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Gaussian processes in machine learning

❑ Gaussian processes (GPs) or Gaussian random fields.

❑ They were introduced by George Matheron in 1960 under the name of
kriging (geostatistics literature).

❑ Well known in the Statistics and Probability communities.

❑ Growing in populatity in machine learning since the 90s.
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Gaussian processes in machine learning

❑ A Gaussian process generalises the multivariate Gaussian distribution
to the infinite dimensional setting.

❑ Most common application is non-linear regression.

❑ They have been also used in pattern classification, dimensionality
reduction, multi-task learning and Bayesian optimisation.
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Univariate Gaussian distributions
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)
CDF: FY (y) = P(Y ≤ y) not known in closed form

If Z ∼ N(0,1) then Y = µ+ σZ ∼ N(µ, σ2)
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Univariate Gaussian distributions
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Univariate Gaussians

The normal/Gaussian distribution occurs naturally and is convenient
mathematically

❑ Central limit theorem.

❑ Family of normal distributions is closed under linear operations.

❑ If Y and Z are jointly normally distributed and are uncorrelated, then
they are independent.
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Multivariate Gaussian distributions

‘Multivariate’ = two or more random variables

Suppose Y ∈ Rd has a multivariate Gaussian distribution with
❑ mean vector µ ∈ Rd

❑ covariance matrix Σ ∈ Rd×d .
Write

Y ∼ Nd (µ,Σ)

Bivariate Gaussian: d=2

Y =

(
Y1
Y2

)
µ =

(
µ1
µ2

)
Σ =

(
σ2

1 ρ12σ1σ2
ρ21σ1σ2 σ2

2

)
Var(Yi) = σ2

i Cov(Yi ,Yj) = ρijσiσj Cor(Yi ,Yj) = ρ12 for i ̸= j

pdf: f (y | µ,Σ) = |Σ|− 1
2 (2π)−

d
2 exp

(
−1

2
(y − µ)⊤Σ−1(y − µ)

)
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Visual exploration

Taken from: “Visual exploration of Gaussian processes” by J Götler, R Kehlbeck and O Deussen (2019)

14 / 76

https://distill.pub/2019/visual-exploration-gaussian-processes/


Visualisation in more than two dimensions

Hard to visualise in dimensions > 2, so stack points next to each other.
So for 2d instead of we have
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Consider d = 5
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−
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Each line is one sample.
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Consider d = 50
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Each line is one sample.
We can think of Gaussian processes as an infinite dimensional distribution
over functions - all we need to do is change the indexing
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Gaussian processes

❑ A stochastic process is a collection of random variables indexed by
some variable x ∈ X

y = {y(x) : x ∈ X}

❑ Usually y(x) ∈ R and X ⊂ Rn - think of y as a function of x .

❑ If |X | = ∞, y is an infinite dimensional process.
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Gaussian processes

❑ Thankfully, to understand the law of y we only need consider the finite
dimensional distributions (FDDs), i.e., for all x1, . . . , xn and for all n ∈ N

P(y(x1) ≤ c1, . . . , y(xn) ≤ cn)

as these uniquely determine the law of y .

❑ A Gaussian process is a stochastic process with Gaussian FDDs, i.e.,

(y(x1), . . . , y(xn)) ∼ Nn(µ,Σ)

Write y(·) ∼ GP to denote that the function y is a GP.
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Mean and covariance function

❑ To fully specify the law of a Gaussian distribution we only need the
mean and variance.

Y ∼ N(µ,Σ)

❑ To fully specify the law of a Gaussian process, we need to specify
mean and covariance functions.

y(·) ∼ GP(m(·), k(·, ·))

where

E(y(x)) = m(x)
Cov(y(x), y(x ′)) = k(x , x ′)
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Specifying the mean function

❑ We can use any mean function we want m(x) = E(y(x))

❑ Most popular choices are m(x) = 0 or m(x) = const for all x , or
m(x) = β⊤x .

❑ Using a neural network is another popular choice.
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Covariance functions

❑ We usually use a covariance function that is a function of the
indexes/locations

k(x , x ′) = Cov(y(x), y(x ′)),

k must be a positive semi-definite function, i.e., lead to valid covariance
matrices.

❑ Given locations x1, . . . , xn, the n × n Gram matrix K with Kij = k(xi , xj)
must be a positive semi-definite matrix.

❑ A matrix K is positive semi-definite if for any vector u, u⊤Ku ≥ 0.
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Covariance functions

❑ We often assume k is a function of only the distance between locations

Cov(y(x), y(x ′)) = k(x − x ′)

which results in a stationary processes.

❑ If Cov(y(x), y(x ′)) = k(||x − x ′||) the covariance function is said to be
isotropic.

❑ The covariance function determines the nature of the GP.

❑ k determines the hypothesis space/space of functions
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How do we draw samples from a GP?

❑ Given the mean function and covariance function for a GP, we can draw
samples using a multivariate Gaussian distribution.

❑ To sample from the multivariate Gaussian distribution, we need a mean
vector and a covariance matrix.

❑ The mean vector is obtained from the mean function.

❑ The covariance matrix is obtained from the covariance function.
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Sampling from a GP
❑ RBF/Squared-exponential/exponentiated quadratic

k(x , x ′) = sf exp

(
− (x − x ′)2

2ℓ2

)
,

where sf is the variance parameter and ℓ the length-scale parameter.

❑ If sf = 1 and ℓ = 1, we get

k(x , x ′) = exp

(
−1

2
(x − x ′)2

)

❑ Say we have a vector of x values, like

x = [x1, x2, · · · , xn]
⊤.

❑ These are the indexes of the stochastic process.
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Sampling from a GP
❑ We now compute the covariance matrix

KXX =


k(x1, x1) k(x1, x2) · · · k(x1, xn)
k(x2, x1) k(x2, x2) · · · k(x2, xn)

...
...

...
...

k(xn, x1) k(xn, x2) · · · k(xn, xn)


❑ We assume the mean function is constant and equal to zero, m(x) = 0.

❑ To generate functions from this GP, we will then sample from

y ∼ Nn




0
0
...
0

 ,


k(x1, x1) k(x1, x2) · · · k(x1, xn)
k(x2, x1) k(x2, x2) · · · k(x2, xn)

...
...

...
...

k(xn, x1) k(xn, x2) · · · k(xn, xn)




❑ What we plot is x and y.
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Examples
RBF/Squared-exponential/exponentiated quadratic

k(x , x ′) = exp

(
−1

2
(x − x ′)2

)
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Examples
RBF/Squared-exponential/exponentiated quadratic

k(x , x ′) = exp
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2
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42
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Examples
RBF/Squared-exponential/exponentiated quadratic

k(x , x ′) = 100 exp

(
−1

2
(x − x ′)2

)

31 / 76



Examples

Matèrn covariance function

k(x , x ′) = sf
21−ν

Γ(ν)

(√
2ν(x − x ′)

ℓ

)ν

Kν

(√
2ν(x − x ′)

ℓ

)

k(x , x ′) = sf

(
1 +

√
3|x − x ′|

ℓ

)
exp

(
−

√
3|x − x ′|

ℓ

)
, ν =

3
2
,

where Kν(·) is the modified Bessel function of the second kind.
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Examples

Matèrn 3/2
k(x , x ′) ∼ (1 + |x − x ′|) exp (−|x − x ′|)
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Examples

Many other covariance functions: constant, linear, polynomial, exponential,
etc.

34 / 76



Coding example

sampling GP.py
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Building new kernels (I)

Given two valid kernels k1(x,x′) and k2(x,x′), the following new kernels are
also valid kernels

k(x, x′) = c k1(x, x′)

k(x, x′) = f (x)k1(x, x′)f (x′)

k(x, x′) = q(k1(x, x′))

k(x, x′) = exp (k1(x, x′))

k(x, x′) = k1(x, x′) + k2(x, x′),

where c > 0 is a constant, f (·) is any function, and q(·) is a polynomial with
non-negative coefficients.
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Building new kernels (II)

Given two valid kernels k1(x,x′) and k2(x,x′), the following new kernels are
also valid kernels

k(x, x′) = k1(x, x′)k2(x, x′)

k(x, x′) = k3(ϕ(x),ϕ(x′))

k(x, x′) = x⊤Ax
k(x, x′) = ka(xa, x′

a) + kb(xb, xb)

k(x, x′) = ka(xa, x′
a)kb(xb, xb),

where ϕ(·) maps as RD → RN , k3(·, ·) is a valid kernel in RN , A is a
symmetric positive semidefinite matrix, xa and xb are vectors such that
x = [x⊤

a ,x⊤
b ]⊤, and ka(·, ·) and kb(·, ·) are valid kernels over their respective

spaces.
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Visual exploration: covariance matrices

Taken from: “Visual exploration of Gaussian processes” by J Götler, R Kehlbeck and O Deussen (2019)
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Visual exploration: samples from GPs

Taken from: “Visual exploration of Gaussian processes” by J Götler, R Kehlbeck and O Deussen (2019)
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Why use Gaussian processes?

❑ Why would we want to use this very restricted class of model?

❑ Gaussian distributions have several properties that make them easy
to work with: sums of Gaussians are Gaussian, and marginal
distributions of multivariate Gaussians are still Gaussian.
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Conditional distributions are still Gaussian

Suppose

Y =

(
Y1
Y2

)
∼ N2 (µ,Σ)

where

µ =

(
µ1
µ2

)
Σ =

(
Σ11 Σ12
Σ21 Σ22

)
Then

Y2 | Y1 = y1 ∼ N
(
µ2 +Σ21Σ

−1
11 (y1 − µ1),Σ22 − Σ21Σ

−1
11 Σ12

)
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Conditional updates of Gaussian processes
Suppose f is a Gaussian process, then

f (x1), . . . , f (xn), f (x) ∼ Nn+1(0,Σ)

where

Σ =


k(x1, x1) . . . k(x1, xn) k(x1, x)

...
...

...
k(xn, x1) . . . k(xn, xn) k(xn, x)
k(x , x1) . . . k(x , xn) k(x , x)



=

 KXX kX (x)

kX (x)⊤ k(x , x)


where X = {x1, . . . , xn}, [KXX ]ij = k(xi , xj) is the Gram/kernel matrix, and
[kX (x)]j = k(xj , x)
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Conditional updates of Gaussian processes

Then
f (x)|f (x1), . . . , f (xn) ∼ N(m̄(x), k̄(x))

where
m̄(x) = kX (x)⊤K−1

XX f

with

f = (f (x1), . . . , f (xn))
⊤

kX (x)⊤ = (k(x , x1) k(x , x2) . . . k(x , xn)) ∈ R1×n

and

k̄(x) = k(x , x)− kX (x)⊤K−1
XX kX (x)

What this means in practice is that if we know f, we can use it to predict f (x)
as a Gaussian distribution with mean m̄(x) and variance k̄(x).
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Interpolation

Solid line m̄(x) = k⊤
X (x)K−1

XX f

Shaded region m̄(x)± 1.96
√

k̄(x)

k̄(x) = k(x , x)− k⊤
X (x)K−1

XX kX (x)
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Noisy observations - Regression

❑ In practice, we don’t usually observe f (x) directly.

❑ If we observe

yi = f (xi) + ϵ,

where ϵ ∼ N(0, σ2) then

y1, . . . , yn, f (x) ∼ Nn+1(0,Σ)

where

Σ =


k(x1, x)

KXX + σ2I k(x2, x)
...

k(xn, x)
k(x , x1) k(x , x2) . . . k(x , xn) k(x , x)


45 / 76



Noisy observations - Regression

❑ In this way
f (x) | y1, . . . , yn ∼ N(m̄(x), k̄(x))

where

m̄(x) = kX (x)⊤(KXX + σ2I)−1y

k̄(x) = k(x , x)− kX (x)⊤(KXX + σ2I)−1kX (x)
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Noise standard deviation σ = 0.1

Solid line m̄(x) = kX (x)⊤K−1
XX y

Shaded region m̄(x)± 1.96
√

k̄(x)

k̄(x) = k(x , x)− kX (x)⊤(K−1
XX + σ2I)kX (x)
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Noise standard deviation σ = 0.025

Solid line m̄(x) = kX (x)⊤K−1
XX y

Shaded region m̄(x)± 1.96
√

k̄(x)

k̄(x) = k(x , x)− kX (x)⊤(K−1
XX + σ2I)kX (x)
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Visual exploration

Taken from: “Visual exploration of Gaussian processes” by J Götler, R Kehlbeck and O Deussen (2019)
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Coding example

prediction GPs.py
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Practical aspects

❑ If we knew the covariance function we should use, GPs work great!

❑ Unfortunately, we don’t usually know this.

❑ We pick a covariance function from a small set, based usually on
differentiability considerations.
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Practical aspects

❑ Possibly try a few (plus combinations of a few) covariance functions,
and attempt to make a good choice using some sort of empirical
evaluation.

❑ Covariance functions often contain hyper-parameters. E.g RBF kernel

k(x , x ′) = s2
f exp

(
−1

2
(x − x ′)2

ℓ2

)
Estimate these using your favourite statistical procedure (maximum
likelihood, cross-validation, Bayes, expert judgement etc)
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Marginal likelihood
❑ A popular way to estimate the hyperparameters of the covariance

function is through maximizing the logarithm of the marginal likelihood.

❑ The logarithm of the marginal likelihood is given as

log p(y|x) = −1
2

y⊤(KXX + σ2I)−1y − 1
2
log |KXX + σ2I| − n

2
log 2π.

❑ If we know x and y, the only unknowns in log p(y|x) are the kernel
hyperparameters, e.g. sf and ℓ, and the parameter σ.

❑ We can then optimise log p(y|x) wrt these parameters using a
gradient-descent like procedure.
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Log-marginal likelihood surface (σ and ℓ)

Taken from: “A Practical Guide to Gaussian Processes” by M. Deinsenroth, Y. Luo and M. van der Wilk (2013)
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Computational cost

❑ One difficulty with GPs is the computational cost of training them:
O(n3) (and O(n2) memory).

❑ They work our of the box for n in the order of a few thousands.

❑ There are many ways to side-step this cost: inducing inputs, efficient
matrix-vector multiplications, random features, etc.

❑ These days we can use GPs for n in the order of tens of millions.
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Weight-space view of GPs

❑ We way we introduced GPs before is known as the function-space view.

❑ Another way to introduce GPs is through Bayesian linear regression,
the weight-space view.
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Linear model (I)

❑ Say we have a training set D = {(xi , yi)|i = 1, . . . ,n}.

❑ xi ∈ RD, yi ∈ R.

❑ We have a design matrix X ∈ Rn×D, and an output vector y,

X =


x⊤

1
x⊤

2
· · ·
x⊤

n

 , y =
[
y1 y2 · · · yn

]⊤
.

❑ Therefore D = (X,y).
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Linear model (II)

❑ The standard linear model assumes

f (x) = w⊤x, y = f (x) + ϵ,

where w ∈ RD is a parameter vector, y is the corresponding
observation for x, and ϵ ∼ N (0, σ2

n).

❑ We assume iid observations.

❑ The likelihood for this model, p(y|X,w), follows as

p(y|X,w) =
n∏

i=1

p(yi |xi ,w) =
n∏

i=1

1√
2πσn

exp

[
−
(yi − w⊤

i x)2

2σ2
n

]
=

1
(2πσ2

n)n/2
exp

(
− 1

2σ2
n
|y − Xw|2

)
= N

(
y|Xw, σ2

n I
)
.
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Linear model (III)

❑ In Bayesian linear regression, we specify a prior distribution over w,
for example,

w ∼ N (0,Σp) ,

where Σp is a covariance matrix.

❑ Bayes theorem,

posterior =
likelihood × prior

marginal likelihood
, p(w|y,X) = p(y|X,w)p(w)

p(y|X)
,

where

p(y|X) =
∫

p(y|X,w)p(w)dw.
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Linear model (IV)

❑ For the linear model,

p(w|y,X) = N (w
∣∣∣∣ 1
σ2

n
A−1X⊤y︸ ︷︷ ︸

ŵ

,A−1).

where A = σ−2
n X⊤X +Σ−1

p is a covariance matrix.

❑ The predictive distribution for f∗ ≡ f (x∗) at x∗ is given as

p(f∗|x∗,X,y) =
∫

p(f∗|x∗,w)p(w|y,X)dw,

= N
(

f∗

∣∣∣∣ 1
σ2

n
x⊤
∗ A−1X⊤y,x⊤

∗ A−1x∗

)
.
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Linear model (V)
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Coding example

prior posterior bayesian linear regression.py
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Pen and paper exercise (I)

Given a marginal Gaussian distribution for x, and a conditional Gaussian
distribution for y given x

p(x) = N (x|µ,Λ−1)

p(y|x) = N (y|Ax + b,L−1),

the marginal distribution for y, and the conditional distribution of x given y
are given as

p(y) = N (y|Aµ+ b,L−1 + AΛ−1A⊤)

p(x|y) = N (x|Σ{A⊤L(y − b) + Λµ},Σ),

where

Σ =(Λ+ A⊤LA)−1.

(Proof: pages 90-93, Bishop, C. (2006)).
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Pen and paper exercise (II)

Using the properties of the Gaussian distributions in the previous slide,

❑ find the mean and covariance matrix for p(w|y,X).

❑ find the mean and covariance for p(f∗|x∗,X,y).
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Feature space (I)

❑ The Bayesian linear model is limited since it is linear in both x and w.

❑ We could use basis functions to introduce non-linearity in the model.
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Feature space (II)

❑ We introduce the function ϕ(x) : RD → RN .

❑ The new design matrix is Φ(X) ∈ Rn×N ,

Φ(X) =


ϕ(x1)

⊤

ϕ(x2)
⊤

· · ·
ϕ(xn)

⊤

 ,

❑ The model is now f (x) = w⊤ϕ(x), with w ∈ RN .

❑ The equations remain the same simply changing X for Φ(X).
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Feature space (III)

❑ The predictive distribution follows as

p(f∗|x∗,X,y) = N
(

f∗

∣∣∣∣ 1
σ2

n
ϕ(x∗)

⊤A−1Φ⊤y,ϕ(x∗)
⊤A−1ϕ(x∗)

)
,

where Φ = Φ(X), and A = σ−2
n Φ⊤Φ+Σ−1

p .

❑ Inverting A is expensive for a large value of N.

❑ It can be shown that

p(f∗|x∗,X,y) = N
(

f∗

∣∣∣∣ϕ⊤
∗ ΣpΦ

⊤(K + σ2
n I)−1y,

ϕ⊤
∗ Σpϕ∗ − ϕ

⊤
∗ ΣpΦ

⊤(K + σ2
n I)−1ΦΣpϕ∗

)
,

where ϕ(x∗) = ϕ∗, y K = ΦΣpΦ
⊤.

❑ The feature space appears in the forms ϕ⊤
∗ ΣpΦ

⊤, ϕ⊤
∗ Σpϕ∗, and

ΦΣpΦ
⊤.
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Kernel trick

❑ Entries in the matrices appearing before can be written as
ϕ(x)⊤Σpϕ(x′).

❑ The function k(x,x′) = ϕ(x)⊤Σpϕ(x′), is the kernel or covariance
function we introduced in the function space view of GPs.

❑ k(x,x′) = ϕ(x)⊤Σpϕ(x′) = ψ(x) ·ψ(x), with ψ(x) = Σ
1/2
p ϕ(x′).

❑ When a model only depends on inner products between vectors in the
input space, those inners products can be replaced by k(x,x′).
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Going back to GPs
❑ For a GP, we specify the mean, m(x), and the covariance function,

k(x,x′)

m(x) = E[f (x)],
k(x,x′) = E[(f (x)− m(x))(f (x′)− m(x′))].

❑ In Bayesian linear regression, we have f (x) = w⊤ϕ(x) with prior
w ∼ N (0,Σp).

❑ If we compute E[f (x)] and E[f (x)f (x′)], we get

E[f (x)] = ϕ(x)⊤E[w] = 0,

E[f (x)f (x′)] = ϕ(x)⊤E[ww⊤]ϕ(x′) = ϕ(x)⊤Σpϕ(x).

❑ Meaning that the Bayesian linear regression model is equivalent to a
GP prior with mean zero and covariance k(x,x′) = ϕ(x)⊤Σpϕ(x′).
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Book
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Probabilistic numerics
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Summary

❑ GPs are ubiquitous in statistics/ML.

❑ Popularity stems from
– Naturalness of the framework
– Mathematical tractability
– Empirical success
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