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Introduction: MCMC for spatial inference



What do Gaussian processes and John Snow have in common?

1 Jon Snow: This is a summer school, but winter is coming.
2 John Snow: spatial epidemiology.
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Uses of Gaussian processes in epidemiology

Common uses of Gaussian processes in epidemiology:

nowcasting,

surrogates for decision making,

disease mapping.



Disease mapping and public health

A map of a three-stage containment field in Italy, 1691

”Disease mapping and innovation: A history from wood-block prints to Web 3.0”, Tom Koch (2022)



The map that changed how we fight outbreaks

Dr. John Snow mapped cholera cases in London, 1854.



The map that changed how we fight outbreaks

He also mapped different water companies’ service areas.

Credit: British Library



The map that changed how we fight outbreaks

Dr. John Snow mapped cholera cases in London, 1854.

Credit: ESRI, “John Snow’s cholera map”



The map that changed how we fight outbreaks

This pump has started the field of spatial epidemiology.



Disease mapping and public health

’Memoir on the cholera at Oxford, in the year 1854 : with considerations suggested by the epidemic’, Acland (1856)



Disease mapping and technology



Modern technology for disease mapping

Data Methods
geo-tagged Bayesian inference + spatial statistics

spatiotemporal Gaussian processes

Image Credit: ESRI



Non-Gaussian likelihoods



Non-Gaussian likelihoods

Hierarchical Bayesian modelling using Gaussian Processes.



Non-Gaussian likelihoods

y = (y1, ..., yn)

y ∼ p(y|g−1(η), θ)

η = X⊤β + f

f ∼ p(f |θ)

θ ∼ p(θ)

- outcome data over a set of n locations

- observational model (likelihood)

- additive model for the mean, combines a fixed effect and
random effect terms

- random effect term: Gaussian process

- hyperparameters



Non-Gaussian likelihoods

If the likelihood is Gaussian, the posterior is also a Gaussian process, and all computation
can be performed analytically.

If the likelihood is non-Gaussian, we can no longer compute the posterior exactly.



Non-Gaussian likelihoods

Some typical likelihoods:

Model Likelihood
Regression N (fi, σ

2
y)

Binary classification Bern(σ(fi))
Multiclass classification Cat(softmax(fi))
Poisson regression Poisson(exp(fi))
Negative binomial regression N egBin(exp(fi), ϕ)



Types of spatial data



Types of spatial data:

there is only three of them [1]!



Types of spatial data

Type: areal data

Task: small area estimation

US vaccinations at county level.

Credit: The New York Times



Types of spatial data

Type: geostatistical or point-referenced data

Task: kriging

Observed malaria prevalence at

survey locations in Uganda.

Credit: J Ssempiira



Types of spatial data

Type: point pattern

Task: surface reconstruction and point pattern analysis

Observed local (blue) and imported (red)

malaria cases in Eswatini, 2015.



Models of areal data
Solving the small area estimation task.

y ∼ p(y|g−1(η), θ)

f ∼ MVN(0, Q−1)

Q = τI

Q = τ (D − αA)

Q = τ (D − A)

Q−1 = τ−1
1 I + τ−1

2 (D − A)−

observational model (likelihood)

Q - precision matrix

i.i.d.

Conditional auto-regressive (CAR): A and D are
defined by the neighbourhood structure, A -
adjacency matrix

ICAR

BYM



Models of geostatistical data
Solving the kriging task.

y ∼ p(y|g−1(η), θ)

η = X⊤β + f

f ∼ GP(0, K)

observational model (likelihood)

additive model for the mean

Gaussian process



Modelling point pattern data
Solving point pattern analysis task

λ(s), s ∈ D - intensity function.

Log-Gaussian Cox process is a common model of spatial point patterns:

L(s1, . . . , sn;λ(s)) = exp(−λ(D))

n∏
i=1

λ(si),

λ(D) =

∫
D

λ(s)ds,

λ(s) = exp(X⊤(s)β + f (s)),

f ∼ GP(0, k).



What about networks?

Stay tuned!



What about networks?

Stay tuned!



Inference methods

Laplace approximation

Variational Bayes

Expectation propagation

Markov Chain Monte Carlo



Markov chain Monte Carlo (MCMC)

We will not talk about MCMC in details
today.

What is important is that

Random number generation can
be useful to estimate even deterministic
quantities, e.g.∫
f (x)p(x)dx ≈ 1

M

M∑
i=1

f (xi), xi ∼ p(x).

MCMC is a group of elaborate
iterative algorithms with theoretical
convergence guarantees [12].



Inference methods: Bayesian inference

y - data, θ - parameters,

p(θ|y)︸ ︷︷ ︸
posterior

∝ p(y|θ)︸ ︷︷ ︸
likelihood

p(θ)︸︷︷︸
prior

Gold standard inference algorithms: Markov chain Monte Carlo (MCMC) - theoretical
guarantees; diagnostic tools

Probabilistic programming languages: Stan, PyMC3, Numpyro, Turing.jl



Probabilistic programming languages (PPLs)

PPLs allow users to specify probabilistic models and perform inference automatically.

Inference is performed by an MCMC algorithm (Gibbs, Metropolis-Hastings, HMC).

Users need to specify
prior,

likelihood,

(sometimes) inference algorithm.



Example of a PPL programme

yi ∼ N (µ, σ2), i = 1, · · · , n,
µ ∼ N (0, 1),

σ ∼ Exp(1)



Example of a PPL programme

What does it take to write a generic model with Numpyro and run inference?

1 def model(data):

2

3 # define prior distributions for model parameters

4 mu = numpyro.sample("mu", dist.Normal(0, 1))

5 sigma = numpyro.sample("sigma", dist.Exponential (1))

6

7 # define likelihood with a data plate

8 with numpyro.plate("data_plate", len(data)):

9 y = numpyro.sample("y", dist.Normal(mu , sigma), obs=data)

10

11 # data

12 data = jnp.array ([2.3, 3.9, 1.7, -0.8, 2.5])

13

14 # choose inference algorithm

15 nuts_kernel = NUTS(model)

16 mcmc = MCMC(nuts_kernel , num_samples =1000, num_warmup =1000 , num_chains =2)

17 mcmc.run(jax.random.PRNGKey (0), data)

18

19 # get posterior samples

20 posterior_samples = mcmc.get_samples ()

Listing 1: Sample Numpyro programme



Example of a PPL programme with a GP

How can we include GPs into a Numpyro pogramme?1

1 def model(x, y=None , kernel_func=rbf_kernel , lengthcsale =0.2, jitter =1e-5, noise =0.5):

2 """

3 Args:

4 - x (jax.numpy.ndarray): input data points of shape (n, d), where n is the number of

points and d is the number of dimensions.

5 - kernel_func (function): kernel function to use.

6 - lengthscale (float): lengthscale parameter.

7 - jitter (float): small constant added for numerical stability.

8

9 Returns:

10 - y (jax.numpy.ndarray): a sample from the Multivariate Normal distribution

representing the function values at input points.

11 """

12

13 n = x.shape [0]

14

15 K = kernel_func(x, x, lengthcsale) + jitter*jnp.eye(n)

16

17 f = numpyro.sample("f", dist.MultivariateNormal(jnp.zeros(n), covariance_matrix=K))

18

19 numpyro.sample("y", dist.Normal(f, noise), obs=y)

Listing 2: Numpyro programme with a GP

1See the full example at https://elizavetasemenova.github.io/prob-epi/18_GP_inference.html

https://elizavetasemenova.github.io/prob-epi/18_GP_inference.html


Analyzing MCMC outputs

Diagnostics for MCMC samples:

Trace plots



Analyzing MCMC outputs

Good traceplot of bad traceplot?
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Good traceplot of bad traceplot?



Analyzing MCMC outputs

Diagnostics for MCMC samples:

Trace plots,

Gelman-Rubin statistic (R̂),

Effective sample size (ESS).



GPs with a PPL

In a PPL to perform GP inference, we (only) need to specify how to sample from
the GP prior.



Different views on Gaussian processes



How to sample from a Gaussian process prior?



How would you sample from a Gaussian process prior?



Kernel view



Gaussian process definition
Gaussian process as a prior over functions

A Gaussian random vector f = (f1, . . . , fN)
⊤ is defined by its mean vector µ and covariance

matrix K:
µ = E(f ), K = Cov(f ).

Consider a function f (x) : X → R evaluated at a set of points X = {xi ∈ X}Ni=1

fX := (f (x1), . . . , f (xN))
⊤.

If fX is jointly Gaussian for any set of N ≥ 1 points, then f (x) : X → R is a Gaussian
process.
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Gaussian process definition
GPs as a prior over functions

Definition
A Gaussian process is an infinite set of random

variables, any finite subset of which follows a

multivariate normal distribution.

Such a process is defined by its mean function

m(x) and a covariance function, k(x, x′) ≥ 0.

Kernels encode prior knowledge about the

similarity of two input vectors x, x′.

Key point

GPs can be thought of as a prior over continuous

functions.

Samples from a GP prior
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Kernels

Can any function k(·, ·) serve as a kernel?

k(·, ·) needs to be positive semi-definite.
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Positive definite matrix

Positive definite matrix

A symmetric N ×N matrix A is called a positive definite matrix if

v⊤Av =

N∑
i=1

N∑
j=1

Aijvivj > 0

for any non-zero vector v ∈ RN .



Valid kernels

Definition

A positive semi-definite kernel is any symmetric function

k : X × X → R+

such that
N∑
i=1

N∑
j=1

k(xi, xj)cicj ≥ 0

for any set of N (unique) points xi ∈ X , and any choice of constants ci ∈ R.

I.e. we want the kernel to generate positive semi-definite matrices.



Valid kernels

Given a set of N points, we can define the Gram matrix linked to the similarity between
points:

K =


k(x1, x1) k(x1, x2) . . . k(x1, xN)
k(x2, x1) k(x2, x2) . . . k(x2, xN)

... . . . ...
k(xN , x1) k(xN , x2) . . . k(xN , xN)

 .

k is a valid kernel iff the Gram matrix is positive definite for any set of (distinct) inputs

(x1, . . . , xN).



Gaussian process definition
Notation

Let x, x′ ∈ R be two inputs. The notation for a GP is

f (x) ∼ GP(m(x), k(x, x′)).

where,

m(x) = E[f (x)]
k(x, x′) = E[(f (x)−m(x))(f (x′)−m(x′))]

are the mean function and covariance function

(kernel), respectively.

We set m(x) = 0 when we don’t have any prior

knowledge about the mean function, giving us

f (x) ∼ GP(0, k(x, x′)).

Samples from a GP prior



The definition of a Gaussian process
Looking under the hood

Let x = (x1, . . . , xN)
⊤ be a vector of inputs2. Then,

f (·) ∼ GP(0, k(·, ·)) ⇒ f (x) ∼ N (0, K).

where the covariance matrix K is the Gram matrix

K =


k(x1, x1) k(x1, x2) . . . k(x1, xN)
k(x2, x1) k(x2, x2) . . . k(x2, xN)

... . . . ...
k(xN , x1) k(xN , x2) . . . k(xN , xN)

 .

2I will be sloppy with the notation, i.e. not making x bold even when it is a vector. Dimensionality will be clear from
context.



The kernel view

Kernel view is the moment representation of GPs.

It is convenient for model specification as it allows to utilise prior information about
function properties, such as continuity, differentiability, periodicicty, symmetry.
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Covariance kernels: examples
Squared Exponential (SE) kernel

Squared exponential kernel

kSE(x, x
′) = α exp

(
−∥x− x′∥2

2ℓ2

)
Here

α: amplitude, shows how far the function values can be from the mean,

ℓ: the lengthscale determines how ‘wiggly’ the function is.

These parameters are often unknown and are estimated during inference.

For fixed α and ℓ, as the distance between x and x′ increases, k(x, x′) approaches 0.

Key point

Kernels encode similarity between points.



Covariance kernels: examples
Matérn kernels

The SE kernel produces very smooth trajectories.

Matérn kernels can generate ‘rougher’ functions:

Matérn kernels

kMatérn(x, x
′) = α

21−ν

Γ(ν)

(√
2ν∥x− x′∥

ℓ

)ν

Kν

(√
2ν∥x− x′∥

ℓ

)

Here Kν is a modified Bessel function and l is the length scale.

Key point

Matérn is a more flexible family than SE. As ν → ∞, Matérn becomes the SE kernel.



Covariance kernels: examples
How to encode different function properties

Let r = ∥x− x′∥. The following table shows examples of covariance kernels and the types of functions they can

model. α, αb, αv > 0

Name Definition Type of functions

Squared Exponential α exp
(
− r2

2ℓ2

)
Infinitely differentiable functions

Matérn 1/2 α exp
(
−r
ℓ

)
Continuous but not differentiable

Matérn 3/2 α
(
1 +

√
3r
ℓ

)
exp
(
−

√
3r
ℓ

)
1 time differentiable functions

Matérn 5/2 α
(
1 +

√
5r
ℓ + 5r2

3ℓ2

)
exp
(
−

√
5r
ℓ

)
2 time differentiable functions

Linear Kernel αb + αv(x− c)(x′ − c) Linear functions

Periodic Kernel α exp
(
−2 sin2(πr/p)

ℓ2

)
Periodic functions

Locally Periodic Kernel α exp
(
−2 sin2(πr/p)

ℓ2

)
exp
(
− r

2ℓ2

)
Functions that are periodic at cer-

tain locations

https://www.cs.toronto.edu/~duvenaud/cookbook/

Key point

The covariance kernel determines the type of functions the GP can model.

https://www.cs.toronto.edu/~duvenaud/cookbook/


Covariance kernels: examples
Play online

https://distill.pub/2019/

visual-exploration-gaussian-processes/

http://infinitecuriosity.org/vizgp/

https://peterroelants.github.io/

posts/gaussian-process-kernels/

https://smlbook.org/GP/

Interactive online GP demos

https://distill.pub/2019/visual-exploration-gaussian-processes/
https://distill.pub/2019/visual-exploration-gaussian-processes/
http://infinitecuriosity.org/vizgp/
https://peterroelants.github.io/posts/gaussian-process-kernels/
https://peterroelants.github.io/posts/gaussian-process-kernels/
https://smlbook.org/GP/


Covariance kernels: examples
Sampled trajectories

A comparison between functions sampled from GPs with different covariance kernels



Making new kernels

Given two kernels k1(x, x
′) and k2(x, x

′), we can create a valid new kernel using any of the
following methods [9]:

k(x, x′) = ck1(x, x
′), c > 0

k(x, x′) = f (x)k1(x, x
′)f (x′) for any function f

k(x, x′) = exp(k1(x, x
′))

k(x, x′) = x⊤Ax′ for any A ≥ 0

k(x, x′) = k1(x, x
′) + k2(x, x

′)

k(x, x′) = k1(x, x
′)k2(x, x

′)

Key point

Kernels can be combined to make new kernels.



Posterior predictive inference

Assume we have N observation pairs (xi, yi) generated by the model

yi = f (xi) + ϵi,

ϵi ∼ N (0, σ2),

i = 1, . . . N.

How to obtain predictions f∗ at N∗ unobserved locations x∗?



Posterior predictive inference

Vector of training points

x = (x1, x2, . . . , xN)
⊤

Vector of test points

x∗ = (x1∗, x2∗, . . . , xN∗)
⊤

Values of f at inputs

f := f (x) = (f (x1), f (x2), . . . , f (xN))
⊤,

f∗ := f (x∗) = (f (x1∗), f (x2∗), . . . , f (xN∗))
⊤

Covariance matrix of the training points

K =

k(x1, x1) . . . k(x1, xN)
... . . . ...

k(xN , x1) . . . k(xN , xN)


Cov. matrix of training and test points

K∗ =

k(x1, x1∗) . . . k(x1, xN∗)
... . . . ...

k(xN , x1∗) . . . k(xn, xN∗)


Covariance matrix of the test points

K∗∗ =

k(x1∗, x1∗) . . . k(x1∗, xN∗)
... . . . ...

k(xN∗, x1∗) . . . k(xN∗, xN∗)





The Gaussian conditioning rule

When x1, x2 are random vectors that follow a multivariate normal distribution, i.e.

x1 ∼ N (µ1,Σ11), x2 ∼ N (µ2,Σ22)

then the joint distribution can be written as[
x1
x2

]
∼ N

([
µ1
µ2

]
,

[
Σ11 Σ12

Σ21 Σ22

])
and the conditional distribution of x2 given x1 is

x2|x1 ∼ N (µ2 + Σ21Σ
−1
11 (x1 − µ1),Σ22 − Σ21Σ

−1
11 Σ12).

Key point

The conditional expectation and variance of x2 given x1 is

E[x2|x1] = µ2 + Σ21Σ
−1
11 (x1 − µ1)

V [x2|x1] = Σ22 − Σ21Σ
−1
11 Σ12



Posterior predictive
Analytically deriving the posterior predictive distribution

Assuming Gaussian noise, the joint distribution of y and f∗ can be written as:[
y
f∗

]
∼ N

(
0,

[
K + σ2I K∗
K⊤

∗ K∗∗

])
.

The Gaussian conditioning rule gives us

f∗|y ∼ N (K⊤
∗ [K + σ2I ]−1y,K∗∗ −K⊤

∗ [K + σ2I ]−1K∗).

Key point

Given training data y, the expectation and covariance of f∗ are:

E[f∗|y] = K⊤
∗ [K + σ2I ]−1y

Cov[f∗|y] = K∗∗ −K⊤
∗ [K + σ2I ]−1K∗



The computational bottleneck

For N data points,

Space complexity: the cost of computing a N ×N covariance matrix is O(N 2).

Time complexity: the cost of computing the inverse covariance matrix is O(N 3).



Posterior inference with a PPL

While using a PPL ( e.g. Stan, Numpyro, etc) we do not need to derive the posterior
analytically. We only need to specifty the generative model, e.g.

y ∼ N (µ(x), σ2)

µ(x) = β0 + f (x)

with priors, e.g.

σ2 ∼ InvGamma(5, 5)

β0 ∼ N (0, 1)

f (x) ∼ GP(0, K)

α ∼ InvGamma(5, 1)

ℓ ∼ InvGamma(5, 1)

Key point

In a PPL, once we define the log-likelihood and priors, a sophisticated MCMC algorithm will
take care of the rest.



Posterior inference with a PPL

In a PPL, the main GP-related effort is in specifying how to sample from a GP prior.



The computational bottleneck

For non-Gaussian likelihoods an analytical expression is not available. We can use T iterations
of MCMC to sample from the posterior. Time complexity becomes

O(TN 3).

Key point

Inferring GPs with MCMC is feasible up to a few hundred data points. Computations become
unbearably slow after surpassing N > 1000 and thus is not very practical.



Kernel view: summary

Kernel view is the moment representation.

It allows us to think of the GP as a distribution over functions.

The key information is encoded by the covariance function k(·, ·) which is based on
similarity between points and shows their association.



Weights view



Bayesian linear regression

Bayesian linear regression is a special case of a GP.



Curve fitting

Given pairs of observed points

(xi, yi), i = 1, . . . , N,

consider the regression task, i.e. we want to fit a curve by fitting a model of the form

yi ∼ N
(
fθ(xi), σ

2
)
.



Bayesian linear regression

In the case of linear regression, fθ(xi) takes a

parametric form:

fθ(xi) = β0 + β1xi = βTϕ(x),

ϕ(x) = (ϕ0(x), ϕ1(x))
⊤ = (1, x)⊤.

In the Bayesian framework, we need to give priors to

the parameters θ = (β0, β1), e.g.

β0 ∼ N
(
µ0, σ

2
0

)
,

β1 ∼ N
(
µ1, σ

2
1

)
Every time we draw β0, β1 from the prior, fθ is a

different line.

Key point

We can interpret fθ as a stochastic process which

can be used as a prior over the space of

linear functions.

Samples from the prior



Bayesian linear regression
Bayesian inference

In Bayesian inference, we apply the Bayes rule

p(θ|y) ∝ p(y|θ)p(θ)

to remove lines drawn from the prior that do not fit

the observed data.

Here y = (y1, . . . , yN)
⊤, θ = (β0, β1).

Issues
Linear functions can only model linear relationships.

We would like to model complex non-linear

relationships as well.
−2
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Bayesian polynomial regression
Extending the linear model
We can extend the linear function to a polynomial:

yi ∼ N
(
fθ(xi), σ

2
)

fθ(xi) = β0 + β1xi + β2x
2
i + · · · + βMx

M
i

=

M∑
j=0

βjx
j
i = β⊤ϕ(xi).

where

ϕ(x) = (ϕ1(x), · · · , ϕM(x))⊤.

The functions

ϕ1(x) = x, ϕ2(x) = x2, . . . , ϕM(x) = xM

are basis functions. Parameters

θ = (β0, β1, . . . , βM) are given priors, e.g.

β0 ∼ N (0, 102),

βm
i.i.d.∼ N (µ, σ2) (m = 1, . . . ,M ).

Key point

We can view fθ as a prior over non-linear

functions.

−2

0
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Bayesian polynomial regression
Bayesian inference

Issues

Polynomial regression is flexible enough to fit
non-linear functions but it is...

prone to over-fitting,

gives unrealistic predictions when
extrapolating.

−2

0

2

−2 0 2

Polynomial basis, M = 9



Other basis functions
Fourier basis

Another example is the Fourier basis:

M∑
m=1

(αm sin(2πmx/L) + βm cos(2πmx/L))

where L is the length of a period.
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Other basis functions
Fourier basis: no extreme outputs

Fourier basis functions are bounded in
output i.e., |ϕ(x)| <∞. This prevents
extreme output values.

−2

0

2

−2 0 2

Fourier basis, M = 10



Other basis functions
Fourier basis: non-local update of uncertainty

When new data is added to or removed from
the training set, the posterior estimates
and uncertainty change non-locally,
even though we only acquired / lost data in a
specific region.

Fourier basis function are non local.

−2

0

2

−2 0 2

Fourier basis, M = 10
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Squared Exponential basis functions

The Squared Exponential basis function:

ϕc(x) = exp
(
−(x− c)2

)

Prevents wild extrapolation,

Prevents sensitivity on distant values.
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Squared Exponential basis functions
Still not quite there...

The good:

more sensible posterior,

better interpolation.

The bad:

the model is too certain that nothing
happens outside of the observed range,

no good justification for the choice of
where to place the basis functions.

Key point

What if we placed the SE basis
function everywhere?
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Squared Exponential basis, M = 10



Infinite basis functions

To place basis functions everywhere, we need infinitely many basis functions.

It is impossible to compute the posterior predictive when M → ∞ as the computational cost
will also be infinite.

It turns out, that the components we need are

Φ(x)Φ(x)⊤ ∈ RN×N , Φ(x)ϕ(x∗) ∈ RN×1

which means we only need the inner products between feature vectors:

[Φ(x)Φ(x)⊤]ij = ϕ(xi)
⊤ϕ(xj)

What if we could compute the inner products directly without computing the basis functions?
This is the kernel trick!



Kernel trick
An example: Polynomial kernel

If we can compute the matrices Φ(x)Φ(x)⊤ ∈ RN×N and Φ(x)ϕ(x∗) ∈ RN×1 directly, we could
do computations without incurring cost for a large number of basis functions. For example the

Polynomial kernel is

k(x, x′) = (xx′ + 1)M−1 =

M∑
m=0

(
M − 1
m

)
xmx′m = ϕ(x)⊤ϕ(x′)

where ϕ(x) = (1,
√
2x, x2)⊤ if M = 3.



Kernel trick
Infinite dimensional feature spaces

If the limit of the inner product exists, we can even consider infinite dimensional feature
spaces.

ϕm(x) = exp

(
−(x− cm)

2

2ℓ2

)
, cm =

m

M
(cmax − cmin)

k(x, x′) =
1

M

M∑
p=1

ϕm(x)ϕm(x
′)

lim
M→∞

1

M

M∑
m=1

ϕm(x)ϕm(x
′) =

∫ cmax

cmin

exp

(
−(x− c)2

2ℓ2

)
exp

(
−(x− c)2

2ℓ2

)
dc

=
√
πℓ exp

(
−(x− x′)2

4ℓ2

)
which is called the Squared Exponential (SE) kernel and it is equivalent to
placing SE basis functions everywhere.



Kernel trick

For convenience, let’s introduce notation for the scalar product

< ϕ(x), ϕ(x′) >l2:= ϕ⊤(x)ϕ(x′).

Any valid covariance function can be written as

k(x, x′) = ϕ(x)⊤ϕ(x′)

for some feature map ϕ(x). Such a map is not unique.
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Weights view: summary

Choice of a feature map ϕ(x) leads to choosing a kernel:

k(x, x′) = ϕ⊤(x)ϕ(x′) =

∞∑
j=1

ϕj(x)ϕj(x
′),

f (x) = β⊤ϕ(x) =

∞∑
j=1

βjϕ
j(x).

The sum can become finite for an approximation.
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Spectral (Fourier) view



Spectral (Fourier) view

The weights view:

k(x, x′) = ϕ⊤(x)ϕ(x′),

f (x) = β⊤ϕ(x).

How to chose functions ϕ?



Mercer’s theorem

Mercer’s theorem

Define the integral operator

L(ψ)(·) =
∫
k(·, x)ψ(x)dx.

Then

k(x, x′) =

∞∑
i=1

λiψi(x)ψi(x
′)

where ψi(x) are eignefunctions of the operator L, i.e.

L(ψ) = λψ.

Intuition: we can think of functions as vectors, and of operators as matrices. Then
“L(ψ) = λψ” is analogous to “Av = λv”.

Intuition: If the sum was finite: K = UΛU⊤,Λ = diag{λi}, U - orthogonal.

Key point

Mercer’s theorem says that kernel can be computed using eigenfunctions of the integral
operator and gives the spectral decomposition of the kernel.
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′)

where ψi(x) are eignefunctions of the operator L, i.e.

L(ψ) = λψ.

Intuition: we can think of functions as vectors, and of operators as matrices. Then
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Key point

Mercer’s theorem says that kernel can be computed using eigenfunctions of the integral
operator and gives the spectral decomposition of the kernel.



Mercer’s and Karhunen-Loève theorems

Mercer’s theorem

Define the integral operator

L(ψ)(·) =
∫
k(·, x)ψ(x)dx.

Then

k(x, x′) =

∞∑
i=1

λiψi(x)ψi(x
′)

where ψi(x) are eignefunctions of the operator L, i.e.

L(ψ) = λψ.

Karhunen-Loève theorem

For a GP with kernel k(·, ·)

f (x) =

∞∑
i=1

√
λiψi(x)zi,

z
i.i.d.∼ N (0, I).



Summary so far

The weights view in summary:

Weights view: ϕ(x) → k(x, x′)

Mercer’s theorem: ψ(x) → k(x, x′)



The Fourier transform

The Fourier transform

The Fourier transform S(ω) := F [f ](w) of a function f (x) : R → R is

S(ω) =

∫
R
f (x)e−2πiωxdx

where

i is the imaginary number with i2 = −1 and i0 = 1,

ω ∈ R is a frequency.

Euler’s formula helps compute the integral:

eix = cos(x) + i sin(x)

Hence

e2πixω = cos(2πxω) + i sin(2πxω),

e−2πixω = cos(2πxω)− i sin(2πxω).



The Fourier transform

The Fourier transform

The Fourier transform S(ω) := F [f ](w) of a function f (x) : R → R is
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∫
R
f (x)e−2πiωxdx
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ω ∈ R is a frequency.
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Inverse Fourier transform

The Fourier transform

The Fourier transform S(ω) of a function f (x) : R → R is

S(ω) =

∫
R
f (x)e−2πiωxdx

Inverse Fourier transform

The Inverse Fourier transform f (x) of spectral density S(w):

f (x) =

∫
R
S(ω)e2πixωdω.



Stationary covariance kernels
Invariance to translations

Stationary covariance kernels

A covariance kernel k(x, x′) is stationary if it can be written as a function of
τ = x− x′ ∈ RD:

k(x, x′) = k(τ ).

I.e. stationary covariance kernels are those which are invariant to translations in the input
space.



Spectral kernel representation

Bochner’s (and Wiener-Khinchin) theorem

Any stationary kernel k : Rd → R and its spectral density S : Rd → R+ are Fourier
duals [17]:

S(ω) =

∫
k(τ )e−2πiω⊤τdω = F [k](ω),

k(τ ) =

∫
S(ω)e2πiω

⊤τdω = F−1[S](τ ).

For every stationary covariance kernel there is a spectral density.

All spectral densities define a covariance function.



Spectral density functions: examples

Every stationary covariance kernel has a corresponding spectral density function [7]. For
instance, the d-dimensional Matérn class covariance kernel has the following spectral density
function

Sν(ω) = α
2dπd/2Γ(ν + d/2)(2ν)ν

Γ(ν)ℓ2ν

(
2ν

ℓ2
+ 4π2ω⊤ω

)−(ν+d/2)

Here, ω ∈ Rd is a vector in the frequency domain.

1-dimensional Matérn class covariance kernels and respective spectral densities

Name kernel k(r) Spectral density S(ω)

Squared exponential α2 exp
(
− r2

2ℓ2

)
S∞(ω) = α

√
2πℓ exp(−1

2ℓ
2ω2)

Matérn 3/2 α
(
1 +

√
3r
ℓ

)
exp
(
−

√
3r
ℓ

)
S3/2(ω) = 4α33/2

ℓ2

(
3
ℓ2
+ ω2

)−2

Matérn 5/2 α
(
1 +

√
5r
ℓ + 5r2

3ℓ2

)
exp
(
−

√
5r
ℓ

)
S5/2(ω) = 32α55/2

3ℓ5

(
5
ℓ2
+ ω2

)−3



Spectral kernel representation

From Bochner’s theorem, for a stationary kernel function we have

k(τ ) =

∫
S(ω)e2πiω

⊤τ dω = Eω∼S(ω)
[
e2πiω

⊤τ
]
.

Using Euler’s formula e2πiω
⊤τ = cos(2πω⊤τ ) + i sin(2πω⊤τ ) this becomes

Eω∼S(ω)
[
e2πiω

⊤τ
]
= Eω∼S(ω)

[
cos(2πω⊤τ ) + i sin(2πω⊤τ )

]
.

Since the kernel is real-valued, we take the real part:

Re
(
e2πiω

⊤τ
)
= cos(2πω⊤τ ),

and get [5]
k(τ ) = Eω∼S(ω)

[
cos(2πω⊤τ )

]
.



Spectral kernel representation

The formula

k(τ ) = Eω∼S(ω)
[
cos(2πω⊤τ )

]
means that all real-valued stationary kernels are S(ω)-weighted combinations of harmonics

cos(2πω⊤τ ), e.g.

kSE(τ ) =

∫
SSE(ω) cos(2πω

⊤τ )dω,

k3/2(τ ) =

∫
S3/2(ω) cos(2πω

⊤τ )dω.



SPDE view



SPDE view

Gaussian processes with Matérn kernels are given as solutions of stochastic partial differential
equations (SPDE) [16, 8]:(

2ν

l2
−∆

)(ν/2+d/4)

f (x) = W(x), x ∈ Rd.

Here

∆ :=
∑d

i=1
∂2

∂x2i
is the (differential) Laplace operator,

W is the Gaussian white noise process with unit variance.



SPDE view

How to understand this the pseudo-differential operator(
2ν

l2
−∆

)(ν/2+d/4)

?

What is even a fractional derivative?



SPDE view

How to understand this the pseudo-differential operator(
2ν
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?

What is even a fractional derivative?



The Fourier transform and derivatives

Assume that y = y(x) and its Fourier transform is F [y](ω) = S(ω). Then3

F [y′] (ω) = iωS(ω),

F [y′′] (ω) = (iω)2S(ω) = −ω2S(ω),

. . . and so on.

Key point

Taking Fourier transform of the k-th derivative leads to multiplying the image by iω.

This can help us solve differential equations.

Key point

The Fourier transform turns differential expressions into algebraic.

3This is derived by integration by parts and requires f(+∞), f(−∞) → 0.
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Solving an ODE with Fourier transform

Consider the ordinary differential equation:

y′(x) + y(x) = e−x

Applying the Fourier transform to the ODE:

F{y′(x) + y(x)} = F{e−x}

This gives

iωS(ω) + S(ω) =
1

1 + iω

Factor out S(ω):

S(ω)(iω + 1) =
1

1 + iω

Solve for S(ω):

S(ω) =
1

(iω + 1)(1 + iω)
=

1

(iω + 1)2
.

To find y(x), take the inverse Fourier transform of S(ω): y(x) = F−1
{

1
(iω+1)2

}
.



Fractional derivatives
Example of half-derivative

Using the Fourier transform, a half-derivative of a function y(x) corresponds to multiplying its
Fourier transform S(ω) by (iω)1/2.

Example:
Take

f (x) = e−x
2
.

Its Fourier transform is
S(ω) =

√
πe−ω

2/4.

To find the half-derivative of f (x), we need to compute the inverse Fourier transform of
(iω)1/2 · S(ω):

F−1
{
(iω)1/2 · S(ω)

}
(x).

This provides a function that represents the half-derivative of f (x), meaning it has been
“differentiated” halfway.



SPDE view

Hence, (
2ν

l2
−∆

)ν/2+d/4
f (x) = F−1

[(
2ν

l2
+ ∥ω∥2

)ν/2+d/4
S(ω)

]
(x)



Several views: summary

Kernel view:
is a moment representation,

k(x, x′) uses similarity between points to show association,

views GPs as priors over functions.

Weights view:
f (x) = β⊤ϕ(x) with, possibly, infinite feature map ϕ(x),

k(x, x′) = ϕ(x)⊤ϕ(x′),

views GPs as a generalisation of Bayesian linear regression.

Spectral (Fourier) view:
k(x, x′) =

∑
λiψi(x)ψi(x

′): positive definite kernels, can be represented as a series expansion of

eigenfunctions weighted by corresponding eigenvalues.

k(x− x′) = Eω∼S(ω)
[
cos(2πω⊤(x− x′))

]
.

SPDE view:
Matérn and SE GPs as a solutions of corresponding SPDEs.



The practical aspects



The nugget effect



Numerical issues
The nugget

If two inputs are too close, the covariance matrix may no longer be positive
definite numerically.

Example: Assume, we have 4 points, and points 2 and 3 are close. Then for the SE kernel we
get

K = α


1 a a b
a 1 1 c
a 1 1 c
b c c 1

 .

To resolve this issue, we can add a small value to the diagonal of the covariance matrix for
numerical stability. This is the nugget effect.

Nugget

If K is a N ×N covariance matrix and I is an identity matrix, the covariance matrix with the
nugget K̃ is

K̃ = K + Iϵ

where, ϵ is a “small enough” value (e.g., 1.0× 10−4).
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Cholesky decomposition



Numerical issues
Numerically unstable K

It is not advisable to directly invert K due to issues with numerical stability.

A more reliable option is to perform a Cholesky decomposition.



Cholesky decomposition

Cholesky decomposition

Any positive definite matrix can be decomposed in to the product of a lower triangular matrix
and its transpose:

LL⊤ = A

Here, L is called the Cholesky factor.

Cholesky factors are numerically stable. They possess O(N 3) time complexity.



Cholesky decomposition
The multivariate version of standard deviation

The covariance matrices are positive definite. Thus we can apply Cholesky decomposition:

K = LL⊤

Key point

In the case of covariance matrices, we can interpret their Cholesky factors to be the
multivariate version of the standard deviation.

When x ∈ R and x ∼ N (µ, σ2), x can be expressed as x = µ + σz where z ∼ N (0, 1):

E[x] = E[µ + σz] = µ,

V [x] = V [µ + σz] = σ2.

Similarly, when f ∈ RN and f ∼ N (µ,K), we can write f = µ + Lz where z ∼ N (0, I):

E[f ] = E[µ + Lz] = µ,

Cov[f ] = Cov[µ + Lz] = LIL⊤ = K.



Cholesky decomposition
Sampling from GP prior N (0, K) using Cholesky decomposition

Algorithm 1 Sampling GP prior using Cholesky decomposition

1: Step 1: Sample the parameters of the covariance kernel k, e.g. α, l
2: Step 2: Compute the covariance matrix K.
3: Step 3: Compute the Cholesky factor L = Cholesky(K).
4: Step 4: Sample z ∼ N (0, I).
5: Step 5: Sample from a GP with mean 0 and covariance kernel k as f = Lz.



Cholesky decomposition
Centered parameterization

Consider the model

f ∼ N (0, K),

y ∼ N (f, σ2).

This is a natural centered parameterization [6], i.e. each observation yi is independent given

the corresponding latent fi.

This parameterization works well if the data are informative (small σ) because each
observation yi constrains the corresponding latent parameter fi.



Cholesky decomposition
Non-centered parameterization

If the data y are weak (large σ), they cannot independently constrain each element of f
and the GP prior dominates the posterior.

The resulting correlation among elements of f frustrates samplers, especially if the
correlation length is large.

We can overcome this challenge by employing a non-centered parameterization such that
the parameters of the model are uncorrelated under the prior.

The reparameterized model is

z ∼ N (0, I),

f = Lz,

y ∼ N (f, σ2).



Kronecker decomposition



Kronecker product

Kronecker product

The Kronecker product of two matrices Am×n and Bp×q, denoted by

A⊗ B,

is an mp× nq matrix given by

A⊗ B =


a11B a12B · · · a1nB
a21B a22B · · · a2nB
... ... . . . ...

am1B am2B · · · amnB

 .

Key point

Kronecker product is the “each with each” product.
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Kronecker product
Useful identities

(A⊗ B)⊤ = A⊤ ⊗ B⊤,

(A⊗ B)−1 = A−1 ⊗ B−1,

det(A⊗ B) = det(A)mdet(B)n

(A⊗ B)(C ⊗D) = (AC ⊗ BD)



Kronecker product

The vec operator

The vec operator, denoted as vec(·), is an operation that converts a matrix into a column
vector by stacking the columns of the matrix on top of one another.

If A is an m× n matrix, then vec(A) is an mn× 1 column vector defined as:

vec(A) =



a11
...
am1

. . .
a1n
...

amn


.



Kronecker product
Key Kronecker identity

A key Kronecker identity states that for matrices A, B, and C of compatible sizes, the
following relation holds:

(A⊗ B)vec(C) = vec(BCA⊤)

where vec(C) is the vectorization of matrix C.



The Kronecker trick

Separable kernel

A kernel is separable
k = k1 × k2 · · · × kd

if its covariance function can be expressed as the product of two or more simpler
kernels, typically corresponding to different input dimensions, allowing for independent
modelling of each dimension:

k(x, x′) = k1(x1, x
′
1)× k2(x2, x

′
2)× · · · × kd(xd, x

′
d)

Under the assumptions of

multivariate grid X = X1 ×X2 × · · · Xd,

separable kernel,

we can use the Kronecker trick [14, 4].
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The Kronecker trick

Example: Assume that we work in 2d on an n×m grid using the SE kernel. We get

k(x,x′) = kx(x, x
′) · ky(y, y′)

where

kx(x, x
′) = σ2x exp

(
−(x− x′)2

2ℓ2x

)
, ky(y, y

′) = σ2y exp

(
−(y − y′)2

2ℓ2y

)
.



The Kronecker trick

Example: Assume that we work in 2d on an n×m grid using the SE kernel. Hence,

Kx = LxL
⊤
x ,

Ky = LyL
⊤
y ,

K = Kx ⊗Ky = (LxL
⊤
x )⊗ (LyL

⊤
y ) = (Lx ⊗ Ly)(Lx ⊗ Ly)

⊤.

How to sample a GP now? Remember the reparametrisation trick f = Lz, and Kronecker
vector property (A⊗ B)vec(C) = vec(BCA⊤):

f = Lz = (Lx ⊗ Ly)z = vec(LyZL
⊤
x ),

where

z ∼ N (0, Imn),

Z = vec−1(z)

i.e. Z is an m× n matrix obtained by unstacking the mn× 1 vector z.
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The Kronecker trick
Sampling GP prior using Kronecker product in 2d

Algorithm 2 Sampling GP prior using Kronecker product in 2d

1: Step 1: Sample the parameters of the covariance kernel k, e.g. α, l
2: Step 2: Compute the n× n matrix Kx, and m×m matrix Ky

3: Step 3: Compute Cholesky factors

Lx = Cholesky(Kx), Ly = Cholesky(Ky)

4: Step 4: Sample z ∼ N (0, Imn)
5: Step 5: Sample from a GP with mean 0 and covariance kernel k as

f = vec(LyZL
⊤
x ), Z = vec−1(z).



The Kronecker trick
Gains

Instead of working with an mn×mn matrix K, we now only need to work with matrices Kx

and Ky which are m×m and n× n, correspondingly.

For N = mn data points, assume n > m:

Space complexity: is reduced from O(m2n2) to O(n2).

Time complexity: is reduced from O(m3n3) to O(n3).



Random Fourier Features



Random Fourier Features

Recall the spectral representation:

k(x− x′) = Eω∼S(ω)
[
cos(2πω⊤(x− x′))

]
.

This is nice, we would like something of the form ϕ(x)ϕ(x′), and not just x− x′.

Using the fact that

Eb [cos(a + nb)] = 0,

for all a ∈ R, n ∈ N+, where b ∼ Uniform[0, 2π], we can re-write the expectation as

Eω∼S(ω)
[
cos(2πω⊤τ )

]
= Eω,b

[
cos(2πω⊤τ ) + cos(2πω⊤τ + 2b)

]
= Eω,b

[
cos(2πω⊤(x− x′)) + cos(2πω⊤(x− x′) + 2b)

]
= Eω,b

[
2 cos

(
2πω⊤x + b

)
cos
(
2πω⊤x′ + b

)]
.



Random Fourier Features

The expression
k(x− x′) = Eω,b

[
2 cos

(
2πω⊤x + b

)
cos
(
2πω⊤x′ + b

)]
is exact. How can we compute it practically? The options are

quadrature,

approximate using randomness (Monte Carlo).



Random Fourier Features

We can approximate the integral [10]

k(τ ) = Eω∼S(ω)
[
cos(2πω⊤τ )

]
using the Monte Carlo method:

sample ω1, ω2, . . . , ωM from the distribution with density proportional to S(ω):

ωi ∼ S(ω),

approximate k(τ ) as

k(τ ) ≈ 1

M

M∑
i=1

cos(2πω⊤τ ).



Random Fourier Features

We can approximate the integral

k(x, x′) = Eω,b
[
2 cos

(
2πω⊤x + b

)
cos
(
2πω⊤x′ + b

)]
using random Fourier features.

Define the random Fourier feature mapping ϕ(x) as

ϕRFF(x) =

√
2

M


cos(2πω⊤

1 x + b1)
cos(2πω⊤

2 x + b2)
...

cos(2πω⊤
Mx + bM)

 ,
where

ωi ∼ S(ω), bi ∼ Uniform[0, 2π].

The kernel can then be approximated by the dot product

k(x, x′) ≈ ϕRFF(x)
⊤ϕRFF(x

′).

[13] shows that using m =
√
n log(n) features achieve similar performance to using the full

kernel.



HSGP



Hilbert space approximate Gaussian process

Hilbert space approximate Gaussian process [15, 11] (HSGP) provides a useful
approximation.

It solves the eigenvalue problem for the Laplacian operator:{
−∆ϕi(x) = λϕi(x), x ∈ Ω,

ϕi(x) = 0, x ∈ ∂Ω.

The eigenfunctions ϕj(·) are orthonormal w.r.t. inner product∫
ϕi(x)ϕj(x) = δij

The negative Laplacian has the kernel k(x, x′) =
∑

i λiϕi(x)ϕi(x
′) on the sense that

−∆f (x) =

∫
k(x, x′)f (x′)dx′



Hilbert space approximate Gaussian process

Approximations of the differential operator lead to

k(x, x′) ≈
∑
j

S(
√
λj)ϕj(x)ϕj(x

′).



Representing kernels with spectral density functions
Spectral density + eigenvalues + eigenvectors

The boundary problem can solved analytically for some domains.

Expressing stationary kernels using spectral density functions

In a compact range Ω = [−L,L] ⊂ R, stationary kernels can be written as the following
infinite sum:

k(x, x′) =

∞∑
m=1

Sθ(
√
λm)ϕm(x)ϕm(x

′)

where, Sθ is the spectral density, and λm, ϕm(x) are given as,

λm =
(mπ
2L

)2
, ϕm(x) =

√
1

L
sin
(√

λm(x + L)
)

respectively. Note that the eigenvalues and eigenfunctions do not depend on the spectral
density.



Approximating the kernel
Removing the high finer details

Notice that the eigenfunction ϕm(x) is a periodic function which increases its frequency with
m. Most information about the kernel is contained within the low frequency components.
Thus we may truncate the infinite sum

k(x, x′) =

∞∑
m=1

Sθ(
√
λm)ϕm(x)ϕm(x

′)

to the first m terms, and approximate the kernel as

k(x, x′) ≈
M∑
m=1

Sθ(
√
λm)ϕm(x)ϕm(x

′)

Key point

Covariance kernels can be approximated using the spectral density and the first m terms of
the infinite sum.



Gaussian process approximations
Rewriting in matrix notation

Rewriting the approximation using matrix notation, we obtain

Approximation of the covariance kernel

k(x, x′) ≈
M∑
m=1

Sθ(
√
λm)ϕm(x)ϕm(x

′) = ϕ(x)⊤∆ϕ(x′)

where ϕ(x) = {ϕm(x)}mm=1 ∈ RM is a column vector of eigenfunction values and ∆ ∈ RM×M

is a diagonal matrix consisting of spectral densities evaluated at the square root of the
eigenvalues.

∆ =

Sθ(√λ1) . . .

Sθ(
√
λm)





Gaussian process approximation
The covariance matrix

When using this approximation, the covariance matrix becomes

K ≈ Φ∆Φ⊤.

Here, Φ ∈ RN×M is a matrix of eigenfunctions.

Φ =

ϕ1(x1) . . . ϕM(x1)
... . . . ...

ϕ1(xN) . . . ϕM(xN)


From this we obtain,

f ∼ N (µ,Φ∆Φ).

This is equivalent to,

f (x) ≈
M∑
m=1

(Sθ(
√
λm))

1/2ϕm(x)zm

where zm ∼ N (0, 1).



Reduction in the computational cost
How much did we gain

In the approximation

f (x) ≈
M∑
m=1

(Sθ(
√
λm))

1/2ϕm(x)zm

we notice the following:
1 λm and ϕm(x) does not depend on the parameters of the GP. Thus we only need to

compute them once beforehand and reuse them.
2 Only the m spectral density Sθ(

√
λm) is dependent on the GP parameters

Key point

For each MCMC iteration we need to calculate
1 The value of M spectral densities Sθ(

√
λm) and (O(M)),

2 the M term sum of N data points (O(MN))

Hence, the total computational cost works out to be O(MN +M).

In general M ≪ N thus compared to O(N 3), we significantly reduce the necessary
computations.



HSGP

The computational cost for unapproximated GPs per MCMC step is O(N 3), where n is the
number of data points. For HSGPs, it is O(MN +M), where M is the number of basis
vectors.

can only be used with stationary covariance kernels

does not scale well with the input dimension

may struggle with more rapidly varying processes

For smaller data sets, the full unapproximated GP may still be more efficient.



What about graphs?



GPs on graphs

How should we approach constructing a GP over a graph?



GPs on graphs

How should we approach constructing a GP over a weighted graph?



Graphs
Formalising graphs

Weighted graphs can emerge when measure
similarity between areas via

travel time,

number of flights or train journeys,

social networks.



Graphs
Formalising graphs

Let us denote

V - a set of vertices,

E - a set of weighted edges

Then we denote the whole weighted
undirected graph as

G = (V,E).



Graphs
Formalising graphs

The aim is to define a GP indexed by
the vertices V , which reflects the notion
of closeness induced by the edges E.

In particular, let’s focus on Matérn
kernels.



Graphs
Formalising graphs

The aim is to define a GP indexed by
the vertices V , which reflects the notion
of closeness induced by the edges E.

In particular, let’s focus on Matérn
kernels.



GPs on graphs

We want to be able to evaluate a kernel k(·, ·) and draw samples from GP(0, k) [2].



GPs on graphs
Generalising distance-based approach

Can we use this kernel directly

kSE = α exp

(
− r2

2l2

)
?

Typically, this approach will not result in a well-defined covariance kernel [3].

Hence, another generalisation is needed.



Graph Laplacian

Recall the SPDE representation:(
2ν

l2
−∆

)ν/2+d/4
f (x) = W(x), x ∈ Rd.

Maybe this can be genearlised?

We would need to redefine what the operator “−∆” is.



How to compute on graphs?
Adjacency matrix

Adjacency matrix is defined as

Aij =

{
wij : weight of edge(i, j),

0 : if no edge between i, j.



How to compute on graphs?
Graph Laplacian

Adjacency matrix is defined as

Aij =

{
wij : weight of edge (i, j),

0 : if no edge between i, j.

Degree matrix is a diagonal matrix with

di =

n∑
i=1

wij

Graph Laplacian is defined as
∆ = A−D.



Graph Laplacian

Graph Laplacian is defined as
∆ = A−D,

i.e. it is a matrix with entries

∆ij =


di if i = j,

−wij if (i, j) is and edge ,

0 if no edge between i and j.



Graph Laplacian

Graph Laplacian is a symmetric, positive semi-definite matrix

∆ ≥ 0.

Hence, it admits an eigenvalue decomposition

∆ = UΛU⊤

where

Λ is diagonal with non-negative entries,

U is orthogonal.



Functional calculus for Λ

Let g : R → R be a function. Then functional calculus for Λ can be introduced as follows:

g(Λ) = Ug(Λ)U⊤

where g(Λ) is a diagonal matrix defined by applying g to the diagonal of Λ element-wise.



Functional calculus for Λ

Taking

g(λ) =

(
2ν

l2
+ λ

)ν
2

and g(λ) = e
l2

4 λ

gives the operator similar to the one on the left-hand side of the Whittle SPDE, and we get

the following generalisations of SPDEs for graphs:

(
2ν

l2
+∆

)ν
2

f = W and e
l2

4 ∆f = W .



Deriving GP on graphs

(
2ν

l2
+∆

)ν
2

︸ ︷︷ ︸
(∗)

f = W and e
l2

4 ∆︸︷︷︸
(∗)

f = W

We can think of expressions (∗) as matrices! I.e. what is written above is

Af = z, z ∼ N (0, I)

with A =
(
2ν
l2
+∆

)ν
2 . Hence,

f = A−1z ∼ N (0, A−1A−T )

∼ N (0, (ATA)−1)

∼ N

(
0,

(
2ν

l2
+∆

)−ν
)
.

Analogously,

f ∼ N
(
0, e−

l2

2∆

)
.



Graph Matérn and graph diffusion kernels

Replacing Gaussian white noise process with a standard Gaussian W ∼ N (0, I) in
corresponding SPDEs gives

f ∼ N

(
0,

(
2

κ2
+∆

)−ν
)
,

f ∼ N
(
0, e

κ2

4 ∆

)
.

These are graph Matérn and graph diffusion processes.



Graph Fourier Features

Define ψ(λ) = g(λ)−2. Then

k(i, j) =

|V |−1∑
s=0

ψ(λs)us(i)us(j).

Here

λs are eigenvalues of ∆,

us(i), us(j) are the i-th and j-th component of the eigenvector us corresponding to λs.

This mirrors ideas in HSGP, where GPs are specified via Karhunen‒ Loève type
decompositions.



Outro
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References and Further reading

Another ontroductory video lecture (David MacKay): link.

GPML book: link.

MCMC interactive gallery: link

GP visualisations:

https://distill.pub/2019/visual-exploration-gaussian-processes/

http://infinitecuriosity.org/vizgp/

https://peterroelants.github.io/posts/gaussian-process-kernels/

https://smlbook.org/GP/

Geometrics kernels: url1, url2

Numpyro online course: link. Suggestions for improvements are very welcome! Stay tuned for examples of

cases covered in today’s lecture.

https://videolectures.net/gpip06_mackay_gpb/
http://www.gaussianprocess.org/gpml/
https://chi-feng.github.io/mcmc-demo/
https://distill.pub/2019/visual-exploration-gaussian-processes/
http://infinitecuriosity.org/vizgp/
https://peterroelants.github.io/posts/gaussian-process-kernels/
https://smlbook.org/GP/
https://geometric-kernels.github.io/GeometricKernels/examples/Graph.html
https://github.com/geometric-kernels/GeometricKernels/blob/main/notebooks/Graph.ipynb
https://elizavetasemenova.github.io/prob-epi/
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AIMS-Rwanda lecture on ”Practical Gaussian process regression”, as well as the slides
template.
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https://github.com/MLGlobalHealth/aims_rwanda_2024/blob/main/day1/lecture3_intro_to_gp_and_hsgp.pdf
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