sejdinovic, and Bharath K Sriperumbudur.
Gaussian processes and kernel methods: A review on connections and equivalences. arXiv
preprint arXiww:1807.02582, 2018.

Finn Lindgren, Havard Rue, and Johan Lindstrom. An explicit link between gaussian
fields and gaussian markov random fields: the stochastic partial differential equation
approach. Journal of the Royal Statistical Society Series B: Statistical Methodology,
73(4):423-498, 2011.

Kevin P Murphy. Probabilistic machine learning: Advanced topics. MIT press, 2023.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines.
Advances in neural information processing systems, 20, 2007.

Gabriel Riutort-Mayol, Paul-Christian Biirkner, Michael R Andersen, Arno Solin, and
Aki Vehtari. Practical hilbert space approximate bayesian gaussian processes for
probabilistic programming. Statistics and Computing, 33(1):17, 2023.

C.P. Robert and G. Casella. Monte Carlo statistical methods. Springer Verlag, 2004.

Alessandro Rudi and Lorenzo Rosasco. Generalization properties of learning with random
features. Advances in neural information processing systems, 30, 2017.

Yunus Saatci. Scalable inference for structured Gaussian process models. PhD thesis,
Citeseer, 2012.

I References 111

[15] Arno Solin and Simo Séarkka. Hilbert space methods for reduced-rank gaussian process
regression. Statistics and Computing, 30(2):419-446, 2020.

[16] Peter Whittle. On stationary processes in the plane. Biometrika, pages 434-449, 1954.

[17] Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine
learning, volume 2. MIT press Cambridge, MA, 2006.

I Retferences and Further reading

@ Another ontroductory video lecture (David MacKay): link.
@ GPML book: link.

@ MCMOC interactive gallery: link

@ GP visualisations:

@ https://distill.pub/2019/visual-exploration-gaussian-processes/
@ http://infinitecuriosity.org/vizgp/

e https://peterroelants.github.io/posts/gaussian-process-kernels/
e https://smlbook.org/GP/

@ Geometrics kernels: urll, url2

@ Numpyro online course: link. Suggestions for improvements are very welcome! Stay tuned for examples of
cases covered in today’s lecture.

https://videolectures.net/gpip06_mackay_gpb/
http://www.gaussianprocess.org/gpml/
https://chi-feng.github.io/mcmc-demo/
https://distill.pub/2019/visual-exploration-gaussian-processes/
http://infinitecuriosity.org/vizgp/
https://peterroelants.github.io/posts/gaussian-process-kernels/
https://smlbook.org/GP/
https://geometric-kernels.github.io/GeometricKernels/examples/Graph.html
https://github.com/geometric-kernels/GeometricKernels/blob/main/notebooks/Graph.ipynb
https://elizavetasemenova.github.io/prob-epi/

I Thank you

@ Organisers for the invitation.

e Viyacheslav (Slava) Borovitsky for being an amazing collaborator, his patience and
willingness to share knowledge.

@ Shozen Dan, Oliver Ratmann from Imperial from MLGH for publicly sharing
AIMS-Rwanda lecture on ”Practical Gaussian process regression”, as well as the slides
template.

https://mlgh.net/
https://github.com/MLGlobalHealth/aims_rwanda_2024/blob/main/day1/lecture3_intro_to_gp_and_hsgp.pdf

Imperial College
London

Thank you.

Elizaveta Semenova,

Department of Epidemiology and
Biostatistics

	Introduction: MCMC for spatial inference
	Different views on Gaussian processes
	The practical aspects
	References

