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Univariate Gaussian distributions
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Univariate Gaussians
The normal/Gaussian distribution occurs naturally and is convenient
mathematically

Family of normal distributions is closed under linear operations.

Central limit theorem

Maximum entropy/surprisal: N(µ, σ2) has maximum entropy1 of any
distribution with mean µ and variance σ2

Infinite divisibility

If Y and Z are jointly normally distributed and are uncorrelated, then
they are independent

Square-loss functions lead to procedures that have a Gaussian
probabilistic interpretation
eg Fit model fβ(x) to data y by mimizing

∑
(yi − fβ(xi ))2 is

equivalent to maximum likelihood estimation under the assumption
that y = fβ(x) + ε where ε ∼ N(0, σ2).

1max. ent. principle: the distribution with the largest entropy should be used as a
least-informative default
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Multivariate Gaussian distributions
‘Multivariate’ = two or more random variables

Suppose Y ∈ Rd has a multivariate Gaussian distribution with

mean vector µ ∈ Rd

covariance matrix Σ ∈ Rd×d .

Write
Y ∼ Nd(µ,Σ)

Bivariate Gaussian: d=2

Y =

(
Y1

Y2

)
µ =

(
µ1

µ2

)
Σ =

(
σ2

1 ρ12σ1σ2

ρ21σ1σ2 σ2
2

)
Var(Yi ) = σ2

i Cov(Y1,Y2) = ρ12σ1σ2 Cor(Y1,Y2) = ρ12

pdf: f (y | µ,Σ) = |Σ|−
1
2 (2π)−

d
2 exp

(
−1

2
(y − µ)>Σ−1(y − µ)

)
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(
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)

Cor(Y1,Y2) = 0
hence Y1

independent of Y2

Marginal
distributions:

Y1 ∼ N(0, 1)

Y2 ∼ N(0, 1)

Conditional
distributions:
Y1|Y2 ∼ N(0, 1)

Y2|Y1 ∼ N(0, 1)
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More pictures

Hard to visualise in dimensions > 2, so stack points next to each other.

So for 2d instead of we have
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We can think of Gaussian processes as an infinite dimensional distribution
over functions - all we need to do is change the indexing

We can let the index be x and let x take values in R.
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Gaussian processes

A stochastic process is a collection of random variables indexed by some
variable x ∈ X

y = {y(x) : x ∈ X}

Usually y(x) ∈ R and X ⊂ Rn - think of y as a function of x .
If |X | =∞, y is an infinite dimensional process, e.g., |X | = [0, 1]

Thankfully, the law of y is uniquely determined by the finite dimensional
distributions (FDDs), i.e., for all x1, . . . , xn and for all n ∈ N

P(y(x1) ≤ c1, . . . , y(xn) ≤ cn)

A Gaussian process is a stochastic process with Gaussian FDDs, i.e.,

(y(x1), . . . , y(xn)) ∼ Nn(µ,Σ)

Write y(·) ∼ GP to denote that we model the function y as a GP.
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Mean and covariance function

To fully specify the law of a Gaussian distribution we only need the mean
and variance.

X ∼ N(µ,Σ)

To fully specify the law of a Gaussian process, we need to specify mean
and covariance functions.

y(·) ∼ GP(m(·), k(·, ·))

where

E(y(x)) = m(x)

Cov(y(x), y(x ′)) = k(x , x ′)
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Specifying the mean function

We are free to choose the mean m(x) = E(y(x)) and covariance
k(x , x ′) = Cov(y(x), y(x ′)) functions however we like (e.g. trial and
error), subject to some ‘rules’:

We can use any mean function we want:

m(x) = E(y(x))

Most popular choices are m(x) = 0 or m(x) = const for all x , or
m(x) = β>x
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Covariance functions

We usually use a covariance function that is a function of the
indexes/locations

k(x , x ′) = Cov(y(x), y(x ′)),

k must be a positive semi-definite function, i.e., lead to valid covariance
matrices:

Given locations x1, . . . , xn, the n × n Gram matrix K with
Kij = k(xi , xj) k(x1, x1) k(x1, x2) . . . k(x1, xn)

...
...

k(xn, x1) k(xn, x2) . . . k(xn, xn)


must be a positive semi-definite matrix (ie a covariance matrix).

This can be problematic...
I Difficult to create semi-definite functions k(x , x ′)
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We often assume k is a function of only the distance between locations

Cov(y(x), y(x ′)) = k(x − x ′)

which results in a stationary process.

If Cov(y(x), y(x ′)) = k(||x − x ′||) the covariance function is said to be
isotropic.

The covariance function determines the nature of the GP.

k determines the hypothesis space/space of functions

We usually build k by selecting from a small candidate set of functions
(that contain free parameters), and modifying them according to some
rules.
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Examples
RBF/Squared-exponential/exponentiated quadratic

k(x , x ′) = 100 exp

(
−1

2
(x − x ′)2

)

In general k(x , x ′) = τ2 exp

(
−1

2

(x − x ′)2

λ2

)



Examples

Matern 3/2
k(x , x ′) ∼ (1 + |x − x ′|) exp

(
−|x − x ′|

)



Examples

Brownian motion
k(x , x ′) = min(x , x ′)



Examples

White noise

k(x , x ′) =

{
1 if x = x ′

0 otherwise



Examples
A final example:

k(x , x ′) = xx ′

What is happening?

Suppose y(x) = cx where c ∼ N(0, 1).
Then Cov(y(x), y(x ′)) = Cov(cx , cx ′) = xCov(c , c)x ′

= xx ′

So y(·) ∼ GP(0, k(x , x ′)) with k(x , x ′) = xx ′
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Rules for combining covariance functions

Let k1 and k2 be valid covariance functions. Then

k1 + k2 is a valid covariance function (even if k1 and k2 take different
inputs).

k1k2 is a valid covariance function (also true if different inputs).

For any function g , k1(g(x), g(x ′)) is a valid covariance function as
is g(x)k1(x , x ′)g(x ′)

Using these rules we can combine our standard set of positive definite
covariance functions to create a richer family of covariance functions.



Choosing kernels and hyperparameters

GP properties are inherited primarily from the covariance function k.

Continuity

I f (x) ∼ GP is (mean square2) continuous at x∗ ifF k(x , x ′) and m(x)
are continuous at x = x ′ = x∗

I For stationary kernels, only require continuity at k(0)

Differentiability

I f (x) ∼ GP is (mean square) differentiable if k ′(x , x ′) = ∂2

∂x∂x′ k(x , x ′)
exists.

Variance and length-scale

controlled by hyper-parameters k = kψ:
I how much f varies between samples
I how fast f (x) changes with x within a sample.

Typically choose the family of kernels by

measures of fit (marginal likelihood, Bayes factors, ...)

predictive skill (held-out data, cross-validation, ...)

Choose hyperparameters by maximum likelihood, Bayes, etc.

2f is mean square cts at x if for all sequences xk → x we have E(f (xk)− f (x))2 → 0
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Why use Gaussian processes?

Why would we want to use this very restricted class of model?

Gaussian distributions have several properties that make them easy to
work with:

Proposition:

Y ∼ Nd(µ,Σ) if and only if AY ∼ Np(Aµ,AΣA>)

for all A ∈ Rp×d .
So sums of Gaussians are Gaussian, and marginal distributions of
multivariate Gaussians are still Gaussian.
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Property 2: Conditional distributions are still Gaussian

Suppose

Y =

(
Y1

Y2

)
∼ N2 (µ,Σ)

where

µ =

(
µ1

µ2

)
Σ =

(
Σ11 Σ12

Σ21 Σ22

)

Then

Y2 | Y1 = y1 ∼ N
(
µ2 + Σ21Σ−1

11 (y1 − µ1),Σ22 − Σ21Σ−1
11 Σ12

)
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Proof:

π(y2|y1) =
π(y1, y2)

π(y1)
∝ π(y1, y2)

∝ exp

[
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2
(y − µ)>Σ−1(y − µ)

]
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2
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y1

y2
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Q11 Q12

Q21 Q22
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· · ·

]

∝ exp

[
−1

2

(
(y2 − µ2)>Q22(y2 − µ2) + 2(y2 − µ2)>Q21(y1 − µ1)

)]
where

Σ−1 := Q :=

(
Q11 Q12

Q21 Q22

)
So Y2|Y1 = y1 is Gaussian.
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The Woodbury matrix identity then gives
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Conditional updates of Gaussian processes
If f is a Gaussian process f (·) ∼ GP(m(·), k(·, ·)), then

f (x1), . . . , f (xn), f (x) ∼ Nn+1(µ,Σ)

where

µ =


m(x1)

...
m(xn)

m(x)

 =


|

mX

|
m(x)


and

Σ =


k(x1, x1) . . . k(x1, xn) k(x1, x)

...
...

...
k(xn, x1) . . . k(xn, xn) k(xn, x)

k(x , x1) . . . k(x , xn) k(x , x)

 =

(
KXX kX (x)

kX (x)> k(x , x)

)

where X = {x1, . . . , xn}, [KXX ]ij = k(xi , xj) is the Gram/kernel matrix,
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Conditional updates of Gaussian processes

Then
f (x)|f (x1), . . . , f (xn) ∼ N(m̄(x), k̄(x))

where

m̄(x) = m(x) + kX (x)>KXX
−1(f −mX )

k̄(x) = k(x , x)− kX (x)>KXX
−1kX (x)

where

f = (f (x1), . . . , f (xn))>

Cf

Y2|Y1 = y1 ∼ N
(
µ2 + Σ21Σ−1

11 (y1 − µ1),Σ22 − Σ21Σ−1
11 Σ12

)
The prior mean and covariance functions m and k , are replaced by the
posterior mean and covariance functions m̄ and k̄ ,



Conditional updates of Gaussian processes

Then
f (x)|f (x1), . . . , f (xn) ∼ N(m̄(x), k̄(x))

where

m̄(x) = m(x) + kX (x)>KXX
−1(f −mX )

k̄(x) = k(x , x)− kX (x)>KXX
−1kX (x)

where

f = (f (x1), . . . , f (xn))>

Cf

Y2|Y1 = y1 ∼ N
(
µ2 + Σ21Σ−1

11 (y1 − µ1),Σ22 − Σ21Σ−1
11 Σ12

)
The prior mean and covariance functions m and k , are replaced by the
posterior mean and covariance functions m̄ and k̄ ,



Conditional updates of Gaussian processes

Then
f (x)|f (x1), . . . , f (xn) ∼ N(m̄(x), k̄(x))

where

m̄(x) = m(x) + kX (x)>KXX
−1(f −mX )

k̄(x) = k(x , x)− kX (x)>KXX
−1kX (x)

where

f = (f (x1), . . . , f (xn))>

Cf

Y2|Y1 = y1 ∼ N
(
µ2 + Σ21Σ−1

11 (y1 − µ1),Σ22 − Σ21Σ−1
11 Σ12

)

The prior mean and covariance functions m and k , are replaced by the
posterior mean and covariance functions m̄ and k̄ ,



Conditional updates of Gaussian processes

Then
f (x)|f (x1), . . . , f (xn) ∼ N(m̄(x), k̄(x))

where

m̄(x) = m(x) + kX (x)>KXX
−1(f −mX )

k̄(x) = k(x , x)− kX (x)>KXX
−1kX (x)

where

f = (f (x1), . . . , f (xn))>

Cf

Y2|Y1 = y1 ∼ N
(
µ2 + Σ21Σ−1

11 (y1 − µ1),Σ22 − Σ21Σ−1
11 Σ12

)
The prior mean and covariance functions m and k , are replaced by the
posterior mean and covariance functions m̄ and k̄ ,



Summary: Conditional updates of Gaussian processes
If f is a Gaussian process,

f (·) ∼ GP(m(·), k(·, ·))

then if we observe f at x1, . . . , xn, then

f (·)|f (x1), . . . , f (xn) ∼ GP(m̄(·), k̄(·, ·))

where m̄ and k̄ are the posterior mean and covariance functions on the
previous slide.

f is still a GP even though we’ve observed its value at a number of
locations.
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where m̄ and k̄ are the posterior mean and covariance functions on the
previous slide.

f is still a GP even though we’ve observed its value at a number of
locations.



No noise/nugget - Interpolation

Solid line m̄(x) = m(x) + kX (x)>K−1
XX (f −mX )

Shaded region m̄(x)± 1.96
√

k̄(x)

k̄(x) = k(x , x)− kX (x)>K−1
XXkX (x)



Noisy observations/with nugget - Regression
In practice, we don’t usually observe f (x) directly. If we observe

yi = f (xi ) + N(0, σ2)

then y1, . . . , yn, f (x) ∼ Nn+1(0,Σ)

where Σ =


k(x1, x)

KXX + σ2I k(x2, x)
...

k(xn, x)

k(x , x1) k(x , x2) . . . k(x , xn) k(x , x)


Then

f (x) | y1, . . . , yn ∼ N(m̄(x), k̄(x))

where

m̄(x) = m(x) + kX (x)>(KXX + σ2I )−1(y −mX )

k̄(x) = k(x , x)− kX (x)>(KXX + σ2I )−1kX (x)
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Nugget standard deviation σ = 0.025

Solid line m̄(x) = m(x) + kX (x)>K−1
XX (y −mX )

Shaded region m̄(x)± 1.96
√
k̄(x)
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XX + σ2I )kX (x)



If mean is a linear combination of known regressor functions,

m(x) = β>h(x) for known h(x)

and β is given a normal prior distribution (including π(β) ∝ 1), then
y(·) | D, β ∼ GP and

y(·) | D ∼ GP

with slightly modified mean and variance formulas.

If
k(x , x ′) = σ2c(x , x ′)

and we give σ2 an inverse gamma prior (including π(σ2) ∝ 1/σ2)
then y |D, σ2 ∼ GP and

y |D ∼ t-process

with n − p degrees of freedom.
In practice, for reasonable n, this is indistinguishable from a GP.
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Why use GPs? Answer 1
The GP class of models is closed under various operations.

Closed under Bayesian conditioning, i.e., if we observe

D = (f (x1), . . . , f (xn))

then
f |D ∼ GP

but with updated mean and covariance functions.

Closed under addition

f1(·), f2(·) ∼ GP then (f1 + f2)(·) ∼ GP

Closed under any linear operator. If f ∼ GP(m(·), k(·, ·)), then if L
is a linear operator

L ◦ f ∼ GP(L ◦m,L2 ◦ k)

e.g. df
dx ,
∫
f (x)dx , Af are all GPs
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Why use GPs? Answer 2: non-parametric/kernel regression
We can also view GPs as a non-parametric extension to linear regression.

k determines the space of functions that sample paths live in.

Suppose we’re given data {(xi , yi )ni=1} with xi ∈ Rp, yi ∈ R

β̂ = arg min
β
||y − Xβ||22 + σ2||β||22 regularised least squares

= (X>X + σ2I )−1X>y usual ridge regression estimator

= X>(XX> + σ2I )−1y the dual form

as (X>X + σ2I )X> = X>(XX> + σ2I )

so X>(XX> + σ2I )−1 = (X>X + σ2I )−1X>

where X =


x>1
x>2
...
x>n
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At first the dual form

β̂ = X>(XX> + σ2I )−1y

looks harder to compute than the usual

β̂ = (X>X + σ2I )−1X>y

X>X is p × p p = number of features/parameters

XX> is n × n n is the number of data points

But the dual form only uses inner products between vectors in Rn

XX> =

 x>1
...
x>n

 (x1 . . . xn) =

 x>1 x1 . . . x>1 xn
...

x>n x1 . . . x>n xn


=KXX if k(x , x ′) = x>x ′

— This is useful!
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Prediction

The best prediction of y at a new location x ′ is

ŷ ′ = x ′>β̂

= x ′>X>(XX> + σ2I )−1y

= kX (x ′)>(KXX + σ2I )−1y

where kX (x ′)> := (x ′>x1, . . . , x
′>xn) and [KXX ]ij := x>i xj

KXX and kX (x) are kernel matrices:

every element is an inner product between 2 points: k(x , x ′) = x>x ′

Note this is the GP conditional mean we derived before with m(x) = 0.

m(x) = kX (x)>(KXX + σ2I )−1y

linear regression and GP regression are equivalent when
k(x , x ′) = x>x ′.
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Including features I

We can replace x by a feature vector in linear regression, e.g.,
φ(x) = (1 x x2)

It doesn’t change the expressions other than the inner product if

k(x ′, x) = x ′>x

is replaced by
k(x ′, x) = φ(x ′)>φ(x)

Note k(x ′, x) = φ(x ′)>φ(x) is a semi-definite function for any choice of
φ(x).
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Including features II
For some sets of features, φ(x), computation of the inner product doesn’t
require us to evaluate the individual features.

E.g., Consider X = R2 and let

φ : x = (x1, x2) 7→ (1,
√

2x1,
√

2x2, x
2
1 ,
√

2x1x2, x
2
2 )>

i.e., linear regression using all the linear and quadratic terms, and first
order interactions.
Then

k(x, z) = φ(x)>φ(z)

= (1,
√

2x1,
√

2x2, x
2
1 ,
√

2x1x2, x
2
2 )(1,

√
2z1,
√

2z2, z
2
1 ,
√

2z1z2, z
2
2 )>

= (1 + (x1, x2)(z1, z2)>)2

= (1 + x>z)2

To evaluate k(x, z) we didn’t need to explicitly compute the feature
vector φ(x)
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Including features III

To evaluate k(x, z) we didn’t need to explicitly compute the feature
vectors φ(x), φ(z) ∈ R6

The same idea works with much larger feature vectors, sometimes even
when φ(x) ∈ R∞

Theorem: A function
k : X × X → R

is positive semi-definite (and thus a valid covariance function) if and only
if we can write

k(x , x ′) = φ(x)>φ(x ′)

for some (possibly infinite dimensional) feature vector φ(x).

So GP regression with k can be thought of as linear regression with φ(x).
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Example: If X = R, set φc(x) = e−
(x−c0)2

2λ2 and

φN(x) =
1√
N

(φc0(x), . . . , φcN (x))

with c0 = − logN, cN = logN, ci+1 − ci = 2 log N
N .

Then

φN(x)>φN(x ′) =
1

N

N∑
i=0

φci (x)φci (x
′)

=

∫ log N

− log N
φc(x)φ(x ′)dc → exp

(
−(x − x ′)2

2λ2

)
as N →∞

So the RBF kernel arises when we do linear regression with an infinite
feature vector containing Gaussian bumps
We can use an infinite dimensional feature vector φ(x), and because linear
regression can be done solely in terms of inner-products (inverting a n× n
matrix in the dual form) we never need evaluate the feature vector, only
the kernel.
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Kernel trick:

lift x into feature space by replacing inner products x>x ′ by k(x , x ′)



Kernel regression (see Kanagawa et al. 2019)
Kernel regression and GP regression are closely related.

Consider the space of functions

Hk = span{k(·, x) : x ∈ X}
ie functions of the form

∑n
i=1 αik(x , xi ) with inner product

〈
∑

aik(·, xi ),
∑

bik(·, yi )〉 =
∑
ij

aibjk(xi , yj)

This is the reproducing kernel Hilbert space (RKHS) associated with k.
Kernel ridge regression chooses f ∈ Hk to minimise

L(f ) =
∑
i

(f (xi )− yi )
2 + σ2||f ||2Hk

We can show that
m̄(x) = arg min

f ∈Hk

L(f )

where m̄(x) is the same as the posterior mean when we assume
yi = f (xi ) + N(0, σ2) and f (·) ∼ GP(0, k(·, ·))
Note: m̄(·) ∈ Hk but samples from a GP live in a slightly larger RKHS.
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Hk = span{k(·, x) : x ∈ X}
ie functions of the form
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i=1 αik(x , xi ) with inner product
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∑

aik(·, xi ),
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bik(·, yi )〉 =
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aibjk(xi , yj)

This is the reproducing kernel Hilbert space (RKHS) associated with k.

Kernel ridge regression chooses f ∈ Hk to minimise

L(f ) =
∑
i

(f (xi )− yi )
2 + σ2||f ||2Hk

We can show that
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TL;DR

Functions live in function spaces (vector spaces with inner products).
There are lots of different function spaces: the GP kernel implicitly
determines which particular (RKHS) space we work with - our hypothesis
space.

Generally, we don’t think too hard about this space, we just choose a
kernel and attempt to validate it empirically.

Although reality may not lie in the RKHS defined by k , this space is much
richer than any parametric regression model3,

thus is more likely to contain an element close to the true functional
form than any class of models that contains only a finite number of
features.

This is the motivation for non-parametric methods.

3and can be dense in some sets of continuous bounded functions
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Why use GPs? Answer 3: Naturalness of GP framework

Why use Gaussian processes as non-parametric models?

If we only knew the expectation and variance of some random variables,
X and Y , then how should we best do statistics?

It has been shown, using coherency arguments, or geometric arguments,
or..., that the best second-order inference we can do is to update our
beliefs about X given Y using

E(X |Y ) = E(X ) + Cov(X ,Y )Var(Y )−1(Y − E(Y ))

i.e., exactly the Gaussian process update for the posterior mean.

So GPs are in some sense second-order optimal.



Why use GPs? Answer 3: Naturalness of GP framework

Why use Gaussian processes as non-parametric models?

If we only knew the expectation and variance of some random variables,
X and Y , then how should we best do statistics?

It has been shown, using coherency arguments, or geometric arguments,
or..., that the best second-order inference we can do is to update our
beliefs about X given Y using

E(X |Y ) = E(X ) + Cov(X ,Y )Var(Y )−1(Y − E(Y ))

i.e., exactly the Gaussian process update for the posterior mean.

So GPs are in some sense second-order optimal.



Why use GPs? Answer 3: Naturalness of GP framework

Why use Gaussian processes as non-parametric models?

If we only knew the expectation and variance of some random variables,
X and Y , then how should we best do statistics?

It has been shown, using coherency arguments, or geometric arguments,
or..., that the best second-order inference we can do is to update our
beliefs about X given Y using

E(X |Y ) = E(X ) + Cov(X ,Y )Var(Y )−1(Y − E(Y ))

i.e., exactly the Gaussian process update for the posterior mean.

So GPs are in some sense second-order optimal.



Kriging

Suppose Y (x) is a (second order stationary) stochastic process with

EY (x) = µ ∀ x
Cov(Y (x),Y (x ′)) = k(x − x ′) ∀ x , x ′

NB we’re not assuming Y has a Gaussian distribution.

If someone tells you y = (Y (x1), . . . ,Y (xn))>, how would you predict
Y (x)?
One option is to find the best linear unbiased predictor (BLUP) of Y (x).
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Best Linear Unbiased Predictors (BLUP)

Consider the linear estimator

Ŷ (x) = c +
∑

wiY (xi ) = c + w>y

If we require Ŷ (x) to be unbiased,

µ = EŶ (x)

= E(c + w>y)

= c + w>µ

where µ = (µ, . . . , µ)>.

Thus c = µ−w>µ and we must have

Ŷ (x) = µ+ w>(y − µ)



Best Linear Unbiased Predictors (BLUP)

Consider the linear estimator
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Best Linear Unbiased Predictors (BLUP) - II
The best linear unbiased predictor minimises the mean square error

MSE (Ŷ (x)) = E((Ŷ (x)− Y (x))2)

= E
(

(w>(y − µ) + (µ− Y (x))2
)

= w>Var(y)w + Var(Y (x))− 2w>Cov(y,Y (x))

= w>KXXw + k(0)− 2w>kX (x)

If we differentiate wrt w and set the gradient equal to zero, we find

0 = 2KXXw − 2kX (x)

and thus
Ŷ (x) = µ+ kX (x)>K−1

XX (y − µ)

as before.
So the Gaussian process posterior mean is optimal (i.e. is the BLUP) even
if we don’t assume Gaussianity.
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Ŷ (x) = µ+ kX (x)>K−1

XX (y − µ)

as before.
So the Gaussian process posterior mean is optimal (i.e. is the BLUP) even
if we don’t assume Gaussianity.



Best Linear Unbiased Predictors (BLUP) - II
The best linear unbiased predictor minimises the mean square error
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Why use GPs? Answer 4: Uncertainty estimates

GP predictions consist of two parts:

point estimate m(x) = Ef (x)

uncertainty about the estimate k(x , x) = Varf (x)

Quantification of prediction uncertainty (cf NNs) is one of the main
advantages of GPs.

It is important to check both aspects.

Warning: the uncertainty estimates from a GP can be flawed. Note that
given data D = {X , y}

Var(f (x)|X , y) = k(x , x)− kX (x)K−1
XXkX (x)

The posterior variance of f (x) does not directly depend upon y !

Variance estimates are particularly sensitive to the hyper-parameter
estimates.
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Difficulties of using GPs

If we know the covariance function, GPs work great!

Unfortunately, we don’t usually know this.

We pick a covariance function from a small set, based usually on
differentiability considerations.

Possibly try a few (plus combinations of a few), and use empirical
evaluation to make a good choice.

Covariance functions often contain hyper-parameters. E.g
I RBF kernel

k(x , x ′) = σ2 exp

(
−1

2

(x − x ′)2

λ2

)
Estimate these using your favourite statistical procedure
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Difficulties of using GPs
Gelman et al. 2017, Bachoc 2020

Assuming a GP model for your data imposes a complex structure on the
data.

The number of parameters in a GP is essentially infinite, and so they are
not always identified even asymptotically.

The posterior can often concentrate on a sub-manifold of parameter space
(rather than a single point), and the projection of the prior on this space
continues to impact the posterior even as more and more data are
collected.

E.g. consider a zero mean GP on [0, 1] with covariance function

k(x , x ′) = σ2 exp(−κ2|x − x |)

We can consistently estimate σ2κ, but not σ2 or κ, even as n→∞.
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Problems with hyper-parameter optimization
The likelihood surface that is maximized in hyper-parameter estimation is
often flat and multi-modal,

optimizers can sometimes fail to converge, or get stuck in
local-maxima.

In practice, it is not uncommon to optimize hyper parameters and find
solutions such as

Work around these problems by running the optimizer multiple times from
random start points, using prior distributions, constraining or fixing
hyper-parameters, or adding white noise.
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Computational cost

The computational cost of GP training is O(n3) with O(n2) memory
requirements

There are many ways to reduce these costs. E.g. consider basis
expansions and using the primal form for linear regression.
Suppose

k(x , x ′) =
m∑
i=1

φi (x)φi (x
′) = φ(x)>φ(x ′)

Then GP regression is equivalent to linear regression with covariates φ(x)

Dual form for regression coefficients costs O(n3),
but primal solution only costs O(m3)

In practice we may use a basis expansion with m << n such that

k(x , x ′) ≈
m∑
i=1

φi (x)φi (x
′)
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Choice of basis
There are many choices of basis. Two examples:

Mercer basis: Consider the map

Tk(f )(·) =

∫
X
k(x , ·)f (x)dx

Consider the eigenfunctions of this map, i.e., φ : X 7→ R s.t.
Tk(φ)(·) = λφ(·). Mercer’s theorem says that

k(x , x ′) =
∞∑
i=1

λiφi (x)φi (x
′)

The Karhunen-Loeve thm says we can write f (·) ∼ GP(0, k(·, ·)) as

f (x) =
∞∑
i=1

Zi

√
λiφi (x) where Zi

iid∼ N(0, 1)

We can approximate the process (& reduce cost to O(m3)) by
truncating the sum

f (x) =
m∑
i=1

Zi

√
λiφi (x)

The Mercer/KL basis minimizes the mean square truncation error.
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Choice of basis

There are many choices of basis. Two examples:

Random Fourier features (Rahimi and Recht 2007) :
Bochner’s theorem says that a stationary kernel can be represented
as a Fourier transform of some distribution p

k(x − x ′) =

∫
exp(iw>(x − x ′))p(w)dw = Ew∼p exp(iw>(x − x ′))

≈ 1

m

m∑
i=1

(cos(w>i x), sin(w>i x))

(
cos(w>i x ′)
sin(w>i x ′)

)
if wi ∼ p(·)

by using Euler’s identity and discarding the imaginary part.
This again reduces the complexity to O(m3).
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Conclusions

GPs are now ubiquitous in statistics/ML.

Popularity stems from
I Naturalness of the framework
I Mathematical tractability
I Empirical success

Thank you for listening!
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