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Gaussian processes in machine learning

0 Gaussian processes (GPs) or Gaussian random fields.

a They were introduced by George Matheron in 1960 under the name of
kriging (geostatistics literature).

0  Well known in the Statistics and Probability communities.

0 Growing in populatity in machine learning since the 90s.
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Gaussian processes in machine learning

0 A Gaussian process generalises the multivariate Gaussian distribution
to the infinite dimensional setting.

0 Most common application is non-linear regression.

o They have been also used in pattern classification, dimensionality
reduction, multi-task learning and Bayesian optimisation.
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Contents

Univariate and multivariate Gaussian distributions
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Univariate Gaussian distributions

PDF of a N(0,1) random variable CDF of a N(0,1) random variable
<~ ] o
= =
@ |
- S
@4
o |
> = °
g ° g
< |
S
= |
S o
S
o | o |
S S
T T T T T T T T T T
4 2 0 2 4 4 2 0 2 4
y y
2
Y ~ N(u,0%)

)2
1 exp (- (y — 1)

V2ra? 202

CDF: Fy(y) =P(Y < y) not known in closed form

PDF: fy(y) =

5/76



Univariate Gaussian distributions
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PDF:  fy(y) = 217702 exp (_(y 205”)

CDF: Fy(y) =P(Y < y) not known in closed form

If Z ~ N(0,1) then Y = i + 0Z ~ N(u, o2)
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Univariate Gaussians

The normal/Gaussian distribution occurs naturally and is convenient
mathematically
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Univariate Gaussians

The normal/Gaussian distribution occurs naturally and is convenient
mathematically

o Central limit theorem.
o Family of normal distributions is closed under linear operations.

a If Y and Z are jointly normally distributed and are uncorrelated, then
they are independent.
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Multivariate Gaussian distributions

‘Multivariate’ = two or more random variables

7176



Multivariate Gaussian distributions

‘Multivariate’ = two or more random variables

Suppose Y € RY has a multivariate Gaussian distribution with
2 mean vector i € R?
0 covariance matrix ¥ € R9x9,

Write
Y ~ Nd(,“: Z)
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Multivariate Gaussian distributions

‘Multivariate’ = two or more random variables

Suppose Y € RY has a multivariate Gaussian distribution with
2 mean vector i € R?
0 covariance matrix ¥ € R9x9,
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Multivariate Gaussian distributions

‘Multivariate’ = two or more random variables

Suppose Y € RY has a multivariate Gaussian distribution with
2 mean vector i € R?
0 covariance matrix ¥ € R9x9,

Write
Y ~ Nd(,”: Z)

Bivariate Gaussian: d=2

Yi A < o? P120102 )
)/ = = Yy = 1
< Yo ) K ( H2 pP210102 o3

Var(Y;) = a2 Cov(Y;,Y)) = pjoioj Cor(Y;,Yj) = prafori#j

pdf: f(y | 1, T) = || 2(27) "% exp (—;(y )=y~ u))
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Y2

So Cor(Yy,Y2)=0
hence Y;
independent of Ys
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1 054
x= ( 054 0.3 )
COf( Y1, Yg) =

0.54/./(0.3) =
0.99
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Visual exploration

By dragging the handles you
can adjust the variance along
1 0.7 each dimension, as well as the

Covariance matrix (X)

correlation between the two
random variables. Violet
values show a high probability
inside the distribution.

0.7 2

Taken from: “Visual exploration of Gaussian processes” by J Gétler, R Kehlbeck and O Deussen (2019)
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https://distill.pub/2019/visual-exploration-gaussian-processes/

Visualisation in more than two dimensions

Hard to visualise in dimensions > 2, so stack points next to each other.
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Visualisation in more than two dimensions

Hard to visualise in dimensions > 2, so stack points next to each other.

So for 2d instead of we have
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Consider d =5
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Each line is one sample.
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Consider d = 50

0 0.99 1 0.99 098 097
0 0.98 0.99 1 0.99 0.98
e s_| 097 09 09 1 0.99

Each line is one sample.
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Consider d = 50

0 0.99 1 0.99 0.98 0.97
0 0.98 0.99 1 0.99 0.98
w= Y = 0.97 0.98 0.99 1 0.99

index

Each line is one sample.
We can think of Gaussian processes as an infinite dimensional distribution
over functions - all we need to do is change the indexing
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Gaussian processes

0 A stochastic process is a collection of random variables indexed by
some variable x € X

y={y(x):xex}
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Gaussian processes
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Gaussian processes

0 A stochastic process is a collection of random variables indexed by
some variable x € X

y={y(x):x e x}
o Usually y(x) € Rand X C R" - think of y as a function of x.

o If |X| = o0, y is an infinite dimensional process.
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Gaussian processes

0 Thankfully, to understand the law of y we only need consider the finite
dimensional distributions (FDDs), i.e., for all x1,...,x, and forall n € N

P(y()ﬁ) < C1,...7y(Xn) < Cn)

as these uniquely determine the law of y.
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Gaussian processes

0 Thankfully, to understand the law of y we only need consider the finite
dimensional distributions (FDDs), i.e., for all x1,...,x, and forall n € N

P(y(X1) < C1,...7y(Xn) < Cn)

as these uniquely determine the law of y.

0 A Gaussian process is a stochastic process with Gaussian FDDs, i.e.,

(Y (x1)s- -5 y(Xn)) ~ Nalp, ¥)

Write y(-) ~ GP to denote that the functiony is a GP.
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Mean and covariance function

a To fully specify the law of a Gaussian distribution we only need the
mean and variance.

Y ~ N(p, X)
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Mean and covariance function

a To fully specify the law of a Gaussian distribution we only need the
mean and variance.

Y ~ N(u,¥)

0 To fully specify the law of a Gaussian process, we need to specify
mean and covariance functions.
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Mean and covariance function

a To fully specify the law of a Gaussian distribution we only need the
mean and variance.

Y ~ N(u,¥)

0 To fully specify the law of a Gaussian process, we need to specify
mean and covariance functions.

y() ~ GP(m(-), k(-,-))

where

E(y(x)) = m(x)
Cov(y(x), y(x)) = k(x,x)
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Specifying the mean function

0 We can use any mean function we want m(x) = E(y(x))
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Specifying the mean function

0 We can use any mean function we want m(x) = E(y(x))

o Most popular choices are m(x) = 0 or m(x) = const for all x, or
m(x) =BT x.
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Specifying the mean function

0 We can use any mean function we want m(x) = E(y(x))

o Most popular choices are m(x) = 0 or m(x) = const for all x, or
m(x) =BT x.

0 Using a neural network is another popular choice.
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Covariance functions

0 We usually use a covariance function that is a function of the
indexes/locations

k(x,x') = Cov(y(x), y(x)),
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Covariance functions

0 We usually use a covariance function that is a function of the
indexes/locations

k(x,x') = Cov(y(x), y(x)),

k must be a positive semi-definite function, i.e., lead to valid covariance
matrices.

a  Given locations xi, ..., X,, the n x n Gram matrix K with Kj = k(x;, X;)
must be a positive semi-definite matrix.

0 A matrix K is positive semi-definite if for any vector u, u" Ku > 0.
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Covariance functions

0 We often assume k is a function of only the distance between locations

Cov(y(x), y(x)) = k(x = x)

which results in a stationary processes.
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Covariance functions

0 We often assume k is a function of only the distance between locations

Cov(y(x), y(x)) = k(x = x)

which results in a stationary processes.

o If Cov(y(x), y(x")) = k(]|x — x’||) the covariance function is said to be
isotropic.

0 The covariance function determines the nature of the GP.

0 k determines the hypothesis space/space of functions
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How do we draw samples from a GP?

0 Given the mean function and covariance function for a GP, we can draw
samples using a multivariate Gaussian distribution.

o To sample from the multivariate Gaussian distribution, we need a mean
vector and a covariance matrix.

0 The mean vector is obtained from the mean function.

0 The covariance matrix is obtained from the covariance function.
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Sampling from a GP

0 RBF/Squared-exponential/exponentiated quadratic

, x—x")?
K(x,x") = srexp <—(2€2)> ,

where s; is the variance parameter and ¢ the length-scale parameter.

o Ifss=1and /=1, we get

k(xx) =esp (0 - XF)

0 Say we have a vector of x values, like

X = [X17X27"' 7Xn]T~

o These are the indexes of the stochastic process.

26/76



Sampling from a GP

o We now compute the covariance matrix

k(x1,x1) Kk(x1,x2) -+ k(x1,Xn)

k(xe, x1) k(x2, %) -+ K(x2,Xn)
Kxx = )

K(Xn, X1) K(Xp,X2) -+ K(Xn, Xn)

0 We assume the mean function is constant and equal to zero, m(x) = 0.

0 To generate functions from this GP, we will then sample from

0 K(x1,x1) K(x1,x2) -+  Kk(x1,Xpn)

0 k(xo,x1) K(Xe,x2) -+ k(x2,Xp)
y~Nol |, : : : :

0 K(Xn,Xx1) K(Xp,X2) -+ K(Xn, Xn)

0 What we plotis x and y.
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Examples

RBF/Squared-exponential/exponentiated quadratic
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Examples

RBF/Squared-exponential/exponentiated quadratic

, 1(x—x')?
k(X,X):eXp <—§%)
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Examples
RBF/Squared-exponential/exponentiated quadratic

k(x,x") = exp <_%(X;_2X')2)
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Examples

RBF/Squared-exponential/exponentiated quadratic
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Examples

Matern covariance function

1—v v RV v v o
k(x,x') = sfzr(y) (ﬁ(; X )> K, (W)
k(x,x') = Sf<1 + W) exp (— \/§|X€_X/|>, v= g,

where K, (-) is the modified Bessel function of the second kind.
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Examples

Matern 3/2

k(x,x") ~ (1 +|x — x'|)exp (—=|x — x'|)

X

e =
o=
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SO
Y

2

J

Ve
A
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Examples

Many other covariance functions: constant, linear, polynomial, exponential,
etc.
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Coding example

sampling_GP.py
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Building new kernels (I)

Given two valid kernels ki (x,x’) and kx(x, x’), the following new kernels are
also valid kernels

k(x,x') = cki(x,x)

k(x,x") = f(x)ki (%, x")F(X)

k(x,x") = q(ki(x,x"))

k(x,x") = exp (ki (X, X))

k(x,X') = ki(X,X') + ko(x, X'),
)i

where ¢ > 0 is a constant, f(-) is any function, and g(-) is a polynomial with

non-negative coefficients.
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Building new kernels (ll)

Given two valid kernels ki1 (x,x’) and kx(x, x’), the following new kernels are
also valid kernels

k(x,X") = ki (X, X" )k2(X, X")
k(x,x') = ka(¢(x), p(x'))
k(x,x') = x" Ax

k(x,Xx") = ka(Xa, X3) + Kb(Xp, Xp)
K(X,X') = ka(Xa, X3)ko(Xp, Xs),

where ¢(-) maps as R? — RN, ks(-, ) is a valid kernel in RV, Ais a
symmetric positive semidefinite matrix, x; and x;, are vectors such that
x=[x).x,]", and ka(-,-) and kp(-, -) are valid kernels over their respective
spaces.
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Visual exploration: covariance matrices

RBF KERNEL PERIODIC LINEAR

a? exp (——r“t;ll./uz) a? exp (_Zsin"’(nl\_t—g"/P)) ol 4o (t—c)t' —¢)
e,

Varianceo = 0.8 Varianceo = 0.8

Varianceo = 0.3
o— aoa—— ol
Length | =08 Length | =08 Variance o_b = 0.8
L] @) oass——
Periodicity p = 0.5 Offset ¢ =0
-l L)

This figure shows various kernels that can be used with Gaussian processes. Each kernel has different parameters,
which can be changed by adjusting the according sliders. When grabbing a slider, information on how the current
parameter influences the kernel will be shown on the right.

Taken from: “Visual exploration of Gaussian processes” by J Gétler, R Kehlbeck and O Deussen (2019)

[m] = =



https://distill.pub/2019/visual-exploration-gaussian-processes/

Visual exploration: samples from GPs

@® RBF O Periodic O Linear

Varianceo = 0.8
oanss——)
Length | =08
el

Clicking on the graph results in continuous samples drawn from a Gaussian process using the selected kernel. After

each draw, the previous sample fades into the background. Over time, it is possible to see that functions are
distributed normally around the mean .

Taken from: “Visual exploration of Gaussian processes” by J Gétler, R Kehlbeck and O Deussen (2019)

Dac
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Why use Gaussian processes?

o Why would we want to use this very restricted class of model?

0 Gaussian distributions have several properties that make them easy
to work with: sums of Gaussians are Gaussian, and marginal
distributions of multivariate Gaussians are still Gaussian.
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Conditional distributions are still Gaussian

Suppose

where
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Conditional distributions are still Gaussian

Suppose
(Y

v=(yp )~ M)
where

A Y1 X1z

= 2: =
: (1“2) <221 Zzz)

Then

Yo|Yi=yi~N (Mz + Y1 (1 — 1), oo — 221Zﬂ1z12>
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Conditional updates of Gaussian processes
Suppose f is a Gaussian process, then
f(X1)7 RN f(Xn)v f(X) ~ Nl'l+1 (07 z)

where
K(x1,x1) ... k(x1,%7) | k(xq1,x)

k(xn:,x1) k(x,,:,x,,) k(x,.,, X)
k(x,x1) ... k(x,xa) | k(x,x)
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Conditional updates of Gaussian processes
Suppose f is a Gaussian process, then

£(x1), ..., F(xn), F(X) ~ Noy1(0, ¥)

where

K(x1,x1) ... Kk(x1,Xn) k(x1,x)

Y = : :
kK(Xxn, X1) ... k x,,,x,7 k( x,,,
k(x,x1) ... K(x,xp) kxx)
_ Kxx
kx(x) T

where X = {x1,...,Xa}, [Kxx]j = k(X;, X;) is the Gram/kernel matrix, and

[kx (X)) = k(x;, x)
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Conditional updates of Gaussian processes

Then _
fOOIf(xq), .., f(xn) ~ N(m(x), k(x))
where
m(x) = kx(x) " Ky 1
with

f= (f(X1)7"'7f(Xn))T
kx(X)T = (k(x,x1) k(x,x2) ... k(x,xp))€R™"

and
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Conditional updates of Gaussian processes

Then _

fO)f(x1),. .., f(xn) ~ N(m(x), k(x))
where

M(x) = kx(X) " Kyy f

with

f=(f(x1),..., f(xn)) "

kx(X)T = (k(x,x1) k(x,x2) ... k(x,xp))€R™"

and

k(x) = k(x,x) — kx(x) " Kyy kx(x)
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Conditional updates of Gaussian processes

Then _

fOO)f(x1), ..., f(xn) ~ N(m(x), k(x))
where

M(x) = kx(X) " Kyy f

with

f=(f(x1),...,f(xn))"

kx(X)T = (k(x,x1) k(x,x2) ... k(x,xp))€R™"

and

k(x) = k(x,x) — kx(x) " Kyy kx(x)

What this means in practice is that if we know f, we can use it to predict f(x)
as a Gaussian distribution with mean m(x) and variance k(x).
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Interpolation

= Mean
x Data

10 Confidence

0.5

0.0

-1.0

0.0 0.5 1.0 1.5 2.0

Solidline  M(x) = ky (X)Kyy f

Shaded region  m(x) = 1.964/k(x)
k(x) = k(x, x) — kg (X) Ky kx(x)
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Noisy observations - Regression

0 In practice, we don’t usually observe f(x) directly.

0 If we observe
Vi= f(X/) + €,
where e ~ N(0, 02) then

y1a"'7yf77f(x) ~ Nn+1(oaz)

where
KXX+0'2I k(X27X)

k(x;,,x)
k(x,x1)  k(x,x2) ... k(x,xn) | k(x,x)
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Noisy observations - Regression

0 In this way

where

m(x) = kx(x)" (Kxx + o)y
k(x) = k(x,x) = kx(x) " (Kxx + %)~ "kx(x)
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Noise standard deviation o = 0.1

= Mean
x Data
1.0 Confidence

0.5

0.0

-1.0

0.0 0.5 1.0 1.5 2:0

Solidline  M(x) = kx(x) " Kxy

Shaded region  m(x) & 1.964/k(x)
k(x) = k(x, x) — kx(x) T (K + 021)kx(x)
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Noise standard deviation o = 0.025

= Mean
x Data

1.0 Confidence

0.5

0.0

-0.5

-1.0

0.0 0.5 1.0 1.5 2:0

Solidline  M(x) = kx(x) " Kxy

Shaded region  m(x) & 1.964/k(x)
k(x) = k(x, x) — kx(x) T (K + 021)kx(x)
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Visual exploration

Taken from: “Visual exploration of Gaussian processes” by J Gétler, R Kehlbeck and O Deussen (2019)
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Coding example

prediction_GPs.py
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Practical aspects

o If we knew the covariance function we should use, GPs work great!
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Practical aspects

o If we knew the covariance function we should use, GPs work great!

0 Unfortunately, we don’t usually know this.
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Practical aspects

o If we knew the covariance function we should use, GPs work great!
0 Unfortunately, we don’t usually know this.

o We pick a covariance function from a small set, based usually on
differentiability considerations.
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Practical aspects

0 Possibly try a few (plus combinations of a few) covariance functions,
and attempt to make a good choice using some sort of empirical
evaluation.
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Practical aspects

0 Possibly try a few (plus combinations of a few) covariance functions,
and attempt to make a good choice using some sort of empirical
evaluation.

a Covariance functions often contain hyper-parameters. E.g RBF kernel

1(x—x')?
k(x,x') = sZ exp (_2(62))

Estimate these using your favourite statistical procedure (maximum
likelihood, cross-validation, Bayes, expert judgement etc)

52/76



Marginal likelihood

0 A popular way to estimate the hyperparameters of the covariance
function is through maximizing the logarithm of the marginal likelihood.

53/76



Marginal likelihood

0 A popular way to estimate the hyperparameters of the covariance
function is through maximizing the logarithm of the marginal likelihood.

o The logarithm of the marginal likelihood is given as

1 1 n
log p(y|x) = —EyT(KXX + o2y - 5 log [Kx + ol — 5 log 2.
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Marginal likelihood

Qa

A popular way to estimate the hyperparameters of the covariance
function is through maximizing the logarithm of the marginal likelihood.

The logarithm of the marginal likelihood is given as

1
log p(y|x) = —EyT(Kxx + 027y — Iog |Kxx + 021 — = |og27r

If we know x and y, the only unknowns in log p(y|x) are the kernel
hyperparameters, e.g. sr and ¢, and the parameter o.

We can then optimise log p(y|x) wrt these parameters using a
gradient-descent like procedure.

53/76



Log-marginal likelihood surface (o and /)

546
LML = 108,577 B e e e e e e LML = -1.289
= L
= 2
7 F= 2
. <)
. . 5]
o > =J

LML = -1.221 5 . LML = -1.232

. S
5 PP SR T T N S N S S G S T G O oy -
PR SR S S N S T T S S S oy
B T E—r 01 T — g B S
s o s 0o o1 noise 27 - 0 s

FIGURE 5: Training data (orange discs), log-marginal likelihood contour and three possible GP fits (left-bottom and right-hand panels) corresponding to the three local optima at

(ons1) = (0.02,0.36), (0.97,5.80), (0.76,1.13), respectively. All three hyperparameter settings and, therefore, the corresponding GP models make sense: While the bottom left GP model explains

the (noisy) data well, the top right GP fit explains the data by a near-linear function (long lengthscale) and an high noise level. The global optimum (bottom right) has a slightly better log-marginal

likelihood value and is a compromise between the other two other local optima, discovering the latent sinusoidal wave that generated the data while accounting for a fairly high level of measurement
ise. ©

noise.

Taken from: “A Practical Guide to Gaussian Processes” by M. Deinsenroth, Y. Luo and M. van der Wilk (2013)



https://infallible-thompson-49de36.netlify.app/

Computational cost

0 One difficulty with GPs is the computational cost of training them:
O(n®) (and O(n?) memory).
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Computational cost

0 One difficulty with GPs is the computational cost of training them:
O(n®) (and O(n?) memory).

o They work our of the box for nin the order of a few thousands.

o There are many ways to side-step this cost: inducing inputs, efficient
matrix-vector multiplications, random features, etc.

0 These days we can use GPs for n in the order of tens of millions.
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Weight-space view of GPs

o We way we introduced GPs before is known as the function-space view.

0 Another way to introduce GPs is through Bayesian linear regression,
the weight-space view.
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Linear model (1)

0 Say we have a training set D = {(x;,y;)|i = 1,...,n}.

2 x;eRP y eR.

2 We have a design matrix X € R"<P, and an output vector y,
X{

i
X=1%, y= v - '

X,
0 Therefore D = (X,y).
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Linear model (Il)
0 The standard linear model assumes
fX)=w'x, y="Ff(x)+e
where w € RP is a parameter vector, y is the corresponding
observation for x, and ¢ ~ N(0, 02).

0 We assume iid observations.

a The likelihood for this model, p(y|X, w), follows as

n

T (yi —w/x)?
X,w) = i|Xi, W) = — !
ptyow) = Lot w) =] ew |-V

i=1

1 1
= W exp (—20%|y - Xw|2) =N (y|Xw, U%I) )
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Linear model (ll1)
0 In Bayesian linear regression, we specify a prior distribution over w,
for example,
w~N(0,X),

where X, is a covariance matrix.

o Bayes theorem,

likelihood x prior
marginal likelihood’

pwly.x) = VTR

posterior =

where

mwm=/ﬁmemme
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Linear model (1V)

0 For the linear model,
1
p(wly,X) = N(w| A "Xy, A" ).
On
W

where A = 07, 2XT X + Z;1 is a covariance matrix.

a The predictive distribution for f. = f(x.) at x. is given as
p(Ex..X.y) = [ Pl x..w)p(wly. X)aw.

—N(f*

lxIA*‘XTy, x A 'x, |.
oh
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Linear model (V)
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Coding example

prior_posterior_bayesian_linear_regression.py
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Pen and paper exercise (I)

Given a marginal Gaussian distribution for x, and a conditional Gaussian
distribution for y given x

p(x) = N(X|p, A7)
p(y|x) = N(y|Ax +b, L),

the marginal distribution for y, and the conditional distribution of x given y
are given as

p(y) = N(y|Ap+b,L~" + AATTAT)
p(xly) = N(X|Z{ATL(y — b) + Au}, ),
where
T=(A+ATLA)".

(Proof: pages 90-93, Bishop, C. (2006)).
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Pen and paper exercise (ll)

Using the properties of the Gaussian distributions in the previous slide,
o find the mean and covariance matrix for p(wly, X).

0 find the mean and covariance for p(f,|X., X,y).
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Feature space (l)

0 The Bayesian linear model is limited since it is linear in both x and w.

0 We could use basis functions to introduce non-linearity in the model.
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Feature space (ll)

0 We introduce the function ¢(x) : R — RN,

2 The new design matrix is ®(X) € R™N,
B(x1)"
o(x) = |20
d(xn) "
2 The model is now f(x) = w ' ¢(x), with w € RV,

o The equations remain the same simply changing X for ®(X).
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Feature space (lll)

a The predictive distribution follows as

Pt x..X.y) =7 (1

1
120() ATy 6(x) A T9(x.)).

n
where ® = ®(X), and A = o,°0 T ® + X .
a Inverting A is expensive for a large value of N.

Q It can be shown that

P I X,y) = N (1|6 Z,0 T (K + o20) 7y,

1o, — 6] T, 0 (K+021) 0T, ).

where ¢(x.) = ¢,, y K= 0Z,0 ",

0 The feature space appears in the forms ¢, X, ", ¢ X,¢,, and
ox, 0.
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Kernel trick
0o Entries in the matrices appearing before can be written as
o(X) T Zp(X).

Q  The function k(x,x’) = ¢(x) "Z,¢(X’), is the kernel or covariance
function we introduced in the function space view of GPs.

O K(GX) = ¢(x) TEpe(X) = 9(X) - (X), with p(x) = T/ Zp(x').

0 When a model only depends on inner products between vectors in the
input space, those inners products can be replaced by k(x,x’).
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Going back to GPs

o For a GP, we specify the mean, m(x), and the covariance function,
k(x,x")

m(x) = E[f(x)],
k(x,x') = E[(f(x) — m(x))(f(x) — m(x"))].

2 In Bayesian linear regression, we have f(x) = w ' ¢(x) with prior
w~ N(0,X),).
0 If we compute E[f(x)] and E[f(x)f(x')], we get

E[f(x)] = ¢(x) "E[w] =0,
E[f(x)f(x')] = ¢(x) "Eww J(x') = ¢(x) " Zpep(x).

0 Meaning that the Bayesian linear regression model is equivalent to a
GP prior with mean zero and covariance k(x,X’) = ¢(x) " Zppp(X’).
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Book

Carl Edward Rasmussen and Christopher K. L. Williams
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Probabilistic numerics

PROBABILISTIC
NUMER|CS

PHILIPP HENNIG, MICHAEL A. 0SBORNE
AND HANS P. KERSTING
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Summary

0 GPs are ubiquitous in statistics/ML.

0 Popularity stems from

— Naturalness of the framework
— Mathematical tractability
— Empirical success
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