Imperial College London

From geostatistics to graphs: Gaussian processes in practice.

Gaussian Process Summer School, 10 September 2024

Elizaveta Semenova,

Department of Epidemiology and Biostatistics

Table of contents

1 Introduction: MCMC for spatial inference

2 Different views on Gaussian processes

Introduction: MCMC for spatial inference

What do Gaussian processes and John Snow have in common?

Jon Snow: This is a summer school, but winter is coming.
John Snow: spatial epidemiology.

Uses of Gaussian processes in epidemiology

Common uses of Gaussian processes in epidemiology:

- nowcasting,
- surrogates for decision making,
- disease mapping.

Disease mapping and public health

• A map of a three-stage containment field in Italy, 1691

"Disease mapping and innovation: A history from wood-block prints to Web 3.0", Tom Koch (2022)

• Dr. John Snow mapped cholera cases in London, 1854.

• He also mapped different water companies' service areas.

Credit: British Library

• Dr. John Snow mapped cholera cases in London, 1854.

Credit: ESRI, "John Snow's cholera map"

• This pump has started the field of spatial epidemiology.

The John Snow Society @JohnSnowSociety \cdot 22h John Snow not only persuaded the authorities that factory fumes were not the main source of disease, he also famously convinced them to remove a handle from the contaminated Broad street water pump in 1854. 170 years to this very day \longrightarrow \bigstar .

Disease mapping and public health

'Memoir on the cholera at Oxford, in the year 1854 : with considerations suggested by the epidemic', Acland (1856)

Disease mapping and technology

Modern technology for disease mapping

Image Credit: ESRI

• Hierarchical Bayesian modelling using <u>Gaussian Processes</u>.

 $y = (y_1, ..., y_n)$ $\underline{y \sim p(y|g^{-1}(\eta), \theta)}$ $\eta = X^\top \beta + f$ $f \sim p(f|\theta)$

 $\theta \sim p(\theta)$

- outcome data over a set of n locations
- observational model (likelihood)
- additive model for the mean, combines a fixed effect and random effect terms
- random effect term: Gaussian process
- hyperparameters

- If the likelihood is Gaussian, the posterior is also a Gaussian process, and all computation can be performed analytically.
- If the likelihood is non-Gaussian, we can no longer compute the posterior exactly.

• Some typical likelihoods:

Model	Likelihood
Regression	$\mathcal{N}(f_i,\sigma_y^2)$
Binary classification	$\mathcal{B}ern(\sigma(f_i))$
Multiclass classification	$Cat(\operatorname{softmax}(f_i))$
Poisson regression	$\mathcal{P}oisson(\exp(f_i))$
Negative binomial regression	$\mathcal{N}egBin(\exp(f_i),\phi)$

Types of spatial data: there is only three of them [1]!

- Type: areal data
- Task: small area estimation

US vaccinations at county level.

Credit: The New York Times

- Type: geostatistical or point-referenced data
- Task: kriging

Observed malaria prevalence at survey locations in Uganda.

Credit: J Ssempiira

- Type: point pattern
- Task: surface reconstruction and point pattern analysis

Observed local (blue) and imported (red) malaria cases in Eswatini, 2015.

Models of areal data Solving the small area estimation task.

 $y \sim p(y|g^{-1}(\eta), \theta)$

 $f \sim \mathrm{MVN}(0, Q^{-1})$

 $Q = \tau I$

 $Q=\tau(D-\alpha A)$

 $Q = \tau(D - A)$

$$Q^{-1} = \tau_1^{-1}I + \tau_2^{-1}(D-A)^-$$

observational model (likelihood)

Q - precision matrix

i.i.d.

Conditional auto-regressive (CAR): A and D are defined by the neighbourhood structure, A - adjacency matrix

ICAR

BYM

Models of geostatistical data Solving the kriging task.

 $y \sim p(y|g^{-1}(\eta), \theta)$

 $\eta = X^\top \beta + f$

 $f\sim \mathrm{GP}(0,K)$

observational model (likelihood)

additive model for the mean

Gaussian process

Modelling point pattern data Solving point pattern analysis task

- $\lambda(s), s \in D$ intensity function.
- Log-Gaussian Cox process is a common model of spatial point patterns:

$$L(s_1, \dots, s_n; \lambda(s)) = \exp(-\lambda(D)) \prod_{i=1}^n \lambda(s_i),$$
$$\lambda(D) = \int_D \lambda(s) ds,$$
$$\lambda(s) = \exp(X^{\top}(s)\beta + f(s)),$$
$$f \sim \operatorname{GP}(0, k).$$

What about networks?

What about networks?

Stay tuned!

Inference methods

- Laplace approximation
- Variational Bayes
- Expectation propagation
- Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC)

We will not talk about MCMC in details today.

What is important is that

• Random number generation can be useful to estimate even deterministic quantities, e.g.

$$\int f(x)p(x)dx \approx \frac{1}{M} \sum_{i=1}^{M} f(x_i), \quad x_i \sim p(x).$$

• MCMC is a group of elaborate **iterative** algorithms with theoretical convergence guarantees [12].

Inference methods: Bayesian inference

• y - data, θ - parameters,

- Gold standard inference algorithms: Markov chain Monte Carlo (MCMC) theoretical guarantees; diagnostic tools
- Probabilistic programming languages: Stan, PyMC3, Numpyro, Turing.jl

Probabilistic programming languages (PPLs)

- PPLs allow users to specify probabilistic models and perform inference automatically.
- Inference is performed by an MCMC algorithm (Gibbs, Metropolis-Hastings, HMC).
- Users need to specify
 - prior,
 - likelihood,
 - (sometimes) inference algorithm.

Example of a PPL programme

$$y_i \sim \mathcal{N}(\mu, \sigma^2), \quad i = 1, \cdots, n,$$

 $\mu \sim \mathcal{N}(0, 1),$
 $\sigma \sim \mathcal{E}xp(1)$

Example of a PPL programme

What does it take to write a generic model with Numpyro and run inference?

```
1 def model(data):
2
      # define prior distributions for model parameters
3
      mu = numpyro.sample("mu", dist.Normal(0, 1))
      sigma = numpyro.sample("sigma", dist.Exponential(1))
5
      # define likelihood with a data plate
7
      with numpyro.plate("data_plate", len(data)):
8
          y = numpyro.sample("y", dist.Normal(mu, sigma), obs=data)
9
10
11 # data
12 \text{ data} = \text{jnp.array}([2.3, 3.9, 1.7, -0.8, 2.5])
13
14 # choose inference algorithm
15 nuts_kernel = NUTS(model)
16 mcmc = MCMC(nuts_kernel, num_samples=1000, num_warmup=1000, num_chains=2)
17 mcmc.run(jax.random.PRNGKey(0), data)
18
19 # get posterior samples
20 posterior_samples = mcmc.get_samples()
```

Listing 1: Sample Numpyro programme

Example of a PPL programme with a GP

How can we include GPs into a Numpyro pogramme?¹

```
1 def model(x, y=None, kernel_func=rbf_kernel, lengthcsale=0.2, jitter=1e-5, noise=0.5):
      11 11 11
      Args:
3
      - x (jax.numpy.ndarray): input data points of shape (n, d), where n is the number of
4
     points and d is the number of dimensions.
      - kernel func (function): kernel function to use.
5
      - lengthscale (float): lengthscale parameter.
6
      - jitter (float): small constant added for numerical stability.
7
8
      Returns:
9
      - y (jax.numpy.ndarray): a sample from the Multivariate Normal distribution
10
    representing the function values at input points.
      0.0.0
11
12
      n = x.shape[0]
13
14
      K = kernel_func(x, x, lengthcsale) + jitter*jnp.eye(n)
15
16
      f = numpyro.sample("f", dist.MultivariateNormal(jnp.zeros(n), covariance_matrix=K))
17
18
      numpyro.sample("y", dist.Normal(f, noise), obs=y)
19
                              Listing 2: Numpyro programme with a GP
```

```
<sup>1</sup>See the full example at https://elizavetasemenova.github.io/prob-epi/18_GP_inference.html
```
- Diagnostics for MCMC samples:
 - Trace plots

• Good traceplot of bad traceplot?

• Good traceplot of bad traceplot?

- Diagnostics for MCMC samples:
 - Trace plots,
 - Gelman-Rubin statistic (\hat{R}) ,
 - Effective sample size (ESS).

• In a PPL to perform GP inference, we (only) need to specify **how to sample from the GP prior**.

Different views on Gaussian processes

How to sample from a Gaussian process prior?

How would **you** sample from a Gaussian process prior?

Kernel view

Gaussian process definition Gaussian process as a prior over functions

A Gaussian random vector $f = (f_1, \ldots, f_N)^{\top}$ is defined by its mean vector μ and covariance matrix K:

$$\mu = \mathbb{E}(f), \quad K = \operatorname{Cov}(f).$$

Gaussian process definition Gaussian process as a prior over functions

A Gaussian random vector $f = (f_1, \ldots, f_N)^{\top}$ is defined by its mean vector μ and covariance matrix K:

$$\mu = \mathbb{E}(f), \quad K = \operatorname{Cov}(f).$$

Consider a function $f(x) : \mathcal{X} \to \mathbb{R}$ evaluated at a set of points $X = \{x_i \in \mathcal{X}\}_{i=1}^N$ $f_X := (f(x_1), \dots, f(x_N))^\top.$

Gaussian process definition Gaussian process as a prior over functions

A Gaussian random vector $f = (f_1, \ldots, f_N)^{\top}$ is defined by its mean vector μ and covariance matrix K:

$$\mu = \mathbb{E}(f), \quad K = \operatorname{Cov}(f).$$

Consider a function $f(x) : \mathcal{X} \to \mathbb{R}$ evaluated at a set of points $X = \{x_i \in \mathcal{X}\}_{i=1}^N$

$$f_X := (f(x_1), \ldots, f(x_N))^\top.$$

If f_X is jointly Gaussian for any set of $N \ge 1$ points, then $f(x) : \mathcal{X} \to \mathbb{R}$ is a Gaussian process.

Gaussian process definition GPs as a prior over functions

Definition

A Gaussian process is an **infinite set** of random variables, any **finite subset** of which follows a **multivariate normal** distribution.

Gaussian process definition GPs as a prior over functions

Definition

A Gaussian process is an **infinite set** of random variables, any **finite subset** of which follows a **multivariate normal** distribution.

- Such a process is defined by its mean function m(x) and a covariance function, $k(x, x') \ge 0$.
- Kernels encode prior knowledge about the similarity of two input vectors x, x'.

Gaussian process definition GPs as a prior over functions

Definition

A Gaussian process is an **infinite set** of random variables, any **finite subset** of which follows a **multivariate normal** distribution.

- Such a process is defined by its mean function m(x) and a covariance function, $k(x, x') \ge 0$.
- Kernels encode prior knowledge about the similarity of two input vectors x, x'.

Key point

GPs can be thought of as **a prior over continuous** functions.

Samples from a GP prior

• Can any function $k(\cdot, \cdot)$ serve as a kernel?

Kernels

- Can any function $k(\cdot, \cdot)$ serve as a kernel?
- $k(\cdot, \cdot)$ needs to be positive semi-definite.

Positive definite matrix

Positive definite matrix

A symmetric $N \times N$ matrix A is called a **positive definite matrix** if

$$\boldsymbol{v}^{\top}A\boldsymbol{v} = \sum_{i=1}^{N}\sum_{j=1}^{N}A_{ij}v_iv_j > 0$$

for any non-zero vector $\boldsymbol{v} \in \mathbb{R}^N$.

Valid kernels

Definition

A positive semi-definite kernel is any symmetric function

 $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$

such that

$$\sum_{i=1}^{N} \sum_{j=1}^{N} k(x_i, x_j) c_i c_j \ge 0$$

for any set of N (unique) points $x_i \in \mathcal{X}$, and any choice of constants $c_i \in \mathbb{R}$.

I.e. we want the kernel to generate positive semi-definite matrices.

Given a set of N points, we can define the **Gram matrix** linked to the similarity between points:

$$K = \begin{pmatrix} k(x_1, x_1) & k(x_1, x_2) & \dots & k(x_1, x_N) \\ k(x_2, x_1) & k(x_2, x_2) & \dots & k(x_2, x_N) \\ \vdots & & \ddots & \vdots \\ k(x_N, x_1) & k(x_N, x_2) & \dots & k(x_N, x_N) \end{pmatrix}$$

٠

k is a valid kernel iff the Gram matrix is positive definite for any set of (distinct) inputs

 $(x_1,\ldots,x_N).$

Gaussian process definition Notation

Let $x, x' \in \mathbb{R}$ be two inputs. The notation for a GP is

$$f(x) \sim \mathcal{GP}(m(x), k(x, x')).$$

where,

$$m(x) = \mathbb{E}[f(x)]$$

$$k(x, x') = \mathbb{E}[(f(x) - m(x))(f(x') - m(x'))]$$

are the **mean function** and **covariance function** (kernel), respectively.

We set m(x) = 0 when we don't have any prior knowledge about the mean function, giving us

$$f(x) \sim \mathcal{GP}(0, k(x, x')).$$

Samples from a GP prior

The definition of a Gaussian process Looking under the hood

Let $x = (x_1, \ldots, x_N)^{\top}$ be a vector of inputs². Then,

$$f(\cdot) \sim \mathcal{GP}(0, k(\cdot, \cdot)) \quad \Rightarrow \quad f(x) \sim \mathcal{N}(0, K).$$

where the covariance matrix K is the Gram matrix

$$K = \begin{pmatrix} k(x_1, x_1) & k(x_1, x_2) & \dots & k(x_1, x_N) \\ k(x_2, x_1) & k(x_2, x_2) & \dots & k(x_2, x_N) \\ \vdots & & \ddots & \vdots \\ k(x_N, x_1) & k(x_N, x_2) & \dots & k(x_N, x_N) \end{pmatrix}$$

 $^{^{2}}$ I will be sloppy with the notation, i.e. not making x bold even when it is a vector. Dimensionality will be clear from context.

The kernel view

• Kernel view is the moment representation of GPs.

The kernel view

- Kernel view is the moment representation of GPs.
- It is convenient for model specification as it allows to utilise prior information about function properties, such as continuity, differentiability, periodicicty, symmetry.

Covariance kernels: examples Squared Exponential (SE) kernel

Squared exponential kernel

$$k_{SE}(x, x') = \alpha \exp\left(-\frac{\|x - x'\|^2}{2\ell^2}\right)$$

Here

- α : **amplitude**, shows how far the function values can be from the mean,
- ℓ : the **lengthscale** determines how 'wiggly' the function is.

These parameters are often unknown and are estimated during inference.

For fixed α and ℓ , as the distance between x and x' increases, k(x, x') approaches 0.

Key point

Kernels encode similarity between points.

Covariance kernels: examples Matérn kernels

- The SE kernel produces very smooth trajectories.
- Matérn kernels can generate **'rougher'** functions:

Matérn kernels

$$k_{\text{Matérn}}(x, x') = \alpha \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu} \|x - x'\|}{\ell} \right)^{\nu} K_{\nu} \left(\frac{\sqrt{2\nu} \|x - x'\|}{\ell} \right)$$

Here K_{ν} is a modified Bessel function and l is the length scale.

Key point

Matérn is a more flexible family than SE. As $\nu \to \infty$, Matérn becomes the SE kernel.

Covariance kernels: examples How to encode different function properties

Let r = ||x - x'||. The following table shows examples of covariance kernels and the types of functions they can model. $\alpha, \alpha_b, \alpha_v > 0$

Name	Definition	Type of functions
Squared Exponential	$\alpha \exp\left(-\frac{r^2}{2\ell^2}\right)$	Infinitely differentiable functions
Matérn $1/2$	$\alpha \exp\left(-\frac{r}{\ell}\right)$	Continuous but not differentiable
Matérn $3/2$	$\alpha \left(1 + \frac{\sqrt{3}r}{\ell}\right) \exp\left(-\frac{\sqrt{3}r}{\ell}\right)$	1 time differentiable functions
Matérn $5/2$	$\alpha \left(1 + \frac{\sqrt{5}r}{\ell} + \frac{5r^2}{3\ell^2}\right) \exp\left(-\frac{\sqrt{5}r}{\ell}\right)$	2 time differentiable functions
Linear Kernel	$\alpha_b + \alpha_v (x-c)(x'-c)$	Linear functions
Periodic Kernel	$lpha \exp\left(-rac{2\sin^2(\pi r/p)}{\ell^2} ight)$	Periodic functions
Locally Periodic Kernel	$\alpha \exp\left(-\frac{2\sin^2(\pi r/p)}{\ell^2}\right) \exp\left(-\frac{r}{2\ell^2}\right)$	Functions that are periodic at cer- tain locations

https://www.cs.toronto.edu/~duvenaud/cookbook/

Key point

The covariance kernel determines the type of functions the GP can model.

Covariance kernels: examples Play online

- https://distill.pub/2019/
 visual-exploration-gaussian-processes/
- http://infinitecuriosity.org/vizgp/
- https://peterroelants.github.io/
 posts/gaussian-process-kernels/
- https://smlbook.org/GP/

Interactive online GP demos

Covariance kernels: examples Sampled trajectories

A comparison between functions sampled from GPs with different covariance kernels

Given two kernels $k_1(x, x')$ and $k_2(x, x')$, we can create a valid new kernel using any of the following methods [9]:

- $k(x, x') = ck_1(x, x'), \quad c > 0$
- $k(x, x') = f(x)k_1(x, x')f(x')$ for any function f
- $k(x, x') = \exp(k_1(x, x'))$
- $k(x, x') = x^{\top} A x'$ for any $A \ge 0$
- $k(x, x') = k_1(x, x') + k_2(x, x')$
- $k(x, x') = k_1(x, x')k_2(x, x')$

Key point

Kernels can be combined to make new kernels.

Assume we have N observation pairs (x_i, y_i) generated by the model

$$y_i = f(x_i) + \epsilon_i,$$

$$\epsilon_i \sim \mathcal{N}(0, \sigma^2),$$

$$i = 1, \dots N.$$

How to obtain predictions f_* at N_* unobserved locations x_* ?

Posterior predictive inference

Vector of training points

 $x = (x_1, x_2, \dots, x_N)^\top$

Vector of test points $x_* = (x_{1*}, x_{2*}, \dots, x_{N*})^\top$

Values of f at inputs

$$f := f(x) = (f(x_1), f(x_2), \dots, f(x_N))^{\top},$$

$$f_* := f(x_*) = (f(x_{1*}), f(x_{2*}), \dots, f(x_{N*}))^{\top}$$

Covariance matrix of the training points

$$K = \begin{pmatrix} k(x_1, x_1) & \dots & k(x_1, x_N) \\ \vdots & \ddots & \vdots \\ k(x_N, x_1) & \dots & k(x_N, x_N) \end{pmatrix}$$

Cov. matrix of training and test points

$$K_* = \begin{pmatrix} k(x_1, x_{1*}) & \dots & k(x_1, x_{N*}) \\ \vdots & \ddots & \vdots \\ k(x_N, x_{1*}) & \dots & k(x_n, x_{N*}) \end{pmatrix}$$

Covariance matrix of the test points

$$K_{**} = \begin{pmatrix} k(x_{1*}, x_{1*}) & \dots & k(x_{1*}, x_{N*}) \\ \vdots & \ddots & \vdots \\ k(x_{N*}, x_{1*}) & \dots & k(x_{N*}, x_{N*}) \end{pmatrix}$$

The Gaussian conditioning rule

When x_1 , x_2 are random vectors that follow a multivariate normal distribution, *i.e.*

$$x_1 \sim \mathcal{N}(\mu_1, \Sigma_{11}), \quad x_2 \sim \mathcal{N}(\mu_2, \Sigma_{22})$$

then the **joint distribution** can be written as

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \sim \mathcal{N}\left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{bmatrix} \right)$$

and the **conditional distribution** of x_2 given x_1 is

$$x_2|x_1 \sim \mathcal{N}(\mu_2 + \Sigma_{21}\Sigma_{11}^{-1}(x_1 - \mu_1), \Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}).$$

Key point

The conditional expectation and variance of x_2 given x_1 is

$$\mathbb{E}[x_2|x_1] = \mu_2 + \Sigma_{21}\Sigma_{11}^{-1}(x_1 - \mu_1)$$
$$V[x_2|x_1] = \Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}$$

Posterior predictive

Analytically deriving the posterior predictive distribution

Assuming Gaussian noise, the joint distribution of y and f_* can be written as:

$$\begin{bmatrix} y \\ f_* \end{bmatrix} \sim \mathcal{N} \left(0, \begin{bmatrix} K + \sigma^2 I & K_* \\ K_*^\top & K_{**} \end{bmatrix} \right).$$

The Gaussian conditioning rule gives us

$$f_*|y \sim \mathcal{N}(K_*^{\top}[K + \sigma^2 I]^{-1}y, K_{**} - K_*^{\top}[K + \sigma^2 I]^{-1}K_*).$$

Key point

Given training data y, the expectation and covariance of f_* are:

$$\mathbb{E}[f_*|y] = K_*^{\top} [K + \sigma^2 I]^{-1} y$$

$$\operatorname{Cov}[f_*|y] = K_{**} - K_*^{\top} [K + \sigma^2 I]^{-1} K_*$$

For N data points,

- Space complexity: the cost of computing a $N \times N$ covariance matrix is $\mathcal{O}(N^2)$.
- Time complexity: the cost of computing the inverse covariance matrix is $\mathcal{O}(N^3)$.

Posterior inference with a PPL

While using a PPL (e.g. **Stan**, **Numpyro**, etc) we do not need to derive the posterior analytically. We only need to specifty the generative model, e.g.

$$y \sim \mathcal{N}(\mu(x), \sigma^2)$$

 $\mu(x) = \beta_0 + f(x)$

with priors, e.g.

 $\sigma^{2} \sim \text{InvGamma}(5,5)$ $\beta_{0} \sim \mathcal{N}(0,1)$ $f(x) \sim \mathcal{GP}(0,K)$ $\alpha \sim \text{InvGamma}(5,1)$ $\ell \sim \text{InvGamma}(5,1)$

Key point

In a PPL, once we define the log-likelihood and priors, a sophisticated MCMC algorithm will take care of the rest.
Posterior inference with a PPL

In a PPL, the main GP-related effort is in specifying how to sample from a GP prior.

For non-Gaussian likelihoods an analytical expression is not available. We can use T iterations of MCMC to sample from the posterior. Time complexity becomes

 $\mathcal{O}(TN^3).$

Key point

Inferring GPs with MCMC is feasible up to a few hundred data points. Computations become unbearably slow after surpassing N > 1000 and thus is not very practical.

Kernel view: summary

- Kernel view is the moment representation.
- It allows us to think of the GP as a distribution over functions.
- The key information is encoded by the covariance function $k(\cdot, \cdot)$ which is based on similarity between points and shows their association.

Weights view

Bayesian linear regression

Bayesian linear regression is a special case of a GP.

Given pairs of observed points

$$(x_i, y_i), \quad i = 1, \dots, N,$$

consider the regression task, i.e. we want to fit a curve by fitting a model of the form

$$y_i \sim \mathcal{N}\left(f_{\theta}(x_i), \sigma^2\right).$$

Bayesian linear regression

In the case of linear regression, $f_{\theta}(x_i)$ takes a parametric form:

$$f_{\theta}(x_i) = \beta_0 + \beta_1 x_i = \beta^T \phi(x), \phi(x) = (\phi_0(x), \phi_1(x))^{\top} = (1, x)^{\top}.$$

In the Bayesian framework, we need to give priors to the parameters $\theta = (\beta_0, \beta_1)$, e.g.

$$\beta_0 \sim \mathcal{N} \left(\mu_0, \sigma_0^2 \right), \beta_1 \sim \mathcal{N} \left(\mu_1, \sigma_1^2 \right)$$

Every time we draw β_0, β_1 from the prior, f_{θ} is a different line.

Key point

We can interpret f_{θ} as a stochastic process which can be used as a prior over the space of linear functions.

Samples from the prior

Bayesian linear regression Bayesian inference

In Bayesian inference, we apply the Bayes rule

 $p(\boldsymbol{\theta}|\boldsymbol{y}) \propto p(\boldsymbol{y}|\boldsymbol{\theta}) p(\boldsymbol{\theta})$

to remove lines drawn from the prior that do not fit the observed data.

Here $y = (y_1, \ldots, y_N)^{\top}, \ \theta = (\beta_0, \beta_1).$

Issues

Linear functions can only model linear relationships. We would like to model complex non-linear relationships as well.

Bayesian polynomial regression

Extending the linear model We can extend the linear function to a polynomial:

$$y_i \sim \mathcal{N} \left(f_{\theta}(x_i), \sigma^2 \right)$$

$$f_{\theta}(x_i) = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_M x_i^M$$

$$= \sum_{j=0}^M \beta_j x_i^j = \beta^\top \phi(x_i).$$

where

$$\phi(x) = (\phi_1(x), \cdots, \phi_M(x))^\top$$

The functions

$$\phi_1(x) = x, \quad \phi_2(x) = x^2, \quad \dots, \quad \phi_M(x) = x^M$$

are **basis functions**. Parameters $\theta = (\beta_0, \beta_1, \dots, \beta_M)$ are given priors, e.g.

$$\beta_0 \sim \mathcal{N}(0, 10^2),$$

 $\beta_m \stackrel{i.i.d.}{\sim} \mathcal{N}(\mu, \sigma^2) \ (m = 1, \dots, M).$

Key point

We can view f_{θ} as a **prior over non-linear** functions.

Bayesian polynomial regression Bayesian inference

Issues

Polynomial regression is flexible enough to fit non-linear functions but it is...

- prone to over-fitting,
- gives unrealistic predictions when extrapolating.

2 Ω -2 2 0

Polynomial basis, M = 9

Other basis functions Fourier basis

Another example is the **Fourier basis**:

$$\sum_{m=1}^{M} \left(\alpha_m \sin(2\pi mx/L) + \beta_m \cos(2\pi mx/L) \right)$$

where L is the length of a period.

Other basis functions Fourier basis: no extreme outputs

Fourier basis functions are bounded in output *i.e.*, $|\phi(x)| < \infty$. This **prevents** extreme output values.

Fourier basis, M = 10

Other basis functions Fourier basis: non-local update of uncertainty

When new data is added to or removed from the training set, the **posterior estimates and uncertainty change non-locally**, even though we only acquired / lost data in a specific region.

• Fourier basis function are non local.

Fourier basis, M = 10

Squared Exponential basis functions

The Squared Exponential basis function:

 $\phi_c(x) = \exp\left(-(x-c)^2\right)$

- Prevents wild extrapolation,
- Prevents sensitivity on distant values.

Squared Exponential basis functions Still not quite there...

The good:

- more sensible posterior,
- better interpolation.

The bad:

- the model is too certain that nothing happens outside of the observed range,
- no good justification for the choice of where to place the basis functions.

Key point

What if we placed the SE basis function everywhere?

Squared Exponential basis, M = 10

To place basis functions **everywhere**, we need **infinitely many basis functions**.

It is impossible to compute the posterior predictive when $M \to \infty$ as the computational cost will also be infinite.

It turns out, that the components we need are

$$\Phi(x)\Phi(x)^{\top} \in \mathbb{R}^{N \times N}, \quad \Phi(x)\phi(x_*) \in \mathbb{R}^{N \times 1}$$

which means we only need the **inner products** between feature vectors:

$$[\Phi(x)\Phi(x)^{\top}]_{ij} = \phi(x_i)^{\top}\phi(x_j)$$

What if we could compute the inner products directly without computing the basis functions? This is the **kernel trick**!

Kernel trick An example: Polynomial kernel

If we can compute the matrices $\Phi(x)\Phi(x)^{\top} \in \mathbb{R}^{N \times N}$ and $\Phi(x)\phi(x_*) \in \mathbb{R}^{N \times 1}$ directly, we could do computations without incurring cost for a large number of basis functions. For example the Polynomial kernel is

$$k(x, x') = (xx' + 1)^{M-1} = \sum_{m=0}^{M} \binom{M-1}{m} x^m x'^m = \phi(x)^\top \phi(x')$$

where $\phi(x) = (1, \sqrt{2}x, x^2)^{\top}$ if M = 3.

Kernel trick Infinite dimensional feature spaces

If the limit of the inner product exists, we can even consider **infinite dimensional feature spaces.**

$$\phi_m(x) = \exp\left(-\frac{(x-c_m)^2}{2\ell^2}\right), \quad c_m = \frac{m}{M}(c_{\max} - c_{\min})$$
$$k(x, x') = \frac{1}{M}\sum_{p=1}^M \phi_m(x)\phi_m(x')$$

$$\lim_{M \to \infty} \frac{1}{M} \sum_{m=1}^{M} \phi_m(x) \phi_m(x') = \int_{c_{\min}}^{c_{\max}} \exp\left(-\frac{(x-c)^2}{2\ell^2}\right) \exp\left(-\frac{(x-c)^2}{2\ell^2}\right) dc$$
$$= \sqrt{\pi}\ell \exp\left(-\frac{(x-x')^2}{4\ell^2}\right)$$

which is called the **Squared Exponential (SE) kernel** and it **is equivalent to placing SE basis functions everywhere.**

For convenience, let's introduce notation for the scalar product $\langle \phi(x), \phi(x') \rangle_{l_2} := \phi^{\top}(x)\phi(x').$

Kernel trick

For convenience, let's introduce notation for the scalar product $\langle \phi(x), \phi(x') \rangle_{l_2} := \phi^\top(x)\phi(x').$

Any valid covariance function can be written as

 $k(x, x') = \phi(x)^\top \phi(x')$

for some feature map $\phi(x)$. Such a map is not unique.

Weights view: summary

Choice of a feature map $\phi(x)$ leads to choosing a kernel:

$$k(x, x') = \phi^{\top}(x)\phi(x') = \sum_{j=1}^{\infty} \phi_j(x)\phi_j(x'),$$
$$f(x) = \beta^{\top}\phi(x) = \sum_{j=1}^{\infty} \beta_j \phi^j(x).$$

Weights view: summary

Choice of a feature map $\phi(x)$ leads to choosing a kernel:

$$k(x, x') = \phi^{\top}(x)\phi(x') = \sum_{j=1}^{\infty} \phi_j(x)\phi_j(x'),$$
$$f(x) = \beta^{\top}\phi(x) = \sum_{j=1}^{\infty} \beta_j\phi^j(x).$$

The sum can become **finite** for an **approximation**.

Spectral (Fourier) view

Spectral (Fourier) view

The weights view:

$$k(x, x') = \phi^{\top}(x)\phi(x'),$$

$$f(x) = \beta^{\top}\phi(x).$$

How to chose functions ϕ ?

Mercer's theorem

Mercer's theorem

Define the integral operator

$$\mathcal{L}(\psi)(\cdot) = \int k(\cdot, x) \psi(x) dx.$$

Then

$$k(x, x') = \sum_{i=1}^{\infty} \lambda_i \psi_i(x) \psi_i(x')$$

where $\psi_i(x)$ are eignefunctions of the operator \mathcal{L} , i.e.

$$\mathcal{L}(\psi) = \lambda \psi.$$

Intuition: we can think of functions as vectors, and of operators as matrices. Then " $\mathcal{L}(\psi) = \lambda \psi$ " is analogous to " $Av = \lambda v$ ".

Mercer's theorem

Mercer's theorem

Define the integral operator

$$\mathcal{L}(\psi)(\cdot) = \int k(\cdot, x) \psi(x) dx.$$

Then

$$k(x, x') = \sum_{i=1}^{\infty} \lambda_i \psi_i(x) \psi_i(x')$$

where $\psi_i(x)$ are eignefunctions of the operator \mathcal{L} , i.e.

 $\mathcal{L}(\psi) = \lambda \psi.$

Intuition: we can think of functions as vectors, and of operators as matrices. Then " $\mathcal{L}(\psi) = \lambda \psi$ " is analogous to " $Av = \lambda v$ ".

Intuition: If the sum was finite: $K = U\Lambda U^{\top}, \Lambda = \text{diag}\{\lambda_i\}, U$ - orthogonal.

Mercer's theorem

Mercer's theorem

Define the integral operator

$$\mathcal{L}(\psi)(\cdot) = \int k(\cdot, x) \psi(x) dx.$$

Then

$$k(x, x') = \sum_{i=1}^{\infty} \lambda_i \psi_i(x) \psi_i(x')$$

where $\psi_i(x)$ are eignefunctions of the operator \mathcal{L} , i.e.

 $\mathcal{L}(\psi) = \lambda \psi.$

Intuition: we can think of functions as vectors, and of operators as matrices. Then " $\mathcal{L}(\psi) = \lambda \psi$ " is analogous to " $Av = \lambda v$ ".

Intuition: If the sum was finite: $K = U\Lambda U^{\top}, \Lambda = \text{diag}\{\lambda_i\}, U$ - orthogonal.

Key point

Mercer's theorem says that kernel can be computed using eigenfunctions of the integral operator and gives the **spectral decomposition of the kernel**.

Mercer's and Karhunen-Loève theorems

Mercer's theorem

Define the integral operator

$$\mathcal{L}(\psi)(\cdot) = \int k(\cdot, x)\psi(x)dx.$$

Then

$$k(x, x') = \sum_{i=1}^{\infty} \lambda_i \psi_i(x) \psi_i(x')$$

where $\psi_i(x)$ are eignefunctions of the operator \mathcal{L} , i.e.

$$\mathcal{L}(\psi) = \lambda \psi.$$

Karhunen-Loève theorem

For a GP with kernel $k(\cdot, \cdot)$

$$f(x) = \sum_{i=1}^{\infty} \sqrt{\lambda_i} \psi_i(x) z_i,$$
$$z \stackrel{i.i.d.}{\sim} \mathcal{N}(0, I).$$

The weights view in summary:

Weights view: $\phi(x) \to k(x, x')$ Mercer's theorem: $\psi(x) \to k(x, x')$

The Fourier transform

The Fourier transform

The Fourier transform $S(\omega) := \mathcal{F}[f](w)$ of a function $f(x) : \mathbb{R} \to \mathbb{R}$ is

$$S(\omega) = \int_{\mathbb{R}} f(x) e^{-2\pi i \omega x} dx$$

where

- *i* is the imaginary number with $i^2 = -1$ and $i^0 = 1$,
- $\omega \in \mathbb{R}$ is a frequency.

The Fourier transform

The Fourier transform

The Fourier transform $S(\omega) := \mathcal{F}[f](w)$ of a function $f(x) : \mathbb{R} \to \mathbb{R}$ is

$$S(\omega) = \int_{\mathbb{R}} f(x) e^{-2\pi i \omega x} dx$$

where

- *i* is the imaginary number with $i^2 = -1$ and $i^0 = 1$,
- $\omega \in \mathbb{R}$ is a frequency.

Euler's formula helps compute the integral:

$$e^{ix} = \cos(x) + i\sin(x)$$

Hence

$$e^{2\pi i x\omega} = \cos(2\pi x\omega) + i\sin(2\pi x\omega),$$
$$e^{-2\pi i x\omega} = \cos(2\pi x\omega) - i\sin(2\pi x\omega).$$

Inverse Fourier transform

The Fourier transform

The Fourier transform $S(\omega)$ of a function $f(x) : \mathbb{R} \to \mathbb{R}$ is

$$S(\omega) = \int_{\mathbb{R}} f(x) e^{-2\pi i \omega x} dx$$

Inverse Fourier transform

The **Inverse Fourier transform** f(x) of spectral density S(w):

$$f(x) = \int_{\mathbb{R}} S(\omega) e^{2\pi i x \omega} d\omega.$$

Stationary covariance kernels Invariance to translations

Stationary covariance kernels

A covariance kernel k(x, x') is **stationary** if it can be written as a function of $\tau = x - x' \in \mathbb{R}^{D}$:

 $k(x, x') = k(\tau).$

I.e. stationary covariance kernels are those which are invariant to translations in the input space.

Spectral kernel representation

Bochner's (and Wiener-Khinchin) theorem

Any stationary kernel $k : \mathbb{R}^d \to \mathbb{R}$ and its spectral density $S : \mathbb{R}^d \to \mathbb{R}_+$ are Fourier duals [17]:

$$S(\omega) = \int k(\tau) e^{-2\pi i \omega^{\top} \tau} d\omega = \mathcal{F}[k](\omega),$$
$$k(\tau) = \int S(\omega) e^{2\pi i \omega^{\top} \tau} d\omega = \mathcal{F}^{-1}[S](\tau).$$

- For every stationary covariance kernel there is a spectral density.
- All spectral densities define a covariance function.

Spectral density functions: examples

Every stationary covariance kernel has a corresponding spectral density function [7]. For instance, the d-dimensional Matérn class covariance kernel has the following spectral density function (1)

$$S_{\nu}(\omega) = \alpha \frac{2^{d} \pi^{d/2} \Gamma(\nu + d/2) (2\nu)^{\nu}}{\Gamma(\nu) \ell^{2\nu}} \left(\frac{2\nu}{\ell^{2}} + 4\pi^{2} \omega^{\top} \omega\right)^{-(\nu + d/2)}$$

Here, $\omega \in \mathbb{R}^d$ is a vector in the frequency domain.

l-dimensional Matérn class covariance kernels and respective spectral densities			
	Name	kernel $k(r)$	Spectral density $S(\omega)$
	Squared exponential	$\alpha^2 \exp\left(-\frac{r^2}{2\ell^2}\right)$	$S_{\infty}(\omega) = \alpha \sqrt{2\pi} \ell \exp(-\frac{1}{2}\ell^2 \omega^2)$
	Matérn $3/2$	$\alpha \left(1 + \frac{\sqrt{3}r}{\ell}\right) \exp\left(-\frac{\sqrt{3}r}{\ell}\right)$	$S_{3/2}(\omega) = 4\alpha \frac{3^{3/2}}{\ell^2} \left(\frac{3}{\ell^2} + \omega^2\right)^{-2}$
	Matérn $5/2$	$\alpha \left(1 + \frac{\sqrt{5}r}{\ell} + \frac{5r^2}{3\ell^2} \right) \exp\left(-\frac{\sqrt{5}r}{\ell}\right)$	$S_{5/2}(\omega) = 32\alpha \frac{5^{5/2}}{3\ell^5} \left(\frac{5}{\ell^2} + \omega^2\right)^{-3}$

Spectral kernel representation

From Bochner's theorem, for a stationary kernel function we have

$$k(\tau) = \int S(\omega) e^{2\pi i \omega^{\top} \tau} d\omega = \mathbb{E}_{\omega \sim S(\omega)} \left[e^{2\pi i \omega^{\top} \tau} \right].$$

Using Euler's formula $e^{2\pi i\omega^{\top}\tau} = \cos(2\pi\omega^{\top}\tau) + i\sin(2\pi\omega^{\top}\tau)$ this becomes

$$\mathbb{E}_{\omega \sim S(\omega)} \left[e^{2\pi i \omega^{\top} \tau} \right] = \mathbb{E}_{\omega \sim S(\omega)} \left[\cos(2\pi \omega^{\top} \tau) + i \sin(2\pi \omega^{\top} \tau) \right]$$

Since the kernel is real-valued, we take the real part:

$$\operatorname{Re}\left(e^{2\pi i\omega^{\top}\tau}\right) = \cos(2\pi\omega^{\top}\tau),$$

and get [5]

$$k(\tau) = \mathbb{E}_{\omega \sim S(\omega)} \left[\cos(2\pi \omega^{\top} \tau) \right].$$
Spectral kernel representation

The formula

$$k(\tau) = \mathbb{E}_{\omega \sim S(\omega)} \left[\cos(2\pi\omega^{\top}\tau) \right]$$

means that all real-valued stationary kernels are $S(\omega)$ -weighted combinations of harmonics $\cos(2\pi\omega^{\top}\tau)$, e.g.

$$k_{\rm SE}(\tau) = \int S_{\rm SE}(\omega) \cos(2\pi\omega^{\top}\tau) d\omega,$$
$$k_{3/2}(\tau) = \int S_{3/2}(\omega) \cos(2\pi\omega^{\top}\tau) d\omega.$$

Gaussian processes with Matérn kernels are given as solutions of stochastic partial differential equations (SPDE) [16, 8]:

$$\left(\frac{2\nu}{l^2} - \Delta\right)^{(\nu/2+d/4)} f(x) = \mathcal{W}(x), \quad x \in \mathbb{R}^d.$$

Here

- $\Delta := \sum_{i=1}^{d} \frac{\partial^2}{\partial x_i^2}$ is the (differential) Laplace operator,
- \mathcal{W} is the Gaussian white noise process with unit variance.

SPDE view

How to understand this the pseudo-differential operator

$$\left(\frac{2\nu}{l^2} - \Delta\right)^{(\nu/2 + d/4)} ?$$

How to understand this the pseudo-differential operator

$$\left(\frac{2\nu}{l^2} - \Delta\right)^{(\nu/2 + d/4)} ?$$

What is even a fractional derivative?

The Fourier transform and derivatives

Assume that y = y(x) and its Fourier transform is $\mathcal{F}[y](\omega) = S(\omega)$. Then³

$$\mathcal{F}[y'](\omega) = i\omega S(\omega),$$

$$\mathcal{F}[y''](\omega) = (i\omega)^2 S(\omega) = -\omega^2 S(\omega),$$

... and so on.

Key point

Taking Fourier transform of the k-th derivative leads to multiplying the image by $i\omega$.

³This is derived by integration by parts and requires $f(+\infty), f(-\infty) \to 0$.

The Fourier transform and derivatives

Assume that y = y(x) and its Fourier transform is $\mathcal{F}[y](\omega) = S(\omega)$. Then³

$$\mathcal{F}[y'](\omega) = i\omega S(\omega),$$

$$\mathcal{F}[y''](\omega) = (i\omega)^2 S(\omega) = -\omega^2 S(\omega),$$

... and so on.

Key point

Taking Fourier transform of the k-th derivative leads to multiplying the image by $i\omega$.

This can help us solve differential equations.

Key point

The Fourier transform turns differential expressions into algebraic.

³This is derived by integration by parts and requires $f(+\infty), f(-\infty) \to 0$.

Solving an ODE with Fourier transform

Consider the ordinary differential equation:

$$y'(x) + y(x) = e^{-x}$$

Applying the Fourier transform to the ODE:

$$\mathcal{F}\{y'(x) + y(x)\} = \mathcal{F}\{e^{-x}\}$$

This gives

$$i\omega S(\omega) + S(\omega) = \frac{1}{1+i\omega}$$

Factor out $S(\omega)$:

$$S(\omega)(i\omega+1) = \frac{1}{1+i\omega}$$

Solve for $S(\omega)$:

$$S(\omega) = \frac{1}{(i\omega + 1)(1 + i\omega)} = \frac{1}{(i\omega + 1)^2}.$$

To find y(x), take the inverse Fourier transform of $S(\omega)$: $y(x) = \mathcal{F}^{-1}\left\{\frac{1}{(i\omega+1)^2}\right\}$.

Fractional derivatives Example of half-derivative

Using the Fourier transform, a half-derivative of a function y(x) corresponds to multiplying its Fourier transform $S(\omega)$ by $(i\omega)^{1/2}$.

Example:

Take

$$f(x) = e^{-x^2}$$

Its Fourier transform is

$$S(\omega) = \sqrt{\pi}e^{-\omega^2/4}.$$

To find the half-derivative of f(x), we need to compute the inverse Fourier transform of $(i\omega)^{1/2} \cdot S(\omega)$:

$$\mathcal{F}^{-1}\left\{(i\omega)^{1/2}\cdot S(\omega)\right\}(x).$$

This provides a function that represents the half-derivative of f(x), meaning it has been "differentiated" halfway.

SPDE view

Hence,

$$\left(\frac{2\nu}{l^2} - \Delta\right)^{\nu/2 + d/4} f(x) = \mathcal{F}^{-1} \left[\left(\frac{2\nu}{l^2} + \|\omega\|^2\right)^{\nu/2 + d/4} S(\omega) \right] (x)$$

Several views: summary

- Kernel view:
 - is a moment representation,
 - k(x, x') uses similarity between points to show association,
 - views GPs as priors over functions.
- Weights view:
 - $f(x) = \beta^{\top} \phi(x)$ with, possibly, infinite feature map $\phi(x)$,
 - $\bullet \ k(x,x') = \phi(x)^\top \phi(x'),$
 - views GPs as a generalisation of Bayesian linear regression.
- Spectral (Fourier) view:
 - $k(x, x') = \sum \lambda_i \psi_i(x) \psi_i(x')$: positive definite kernels, can be represented as a series expansion of eigenfunctions weighted by corresponding eigenvalues.
 - $k(x x') = \mathbb{E}_{\omega \sim S(\omega)} \left[\cos(2\pi\omega^{\top}(x x')) \right].$

• SPDE view:

• Matérn and SE GPs as a solutions of corresponding SPDEs.

The practical aspects

The nugget effect

Numerical issues The nugget

If two inputs are too close, the covariance matrix may no longer be positive definite numerically.

Example: Assume, we have 4 points, and points 2 and 3 are close. Then for the SE kernel we get

$$K = \alpha \begin{pmatrix} 1 & a & a & b \\ a & 1 & 1 & c \\ a & 1 & 1 & c \\ b & c & c & 1 \end{pmatrix}.$$

Numerical issues The nugget

If two inputs are too close, the covariance matrix may no longer be positive definite numerically.

Example: Assume, we have 4 points, and points 2 and 3 are close. Then for the SE kernel we get

$$K = \alpha \begin{pmatrix} 1 & a & a & b \\ a & 1 & 1 & c \\ a & 1 & 1 & c \\ b & c & c & 1 \end{pmatrix}$$

To resolve this issue, we can add a small value to the diagonal of the covariance matrix for numerical stability. This is the **nugget effect**.

Nugget

If K is a $N \times N$ covariance matrix and I is an identity matrix, the covariance matrix with the nugget \tilde{K} is

$$\tilde{K} = K + I\epsilon$$

where, ϵ is a "small enough" value (e.g., 1.0×10^{-4}).

- It is not advisable to directly invert K due to issues with numerical stability.
- A more reliable option is to perform a Cholesky decomposition.

Cholesky decomposition

Any positive definite matrix can be decomposed in to the product of a lower triangular matrix and its transpose:

$$LL^{\top} = A$$

Here, L is called the **Cholesky factor**.

Cholesky factors are numerically stable. They possess $\mathcal{O}(N^3)$ time complexity.

The multivariate version of standard deviation

The covariance matrices are positive definite. Thus we can apply Cholesky decomposition:

$$K = LL^{\top}$$

Key point

In the case of covariance matrices, we can interpret their Cholesky factors to be the multivariate version of the standard deviation.

When $x \in \mathbb{R}$ and $x \sim \mathcal{N}(\mu, \sigma^2)$, x can be expressed as $x = \mu + \sigma z$ where $z \sim \mathcal{N}(0, 1)$:

$$\mathbb{E}[x] = \mathbb{E}[\mu + \sigma z] = \mu,$$

$$V[x] = V[\mu + \sigma z] = \sigma^2.$$

Similarly, when $f \in \mathbb{R}^N$ and $f \sim \mathcal{N}(\mu, K)$, we can write $f = \mu + Lz$ where $z \sim \mathcal{N}(0, I)$:

$$\mathbb{E}[f] = \mathbb{E}[\mu + Lz] = \mu,$$

$$\operatorname{Cov}[f] = \operatorname{Cov}[\mu + Lz] = LIL^{\top} = K.$$

Cholesky decomposition Sampling from GP prior $\mathcal{N}(0, K)$ using Cholesky decomposition

Algorithm 1 Sampling GP prior using Cholesky decomposition

- 1: Step 1: Sample the parameters of the covariance kernel k, e.g. α, l
- 2: Step 2: Compute the covariance matrix K.
- 3: Step 3: Compute the Cholesky factor L = Cholesky(K).
- 4: Step 4: Sample $z \sim \mathcal{N}(0, I)$.
- 5: Step 5: Sample from a GP with mean 0 and covariance kernel k as f = Lz.

Cholesky decomposition Centered parameterization

Consider the model

 $\begin{aligned} & f \sim \mathcal{N}(0, K), \\ & y \sim \mathcal{N}(f, \sigma^2). \end{aligned}$

This is a natural centered parameterization [6], i.e. each observation y_i is independent given the corresponding latent f_i .

• This parameterization works well if the data are informative (small σ) because each observation y_i constrains the corresponding latent parameter f_i .

Non-centered parameterization

- If the data y are weak (large σ), they cannot independently constrain each element of f and the GP prior dominates the posterior.
- The resulting correlation among elements of f frustrates samplers, especially if the correlation length is large.
- We can overcome this challenge by employing a non-centered parameterization such that the **parameters of the model are uncorrelated under the prior**.
- The reparameterized model is

$$\begin{split} z &\sim \mathcal{N}(0, I), \\ f &= Lz, \\ y &\sim \mathcal{N}(f, \sigma^2). \end{split}$$

Kronecker decomposition

Kronecker product

Kronecker product

The **Kronecker product** of two matrices $A_{m \times n}$ and $B_{p \times q}$, denoted by

 $A \otimes B$,

is an $mp \times nq$ matrix given by

$$A \otimes B = \begin{bmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}B & a_{m2}B & \cdots & a_{mn}B \end{bmatrix}$$

Kronecker product

Kronecker product

The **Kronecker product** of two matrices $A_{m \times n}$ and $B_{p \times q}$, denoted by

 $A \otimes B$,

is an $mp \times nq$ matrix given by

$$A \otimes B = \begin{bmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}B & a_{m2}B & \cdots & a_{mn}B \end{bmatrix}$$

Key point

Kronecker product is the "each with each" product.

Kronecker product Useful identities

 $(A \otimes B)^{\top} = A^{\top} \otimes B^{\top},$ $(A \otimes B)^{-1} = A^{-1} \otimes B^{-1},$ $\det(A \otimes B) = \det(A)^{m} \det(B)^{n}$ $(A \otimes B)(C \otimes D) = (AC \otimes BD)$

The vec operator

The **vec operator**, denoted as $vec(\cdot)$, is an operation that converts a matrix into a column vector by **stacking the columns of the matrix** on top of one another.

If A is an $m \times n$ matrix, then vec(A) is an $mn \times 1$ column vector defined as:

$$\operatorname{vec}(A) = \begin{bmatrix} a_{11} \\ \vdots \\ a_{m1} \\ \cdots \\ a_{1n} \\ \vdots \\ a_{mn} \end{bmatrix}.$$

Kronecker product Key Kronecker identity

A key Kronecker identity states that for matrices A, B, and C of compatible sizes, the following relation holds:

$$(A\otimes B)\mathrm{vec}(C)=\mathrm{vec}(BCA^{\top})$$

where $\operatorname{vec}(C)$ is the vectorization of matrix C.

The Kronecker trick

Separable kernel

A kernel is **separable**

$$k = k_1 \times k_2 \cdots \times k_d$$

if its covariance function can be expressed as the **product of two or more simpler kernels**, typically corresponding to different input dimensions, allowing for independent modelling of each dimension:

$$k(x, x') = k_1(x_1, x'_1) \times k_2(x_2, x'_2) \times \cdots \times k_d(x_d, x'_d)$$

The Kronecker trick

Separable kernel

A kernel is **separable**

$$k = k_1 \times k_2 \cdots \times k_d$$

if its covariance function can be expressed as the **product of two or more simpler kernels**, typically corresponding to different input dimensions, allowing for independent modelling of each dimension:

$$k(x, x') = k_1(x_1, x'_1) \times k_2(x_2, x'_2) \times \cdots \times k_d(x_d, x'_d)$$

Under the assumptions of

- multivariate grid $\mathcal{X} = \mathcal{X}_1 \times \mathcal{X}_2 \times \cdots \mathcal{X}_d$,
- separable kernel,

we can use the Kronecker trick [14, 4].

Example: Assume that we work in 2d on an $n \times m$ grid using the SE kernel. We get

$$k(\mathbf{x}, \mathbf{x}') = k_x(x, x') \cdot k_y(y, y')$$

where

$$k_x(x, x') = \sigma_x^2 \exp\left(-\frac{(x - x')^2}{2\ell_x^2}\right), \quad k_y(y, y') = \sigma_y^2 \exp\left(-\frac{(y - y')^2}{2\ell_y^2}\right)$$

The Kronecker trick

Example: Assume that we work in 2d on an $n \times m$ grid using the SE kernel. Hence,

$$K_x = L_x L_x^{\top},$$

$$K_y = L_y L_y^{\top},$$

$$K = K_x \otimes K_y = (L_x L_x^{\top}) \otimes (L_y L_y^{\top}) = (L_x \otimes L_y)(L_x \otimes L_y)^{\top}.$$

The Kronecker trick

Example: Assume that we work in 2d on an $n \times m$ grid using the SE kernel. Hence,

$$K_x = L_x L_x^{\top},$$

$$K_y = L_y L_y^{\top},$$

$$K = K_x \otimes K_y = (L_x L_x^{\top}) \otimes (L_y L_y^{\top}) = (L_x \otimes L_y)(L_x \otimes L_y)^{\top}.$$

How to sample a GP now? Remember the reparametrisation trick f = Lz, and Kronecker vector property $(A \otimes B) \operatorname{vec}(C) = \operatorname{vec}(BCA^{\top})$:

$$f = Lz = (L_x \otimes L_y)z = \operatorname{vec}(L_y Z L_x^{\top}),$$

where

$$z \sim \mathcal{N}(0, I_{mn}),$$

 $Z = \operatorname{vec}^{-1}(z)$

i.e. Z is an $m \times n$ matrix obtained by unstacking the $mn \times 1$ vector z.

The Kronecker trick Sampling GP prior using Kronecker product in 2d

Algorithm 2 Sampling GP prior using Kronecker product in 2d

- 1: Step 1: Sample the parameters of the covariance kernel k, e.g. α, l
- 2: Step 2: Compute the $n \times n$ matrix K_x , and $m \times m$ matrix K_y
- 3: Step 3: Compute Cholesky factors

$$L_x = \text{Cholesky}(K_x), L_y = \text{Cholesky}(K_y)$$

- 4: Step 4: Sample $z \sim \mathcal{N}(0, I_{mn})$
- 5: Step 5: Sample from a GP with mean 0 and covariance kernel k as

$$f = \operatorname{vec}(L_y Z L_x^{\top}), \quad Z = \operatorname{vec}^{-1}(z).$$

The Kronecker trick Gains

Instead of working with an $mn \times mn$ matrix K, we now only need to work with matrices K_x and K_y which are $m \times m$ and $n \times n$, correspondingly.

For N = mn data points, assume n > m:

- Space complexity: is reduced from $\mathcal{O}(m^2n^2)$ to $\mathcal{O}(n^2)$.
- Time complexity: is reduced from $\mathcal{O}(m^3n^3)$ to $\mathcal{O}(n^3)$.

Random Fourier Features
Recall the spectral representation:

$$k(x - x') = \mathbb{E}_{\omega \sim S(\omega)} \left[\cos(2\pi \omega^{\top} (x - x')) \right].$$

This is nice, we would like something of the form $\phi(x)\phi(x')$, and not just x - x'. Using the fact that

$$\mathbb{E}_b\left[\cos(a+nb)\right] = 0,$$

for all $a \in \mathbb{R}, n \in \mathbb{N}^+$, where $b \sim \text{Uniform}[0, 2\pi]$, we can re-write the expectation as

$$\mathbb{E}_{\omega \sim S(\omega)} \left[\cos(2\pi\omega^{\top}\tau) \right] = \mathbb{E}_{\omega,b} \left[\cos(2\pi\omega^{\top}\tau) + \cos(2\pi\omega^{\top}\tau + 2b) \right] \\ = \mathbb{E}_{\omega,b} \left[\cos(2\pi\omega^{\top}(x - x')) + \cos(2\pi\omega^{\top}(x - x') + 2b) \right] \\ = \mathbb{E}_{\omega,b} \left[2\cos\left(2\pi\omega^{\top}x + b\right)\cos\left(2\pi\omega^{\top}x' + b\right) \right].$$

The expression

$$k(x - x') = \mathbb{E}_{\omega, b} \left[2\cos\left(2\pi\omega^{\top}x + b\right)\cos\left(2\pi\omega^{\top}x' + b\right) \right]$$

is exact. How can we compute it practically? The options are

- quadrature,
- approximate using randomness (Monte Carlo).

We can approximate the integral [10]

$$k(\tau) = \mathbb{E}_{\omega \sim S(\omega)} \left[\cos(2\pi \omega^{\top} \tau) \right]$$

using the Monte Carlo method:

• sample $\omega_1, \omega_2, \ldots, \omega_M$ from the distribution with density proportional to $S(\omega)$:

$$\omega_i \sim S(\omega),$$

• approximate $k(\tau)$ as

$$k(\tau) \approx \frac{1}{M} \sum_{i=1}^{M} \cos(2\pi \omega^{\top} \tau).$$

We can approximate the integral

$$k(x, x') = \mathbb{E}_{\omega, b} \left[2 \cos \left(2\pi \omega^{\top} x + b \right) \cos \left(2\pi \omega^{\top} x' + b \right) \right]$$

using random Fourier features.

Define the random Fourier feature mapping $\phi(x)$ as

$$\phi_{\rm RFF}(x) = \sqrt{\frac{2}{M}} \begin{bmatrix} \cos(2\pi\omega_1^{\rm T}x + b_1) \\ \cos(2\pi\omega_2^{\rm T}x + b_2) \\ \vdots \\ \cos(2\pi\omega_M^{\rm T}x + b_M) \end{bmatrix},$$

where

$$\omega_i \sim S(\omega), \quad b_i \sim \text{Uniform}[0, 2\pi].$$

The kernel can then be approximated by the dot product

$$k(x, x') \approx \phi_{\mathrm{RFF}}(x)^{\top} \phi_{\mathrm{RFF}}(x').$$

[13] shows that using $m = \sqrt{n} \log(n)$ features achieve similar performance to using the full kernel.

HSGP

Hilbert space approximate Gaussian process

Hilbert space approximate Gaussian process [15, 11] (HSGP) provides a useful approximation.

• It solves the eigenvalue problem for the Laplacian operator:

$$\begin{cases} -\Delta \phi_i(x) &= \lambda \phi_i(x), \quad x \in \Omega, \\ \phi_i(x) &= 0, \quad x \in \partial \Omega. \end{cases}$$

• The eigenfunctions $\phi_j(\cdot)$ are orthonormal w.r.t. inner product

$$\int \phi_i(x)\phi_j(x) = \delta_{ij}$$

• The negative Laplacian has the kernel $k(x, x') = \sum_i \lambda_i \phi_i(x) \phi_i(x')$ on the sense that

$$-\Delta f(x) = \int k(x, x') f(x') dx'$$

Hilbert space approximate Gaussian process

Approximations of the differential operator lead to

$$k(x, x') \approx \sum_{j} S(\sqrt{\lambda_j})\phi_j(x)\phi_j(x').$$

Representing kernels with spectral density functions Spectral density + eigenvalues + eigenvectors

The boundary problem can solved analytically for some domains.

Expressing stationary kernels using spectral density functions

In a compact range $\Omega = [-L, L] \subset \mathbb{R}$, stationary kernels can be written as the following infinite sum:

$$k(x, x') = \sum_{m=1}^{\infty} S_{\theta}(\sqrt{\lambda_m})\phi_m(x)\phi_m(x')$$

where, S_{θ} is the spectral density, and λ_m , $\phi_m(x)$ are given as,

$$\lambda_m = \left(\frac{m\pi}{2L}\right)^2, \quad \phi_m(x) = \sqrt{\frac{1}{L}}\sin\left(\sqrt{\lambda_m}(x+L)\right)$$

respectively. Note that the eigenvalues and eigenfunctions do not depend on the spectral density.

Approximating the kernel Removing the high finer details

Notice that the eigenfunction $\phi_m(x)$ is a periodic function which increases its frequency with m. Most information about the kernel is contained within the low frequency components. Thus we may truncate the infinite sum

$$k(x, x') = \sum_{m=1}^{\infty} S_{\theta}(\sqrt{\lambda_m})\phi_m(x)\phi_m(x')$$

to the first m terms, and approximate the kernel as

$$k(x, x') \approx \sum_{m=1}^{M} S_{\theta}(\sqrt{\lambda_m})\phi_m(x)\phi_m(x')$$

Key point

Covariance kernels can be approximated using the spectral density and the first m terms of the infinite sum.

Gaussian process approximations Rewriting in matrix notation

Rewriting the approximation using matrix notation, we obtain

Approximation of the covariance kernel

$$k(x, x') \approx \sum_{m=1}^{M} S_{\theta}(\sqrt{\lambda_m})\phi_m(x)\phi_m(x') = \boldsymbol{\phi}(x)^{\top} \Delta \boldsymbol{\phi}(x')$$

where $\phi(x) = {\phi_m(x)}_{m=1}^m \in \mathbb{R}^M$ is a column vector of eigenfunction values and $\Delta \in \mathbb{R}^{M \times M}$ is a diagonal matrix consisting of spectral densities evaluated at the square root of the eigenvalues.

$$\Delta = \begin{bmatrix} S_{\theta}(\sqrt{\lambda_1}) & & \\ & \ddots & \\ & & S_{\theta}(\sqrt{\lambda_m}) \end{bmatrix}$$

Gaussian process approximation The covariance matrix

When using this approximation, the covariance matrix becomes

 $K \approx \Phi \Delta \Phi^{\top}.$

Here, $\Phi \in \mathbb{R}^{N \times M}$ is a matrix of eigenfunctions.

$$\Phi = \begin{bmatrix} \phi_1(x_1) & \dots & \phi_M(x_1) \\ \vdots & \ddots & \vdots \\ \phi_1(x_N) & \dots & \phi_M(x_N) \end{bmatrix}$$

From this we obtain,

 $f \sim \mathcal{N}(\mu, \Phi \Delta \Phi).$

This is equivalent to,

$$f(x) \approx \sum_{m=1}^{M} (S_{\theta}(\sqrt{\lambda_m}))^{1/2} \phi_m(x) z_m$$

where $z_m \sim \mathcal{N}(0, 1)$.

Reduction in the computational cost How much did we gain

In the approximation

$$f(x) \approx \sum_{m=1}^{M} (S_{\theta}(\sqrt{\lambda_m}))^{1/2} \phi_m(x) z_m$$

we notice the following:

- λ_m and $\phi_m(x)$ does not depend on the parameters of the GP. Thus we only need to compute them once beforehand and reuse them.
- 2 Only the *m* spectral density $S_{\theta}(\sqrt{\lambda_m})$ is dependent on the GP parameters

Key point

For each MCMC iteration we need to calculate

- The value of M spectral densities $S_{\theta}(\sqrt{\lambda_m})$ and $(\mathcal{O}(M))$,
- **2** the *M* term sum of *N* data points $(\mathcal{O}(MN))$

Hence, the total computational cost works out to be $\mathcal{O}(MN+M)$.

In general $M \ll N$ thus compared to $\mathcal{O}(N^3)$, we significantly reduce the necessary computations.

The computational cost for unapproximated GPs per MCMC step is $O(N^3)$, where n is the number of data points. For HSGPs, it is O(MN + M), where M is the number of basis vectors.

- can only be used with stationary covariance kernels
- \bullet does not scale well with the input dimension
- may struggle with more rapidly varying processes
- For smaller data sets, the full unapproximated GP may still be more efficient.

What about graphs?

GPs on graphs

How should we approach constructing a GP over a graph?

GPs on graphs

How should we approach constructing a GP over a weighted graph?

Weighted graphs can emerge when measure similarity between areas via

- travel time,
- number of flights or train journeys,
- social networks.

Let us denote

- V a set of vertices,
- E a set of weighted edges

Then we denote the whole weighted undirected graph as

$$G = (V, E).$$

• The aim is to define a GP indexed by the vertices V, which reflects the notion of closeness induced by the edges E.

- The aim is to define a GP indexed by the vertices V, which reflects the notion of closeness induced by the edges E.
- In particular, let's focus on Matérn kernels.

GPs on graphs

We want to be able to evaluate a kernel $k(\cdot, \cdot)$ and draw samples from $\mathcal{GP}(0, k)$ [2].

GPs on graphs Generalising distance-based approach

Can we use this kernel directly

$$k_{\rm SE} = \alpha \exp\left(-\frac{r^2}{2l^2}\right)?$$

Typically, this approach will not result in a well-defined covariance kernel [3]. Hence, another generalisation is needed. Recall the SPDE representation:

$$\left(\frac{2\nu}{l^2} - \Delta\right)^{\nu/2 + d/4} f(x) = \mathcal{W}(x), \quad x \in \mathbb{R}^d.$$

Maybe this can be genearlised?

We would need to redefine what the operator " $-\Delta$ " is.

How to compute on graphs? Adjacency matrix

Adjacency matrix is defined as

$$A_{ij} = \begin{cases} w_{ij} : \text{weight of } \text{edge}(i, j), \\ 0 & : \text{ if no edge between } i, j. \end{cases}$$

How to compute on graphs? Graph Laplacian

Adjacency matrix is defined as

$$A_{ij} = \begin{cases} w_{ij} : \text{weight of edge } (i, j), \\ 0 & : \text{ if no edge between } i, j. \end{cases}$$

Degree matrix is a diagonal matrix with

$$d_i = \sum_{i=1}^n w_{ij}$$

Graph Laplacian is defined as

$$\Delta = A - D.$$

Graph Laplacian

Graph Laplacian is defined as

$$\Delta = A - D,$$

i.e. it is a matrix with entries

$$\Delta_{ij} = \begin{cases} d_i & \text{if } i = j, \\ -w_{ij} & \text{if } (i,j) \text{ is and edge }, \\ 0 & \text{if no edge between } i \text{ and } j. \end{cases}$$

Graph Laplacian is a symmetric, positive semi-definite matrix

 $\Delta \geq 0.$

Hence, it admits an eigenvalue decomposition

 $\Delta = U \Lambda U^{\top}$

where

- Λ is diagonal with non-negative entries,
- U is orthogonal.

Let $g: \mathbb{R} \to \mathbb{R}$ be a function. Then **functional calculus** for Λ can be introduced as follows: $g(\Lambda) = Ug(\Lambda)U^{\top}$

where $g(\Lambda)$ is a diagonal matrix defined by applying g to the diagonal of Λ element-wise.

Functional calculus for Λ

Taking

$$g(\lambda) = \left(\frac{2\nu}{l^2} + \lambda\right)^{\frac{\nu}{2}}$$
 and $g(\lambda) = e^{\frac{l^2}{4}\lambda}$

gives the operator similar to the one on the left-hand side of the Whittle SPDE, and we get the following generalisations of SPDEs for graphs:

$$\left(\frac{2\nu}{l^2} + \Delta\right)^{\frac{\nu}{2}} f = \mathcal{W} \text{ and } e^{\frac{l^2}{4}\Delta} f = \mathcal{W}.$$

Deriving GP on graphs

$$\underbrace{\left(\frac{2\nu}{l^2} + \Delta\right)^{\frac{\nu}{2}}}_{(*)} f = \mathcal{W} \quad \text{and} \quad \underbrace{e^{\frac{l^2}{4}\Delta}}_{(*)} f = \mathcal{W}$$

We can think of expressions (*) as matrices! I.e. what is written above is

$$Af = z, \quad z \sim \mathcal{N}(0, I)$$

with $A = \left(\frac{2\nu}{l^2} + \Delta\right)^{\frac{\nu}{2}}$. Hence, $f = A^{-1}z \sim \mathcal{N}(0, A^{-1}A^{-T}) \sim \mathcal{N}(0, (A^TA)^{-1}) \sim \mathcal{N}\left(0, \left(\frac{2\nu}{l^2} + \Delta\right)^{-\nu}\right).$

Analogously,

$$f \sim \mathcal{N}\left(0, e^{-\frac{l^2}{2}\Delta}\right).$$

Replacing Gaussian white noise process with a standard Gaussian $\mathcal{W} \sim \mathcal{N}(0, I)$ in corresponding SPDEs gives

$$f \sim \mathcal{N}\left(0, \left(\frac{2}{\kappa^2} + \Delta\right)^{-\nu}\right),$$
$$f \sim \mathcal{N}\left(0, e^{\frac{\kappa^2}{4}\Delta}\right).$$

These are graph Matérn and graph diffusion processes.

Graph Fourier Features

Define $\psi(\lambda) = g(\lambda)^{-2}$. Then

$$k(i,j) = \sum_{s=0}^{|V|-1} \psi(\lambda_s) u_s(i) u_s(j).$$

Here

- λ_s are eigenvalues of Δ ,
- $u_s(i)$, $u_s(j)$ are the *i*-th and *j*-th component of the eigenvector u_s corresponding to λ_s .

This mirrors ideas in HSGP, where GPs are specified via Karhunen – Loève type decompositions.

Outro

References I

- [1] Sudipto Banerjee, Bradley P Carlin, and Alan E Gelfand. *Hierarchical modeling and analysis for spatial data*. Chapman and Hall/CRC, 2003.
- [2] Viacheslav Borovitskiy, Iskander Azangulov, Alexander Terenin, Peter Mostowsky, Marc Deisenroth, and Nicolas Durrande. Matérn gaussian processes on graphs. In *International Conference on Artificial Intelligence and Statistics*, pages 2593–2601. PMLR, 2021.
- [3] Aasa Feragen, Francois Lauze, and Soren Hauberg. Geodesic exponential kernels: When curvature and linearity conflict. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 3032–3042, 2015.
- [4] Seth Flaxman, Andrew Wilson, Daniel Neill, Hannes Nickisch, and Alex Smola. Fast kronecker inference in gaussian processes with non-gaussian likelihoods. In *International* conference on machine learning, pages 607–616. PMLR, 2015.
- [5] James Hensman, Nicolas Durrande, and Arno Solin. Variational fourier features for gaussian processes. *Journal of Machine Learning Research*, 18(151):1–52, 2018.
- [6] Till Hoffmann and Jukka-Pekka Onnela. Scalable gaussian process inference with stan. arXiv preprint arXiv:2301.08836, 2023.

References II

- [7] Motonobu Kanagawa, Philipp Hennig, Dino Sejdinovic, and Bharath K Sriperumbudur. Gaussian processes and kernel methods: A review on connections and equivalences. *arXiv* preprint arXiv:1807.02582, 2018.
- [8] Finn Lindgren, Håvard Rue, and Johan Lindström. An explicit link between gaussian fields and gaussian markov random fields: the stochastic partial differential equation approach. Journal of the Royal Statistical Society Series B: Statistical Methodology, 73(4):423–498, 2011.
- [9] Kevin P Murphy. Probabilistic machine learning: Advanced topics. MIT press, 2023.
- [10] Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances in neural information processing systems, 20, 2007.
- [11] Gabriel Riutort-Mayol, Paul-Christian Bürkner, Michael R Andersen, Arno Solin, and Aki Vehtari. Practical hilbert space approximate bayesian gaussian processes for probabilistic programming. *Statistics and Computing*, 33(1):17, 2023.
- [12] C.P. Robert and G. Casella. Monte Carlo statistical methods. Springer Verlag, 2004.
- [13] Alessandro Rudi and Lorenzo Rosasco. Generalization properties of learning with random features. Advances in neural information processing systems, 30, 2017.
- [14] Yunus Saatçi. Scalable inference for structured Gaussian process models. PhD thesis, Citeseer, 2012.

- [15] Arno Solin and Simo Särkkä. Hilbert space methods for reduced-rank gaussian process regression. *Statistics and Computing*, 30(2):419–446, 2020.
- [16] Peter Whittle. On stationary processes in the plane. *Biometrika*, pages 434–449, 1954.
- [17] Christopher KI Williams and Carl Edward Rasmussen. Gaussian processes for machine learning, volume 2. MIT press Cambridge, MA, 2006.
References and Further reading

- Another ontroductory video lecture (David MacKay): link.
- GPML book: link.
- MCMC interactive gallery: link
- GP visualisations:
 - https://distill.pub/2019/visual-exploration-gaussian-processes/
 - http://infinitecuriosity.org/vizgp/
 - https://peterroelants.github.io/posts/gaussian-process-kernels/
 - https://smlbook.org/GP/
- Geometrics kernels: url1, url2
- Numpyro online course: link. Suggestions for improvements are very welcome! Stay tuned for examples of cases covered in today's lecture.

Thank you

- Organisers for the invitation.
- Viyacheslav (Slava) Borovitsky for being an amazing collaborator, his patience and willingness to share knowledge.
- Shozen Dan, Oliver Ratmann from Imperial from MLGH for publicly sharing AIMS-Rwanda lecture on "Practical Gaussian process regression", as well as the slides template.

Imperial College London

Thank you.

Elizaveta Semenova,

Department of Epidemiology and Biostatistics