

Constraints on GP Predictions

Not so normal after all

dr. Ivan De Boi

8 September 2025

Camera system development

Automation Prototype development

Camera integration

Advanced camera technologies

- UV → LWIR
- · Multi- and hyperspectral
- 3D imaging
- · Variable focus, zoom
- Image intensifiers
- · Polarization camera's

Camera calibration and fusion

Image processing and camera simulation

learning

Camera simulation

The posterior is a GP!!!

The posterior is a GP!!!

Problem locally: A prediction at \mathbf{x}_* is a Gaussian distribution, ranging from $-\infty$ to $+\infty$. What about velocities, weights, heights, concentrations in %, ... ?

The posterior is a GP!!!

Problem locally: A prediction at \mathbf{x}_* is a Gaussian distribution, ranging from $-\infty$ to $+\infty$. What about velocities, weights, heights, concentrations in %, ... ?

Problem globally: Kernel determines shape of the functions. Samples from posterior don't automatically obey monotonicity, convexity, boundary conditions, differential equations (heat, forces, ...), ...

The posterior is a GP!!!

Problem locally: A prediction at \mathbf{x}_* is a Gaussian distribution, ranging from $-\infty$ to $+\infty$. What about velocities, weights, heights, concentrations in %, ... ?

Problem globally: Kernel determines shape of the functions. Samples from posterior don't automatically obey monotonicity, convexity, boundary conditions, differential equations (heat, forces, ...), ...

Problem multi-output: Relationships between outputs are not built-in. What about zero curl or divergence in a vector field? What about unit norm vectors?

The posterior is a GP!!!

Problem locally: A prediction at \mathbf{x}_* is a Gaussian distribution, ranging from $-\infty$ to $+\infty$. What about velocities, weights, heights, concentrations in %, ... ?

Problem globally: Kernel determines shape of the functions. Samples from posterior don't automatically obey monotonicity, convexity, boundary conditions, differential equations (heat, forces, ...), ...

Problem multi-output: Relationships between outputs are not built-in. What about zero curl or divergence in a vector field? What about unit norm vectors?

What about your data? **Does it matter**?

2. Problem Locally - Bound Constraints

Bound Constraints

$$a \le f(x) \le b$$

Bound Constraints

$$0 \le f(x) \le 100$$

Bound Constraints

$$0 \le f(x) \le 100$$

Bound Constraints - Warping

$$0 \le f(x) \le 100$$
, $u_i = \Phi^{-1}(y_i)$, $[0,1] \to [-\infty, +\infty]$

Bound Constraints - Warping

train GP on $\{x_i, u_i\}$, warp prediction back via Φ

Bound Constraints - Warping

$$0 \le f(x) \le 100$$

Bound Constraints - Likelihood Tinkering

$$p(\mathbf{f}|X, y, \theta) = \frac{p(y|X, \mathbf{f}, \theta)p(\mathbf{f}|X, \theta)}{p(y|X, \theta)}$$

3. Problem Globally - Differential Equation Constraints

 $\mathcal{L}u = f$, with data on u and f, and \mathcal{L} linear partial differential operator

$$u \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$$

$$\mathcal{L}u \sim \mathcal{GP}(\mathcal{L}_{\mathbf{x}}m(\mathbf{x}), \mathcal{L}_{\mathbf{x}}\mathcal{L}_{\mathbf{x}'}k(\mathbf{x}, \mathbf{x}'))$$

$$\begin{bmatrix} u(X_1) \\ f(X_2) \end{bmatrix} \sim \mathcal{GP}\left(\begin{bmatrix} m(X_1) \\ \mathcal{L}m(X_2) \end{bmatrix}, \begin{bmatrix} K_{11}(X_1, X_1) & K_{12}(X_1, X_2) \\ K_{21}(X_2, X_1) & K_{22}(X_2, X_2) \end{bmatrix}\right)$$

$$k\left(\left[\begin{array}{c} \mathbf{x}_1 \\ \mathbf{x}_2 \end{array}\right], \left[\begin{array}{c} \mathbf{x}_1' \\ \mathbf{x}_2' \end{array}\right]\right) = \left[\begin{array}{cc} k\left(\mathbf{x}_1, \mathbf{x}_1'\right) & \mathcal{L}_{\mathbf{x}'} k\left(\mathbf{x}_1, \mathbf{x}_2'\right) \\ \mathcal{L}_{\mathbf{x}} k\left(\mathbf{x}_2, \mathbf{x}_1'\right) & \mathcal{L}_{\mathbf{x}} \mathcal{L}_{\mathbf{x}'} k\left(\mathbf{x}_2, \mathbf{x}_2'\right) \end{array}\right] = \left[\begin{array}{cc} \mathcal{K}_{11} & \mathcal{K}_{12} \\ \mathcal{K}_{21} & \mathcal{K}_{22} \end{array}\right]$$

Kick a ball: height $u(t) = at - \frac{g}{2}t^2$ for some unknown a. We observe u_i .

Kick a ball: height $u(t) = at - \frac{g}{2}t^2$ for some unknown a. We observe u_i and know $f(t) = \frac{d^2u}{dt^2} = -g = f_i$.

Kick a ball: height $u(t) = at - \frac{g}{2}t^2$ for some unknown a.

We observe u_i and know $f(t) = \frac{d^2u}{dt^2} = -g = f_i$.

Monotonicity Constraint

$$\frac{df}{dt} > 0$$

Convexity Constraint

$$\frac{d^2f}{dt^2} > 0$$

Concavity Constraint

$$\frac{d^2f}{dt^2} < 0$$

4. Problem Multi-Output - e.g. Predict Lines in 3D

Galvanometric Laser Scanner

Galvanometric Laser Scanner

$$(\alpha,\beta)\to L$$

Predator

Hyperboloid

Hyperboloids

Hyperboloid Bridge

Coordinates

53°29'01"N 2°14'36"W
Corporation Street

Crosses Locale

Manchester, England

Plücker Coordinates

Plücker Coordinates

L given by moment

m and direction $\mathbf{d}: (l_1: l_2: l_3: l_4: l_5: l_6) \in \mathbb{P}^5$ $\mathbf{m} \perp \mathbf{d} \Rightarrow l_1 l_4 + l_2 l_5 + l_3 l_6 = 0$ (Grassmann-Plücker relationship)

Plücker Coordinates

L given by moment \mathbf{m} and direction $\mathbf{d}: (I_1:I_2:I_3:I_4:I_5:I_6) \in \mathbb{P}^5$ $\mathbf{m} \perp \mathbf{d} \Rightarrow I_1I_4 + I_2I_5 + I_3I_6 = 0$ (Grassmann-Plücker relationship) $L \in M_2^4$ (Klein Quadric) $\subset \mathbb{P}^5$

Parallel GPs screw this up

$$(\alpha,\beta) \stackrel{GP_1}{\rightarrow} l_1$$

$$(\alpha,\beta) \stackrel{GP_2}{\rightarrow} I_2$$

$$(\alpha,\beta) \stackrel{GP_3}{\rightarrow} I_3$$

$$(\alpha,\beta)\stackrel{\mathit{GP}_4}{\rightarrow} \mathit{I}_4$$

$$(\alpha,\beta) \stackrel{GP_5}{\rightarrow} I_5$$

$$(\alpha,\beta) \stackrel{GP_6}{\rightarrow} I_6$$

Parallel GPs screw this up

$$(\alpha, \beta) \stackrel{GP_1}{\rightarrow} l_1$$

$$(\alpha, \beta) \stackrel{GP_2}{\rightarrow} l_2$$

$$(\alpha, \beta) \stackrel{GP_3}{\rightarrow} l_3$$

$$(\alpha, \beta) \stackrel{GP_4}{\rightarrow} l_4$$

$$(\alpha, \beta) \stackrel{GP_5}{\rightarrow} l_5$$

$$(\alpha, \beta) \stackrel{GP_5}{\rightarrow} l_6$$

$$(\alpha, \beta) \stackrel{GP_6}{\rightarrow} l_6 =?$$

Parallel GPs screw this up

$$(\alpha,\beta) \overset{GP_1}{\rightarrow} I_1$$

$$(\alpha,\beta) \overset{GP_2}{\rightarrow} I_2$$

$$(\alpha,\beta) \overset{GP_3}{\rightarrow} I_3$$

$$(\alpha,\beta) \overset{GP_4}{\rightarrow} I_4$$

$$(\alpha,\beta) \overset{GP_5}{\rightarrow} I_5$$

$$(\alpha,\beta) \overset{GP_5}{\rightarrow} I_6$$

$$(\alpha,\beta) \overset{GP_6}{\rightarrow} I_6$$

$$I_1I_4 + I_2I_5 + I_3I_6 =?$$

$$I_1I_4 + I_2I_5 + I_3I_6 \neq 0 \Rightarrow (I_1:I_2:I_3:I_4:I_5:I_6) \text{ is a screw, } \not\in M_2^4$$

$$\text{NOT a line in 3D!!!}$$

Constraints on predictions for *L*

$$l_1l_1 + l_2l_2 + l_3l_3 = 1$$

 $l_1l_4 + l_2l_5 + l_3l_6 = 0$

5. Unit Norm: $l_1l_1 + l_2l_2 + l_3l_3 = 1$

Input (α, β)

Periodic kernel in general:

$$k(\mathbf{x}, \mathbf{x}') = \sigma_f^2 \exp\left(-\frac{2}{\ell^2} \sin^2\left(\pi \frac{|\mathbf{x} - \mathbf{x}'|}{p}\right)\right)$$

Periodic kernel for $\mathbf{x} = (\alpha, \beta)$, ARD and period 2π :

$$k_{PER}(\mathbf{x}, \mathbf{x}') = \sigma_f^2 \exp\left(-\frac{2}{l_{\alpha}^2} \sin^2\left(\frac{|\alpha - \alpha'|}{2}\right)\right) \exp\left(-\frac{2}{l_{\beta}^2} \sin^2\left(\frac{|\beta - \beta'|}{2}\right)\right)$$

 $(\alpha, \beta) \to \mathbf{d} \in \mathbb{R}^3$

 $(\alpha, \beta) \to \mathbf{d} \in \mathbb{R}^3$, constraint: $\|\mathbf{d}\| = 1, \mathbf{d} \in \mathbb{S}^2$

$$(\alpha, \beta) \to \mathbf{d} \in \mathbb{R}^3$$
, constraint: $\|\mathbf{d}\| = 1, \mathbf{d} \in \mathbb{S}^2$

New kernel for $\mathbf{x} = (\alpha, \beta, \dim)$, with $\dim \in \{1, 2, 3\}$:

$$k_{PER3D}(\mathbf{x}, \mathbf{x}') = \begin{cases} k_{PER}([\alpha, \beta], [\alpha', \beta']), & \text{for dim} = \dim' \\ 0 & \text{for dim} \neq \dim' \end{cases}$$

$$(\alpha, \beta) \to \mathbf{d} \in \mathbb{R}^3$$
, constraint: $\|\mathbf{d}\| = 1, \mathbf{d} \in \mathbb{S}^2$

New kernel for $\mathbf{x} = (\alpha, \beta, \dim)$, with $\dim \in \mathbb{1}, 2, 3$:

$$k_{PER3D}(\mathbf{x}, \mathbf{x}') = \begin{cases} k_{PER}([\alpha, \beta], [\alpha', \beta']), & \text{for dim} = \dim' \\ 0 & \text{for dim} \neq \dim' \end{cases}$$

$$f_1: x = \cos(\alpha)\sin(\beta),$$

$$f_2: y = \sin(\alpha)\sin(\beta),$$

$$f_3: z = \cos(\beta)$$

$$(\alpha, \beta) \to \mathbf{d} \in \mathbb{R}^3$$
, constraint: $\|\mathbf{d}\| = 1, \mathbf{d} \in \mathbb{S}^2$

New kernel for $\mathbf{x} = (\alpha, \beta, \dim)$, with dim $\in 1, 2, 3$:

$$k_{PER3D}(\mathbf{x}, \mathbf{x}') = \begin{cases} k_{PER}([\alpha, \beta], [\alpha', \beta']), & \text{for dim} = \dim' \\ 0 & \text{for dim} \neq \dim' \end{cases}$$

$$f_1: x = \cos(\alpha)\sin(\beta),$$

$$f_2: y = \sin(\alpha)\sin(\beta),$$

$$f_3: z = \cos(\beta)$$

$$f_1 - \frac{\partial f_2}{\partial \alpha} + \frac{\partial f_3}{\partial \alpha} = 0$$

$$f_1 - \frac{\partial f_2}{\partial \alpha} + \frac{\partial f_3}{\partial \alpha} = 0$$

$$f_1 - \frac{\partial f_2}{\partial \alpha} + \frac{\partial f_3}{\partial \alpha} = 0$$
, $\mathcal{F}_{\mathbf{x}}[\mathbf{f}(\mathbf{x})] = \mathbf{0}$

$$f_1 - \frac{\partial f_2}{\partial \alpha} + \frac{\partial f_3}{\partial \alpha} = 0$$
, $\mathcal{F}_{\mathbf{x}}[\mathbf{f}(\mathbf{x})] = \mathbf{0}$, $\mathcal{G}_{\mathbf{x}}[\mathbf{g}(\mathbf{x})] = \mathbf{f}(\mathbf{x})$

$$f_1 - \frac{\partial f_2}{\partial \alpha} + \frac{\partial f_3}{\partial \alpha} = 0$$
, $\mathcal{F}_{\mathbf{x}}[\mathbf{f}(\mathbf{x})] = \mathbf{0}$, $\mathcal{G}_{\mathbf{x}}[\mathbf{g}(\mathbf{x})] = \mathbf{f}(\mathbf{x})$, $\mathcal{F}_{\mathbf{x}}[\mathcal{G}_{\mathbf{x}}[\mathbf{g}(\mathbf{x})]] = \mathbf{0}$,

$$f_1 - \frac{\partial f_2}{\partial \alpha} + \frac{\partial f_3}{\partial \alpha} = 0$$
, $\mathcal{F}_{\mathbf{x}}[\mathbf{f}(\mathbf{x})] = \mathbf{0}$, $\mathcal{G}_{\mathbf{x}}[\mathbf{g}(\mathbf{x})] = \mathbf{f}(\mathbf{x})$, $\mathcal{F}_{\mathbf{x}}[\mathcal{G}_{\mathbf{x}}[\mathbf{g}(\mathbf{x})]] = \mathbf{0}$,

$$\mathbf{g}(\mathbf{x}) \sim \mathcal{GP}(\mu_{\mathbf{g}}, k_{\mathbf{g}}), \quad \mathbf{f}(\mathbf{x}) = \mathcal{G}_{\mathbf{x}}\mathbf{g}(\mathbf{x}) \sim \mathcal{GP}(\mathcal{G}_{\mathbf{x}}\mu_{\mathbf{g}}, \mathcal{G}_{\mathbf{x}}k_{\mathbf{g}}\mathcal{G}_{\mathbf{x}'}^{\mathsf{T}})$$

$$f_1 - \frac{\partial f_2}{\partial \alpha} + \frac{\partial f_3}{\partial \alpha} = 0, \ \mathcal{F}_{\mathbf{x}}[\mathbf{f}(\mathbf{x})] = \mathbf{0}, \ \mathcal{G}_{\mathbf{x}}[\mathbf{g}(\mathbf{x})] = \mathbf{f}(\mathbf{x}), \ \mathcal{F}_{\mathbf{x}}[\mathcal{G}_{\mathbf{x}}[\mathbf{g}(\mathbf{x})]] = \mathbf{0},$$

$$\mathbf{g}(\mathbf{x}) \sim \mathcal{GP}(\mu_{\mathbf{g}}, k_{\mathbf{g}}), \quad \mathbf{f}(\mathbf{x}) = \mathcal{G}_{\mathbf{x}}\mathbf{g}(\mathbf{x}) \sim \mathcal{GP}(\mathcal{G}_{\mathbf{x}}\mu_{\mathbf{g}}, \mathcal{G}_{\mathbf{x}}k_{\mathbf{g}}\mathcal{G}_{\mathbf{x}'}^{\mathsf{T}})$$

$$egin{aligned} \mathcal{F}_{\mathbf{x}} &= \left[1, -rac{\partial}{\partial_{lpha}}, rac{\partial}{\partial_{lpha}}
ight] \ \mathcal{G}_{\mathbf{x}} &= \left[rac{\partial}{\partial_{lpha}}, 1, 0
ight]^{\mathcal{T}}, \quad \mathcal{F}_{\mathbf{x}}\mathcal{G}_{\mathbf{x}} &= \mathbf{0} \end{aligned}$$

$$\mathcal{G}_{\mathbf{x}}\mathcal{G}_{\mathbf{x}'}^{\mathsf{T}} = \begin{bmatrix} \frac{\partial^2}{\partial_{\alpha}\partial_{\alpha'}} & \frac{\partial}{\partial_{\alpha}} & \mathbf{0} \\ \frac{\partial}{\partial_{\alpha'}} & 1 & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}$$

$$\mathbf{x} = (\alpha, \beta, \dim)$$
, with dim $\in 1, 2, 3$

$$k_{PER3D}(\mathbf{x}, \mathbf{x}') = \begin{cases} k_{PER}([\alpha, \beta], [\alpha', \beta']), & \text{for dim} = \dim' \\ 0 & \text{for dim} \neq \dim' \end{cases}$$

$$\mathbf{x} = (\alpha, \beta, \dim)$$
, with dim $\in 1, 2, 3$

$$k_{PER3D}(\mathbf{x}, \mathbf{x}') = \begin{cases} k_{PER}([\alpha, \beta], [\alpha', \beta']), & \text{for dim} = \dim' \\ 0 & \text{for dim} \neq \dim' \end{cases}$$

$$k_{COM}(\mathbf{x}, \mathbf{x}') = \sigma_f^2 \exp\left(-\frac{2}{l_\alpha^2} \sin^2\left(\frac{\alpha - \alpha'}{2}\right)\right)$$

$$\cdot \exp\left(-\frac{2}{l_\beta^2} \sin^2\left(\frac{\beta - \beta'}{2}\right)\right)$$

$$\cdot \exp\left(-\frac{(\dim - \dim')^2}{\epsilon^2}\right)$$

$$k_{DIF} = \mathcal{G}_{\mathbf{x}} k_{COM} \mathcal{G}_{\mathbf{x}'}^T = \begin{bmatrix} A & B & 0 \\ C & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} k_{COM},$$

in which, with $\gamma = \frac{\alpha - \alpha'}{2}$ (for brevity in notation),

$$A = -\frac{\sin^2(\gamma)\cos^2(\gamma)}{l_{\alpha}^4} + \frac{\cos^2(\gamma)}{l_{\alpha}^2} - \frac{\sin^2(\gamma)}{l_{\alpha}^2},$$

$$B = -\frac{2}{l_{\alpha}^2}\sin(\gamma)\cos(\gamma),$$

$$C = \frac{2}{l_{\alpha}^2}\sin(\gamma)\cos(\gamma)$$

$$k_{DIF} = \mathcal{G}_{\mathbf{x}} k_{COM} \mathcal{G}_{\mathbf{x}'}^T = \begin{bmatrix} A & B & 0 \\ C & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} k_{COM},$$

in which, with $\gamma = \frac{\alpha - \alpha'}{2}$ (for brevity in notation),

$$\begin{split} A &= -\frac{\sin^2(\gamma)\cos^2(\gamma)}{l_{\alpha}^4} + \frac{\cos^2(\gamma)}{l_{\alpha}^2} - \frac{\sin^2(\gamma)}{l_{\alpha}^2}, \\ B &= -\frac{2}{l_{\alpha}^2}\sin(\gamma)\cos(\gamma), \\ C &= \frac{2}{l_{\alpha}^2}\sin(\gamma)\cos(\gamma) \end{split}$$

$$\begin{aligned} (\alpha,\beta) &\to \mathbf{d} \in \mathbb{S}^2 \\ \mathbf{f}(\mathbf{x}) &= \mathcal{G}_{\mathbf{x}} \mathbf{g}(\mathbf{x}) \sim \mathcal{GP}(\mathcal{G}_{\mathbf{x}} \mu_{\mathbf{g}}, \mathcal{G}_{\mathbf{x}} k_{\mathbf{g}} \mathcal{G}_{\mathbf{x}'}^T) \end{aligned}$$

6. Grassmann-Plücker Relationship: $l_1l_4 + l_2l_5 + l_3l_6 = 0$

Linear Constraint in general

A set of training examples $\{y_1, ..., y_n\}$ that satisfy the linear constraints $\mathbf{A}y_i = \mathbf{b}$ will result in a GP for which the mean prediction $\mu(\mathbf{x}_*)$ also satisfies $\mathbf{A}\mu(\mathbf{x}_*) = \mathbf{b}$.

Linear Constraint in general

A set of training examples $\{y_1, ..., y_n\}$ that satisfy the linear constraints $\mathbf{A}y_i = \mathbf{b}$ will result in a GP for which the mean prediction $\mu(\mathbf{x}_*)$ also satisfies $\mathbf{A}\mu(\mathbf{x}_*) = \mathbf{b}$.

$$\mu(\mathbf{x}_*) \ = \ \mathbf{m}_0(\mathbf{x}_*) + \mathbf{K}(\mathbf{x}_*, \mathbf{X}) \left[\mathbf{K}(\mathbf{X}, \mathbf{X}) + \sigma_n^2 \mathbf{I} \right]^{-1} \left(\mathbf{y} - \mathbf{m}(\mathbf{x}) \right)$$

 $\mathbf{m} \perp \mathbf{d} \Rightarrow l_1 l_4 + l_2 l_5 + l_3 l_6 = 0$, quadratic in l_i , but linear in $l_i l_j$

 $\mathbf{m} \perp \mathbf{d} \Rightarrow l_1 l_4 + l_2 l_5 + l_3 l_6 = 0$, quadratic in l_i , but linear in $l_i l_i$

Let
$$\mathbf{z} = (l_1, l_2, l_3, l_4, l_5, l_6)$$
 and $\mathbf{Q} = \mathbf{z}^T \mathbf{z} = \begin{bmatrix} l_2 l_1 & l_2 l_2 \\ l_3 l_1 & l_3 l_2 \\ l_4 l_1 & l_4 l_2 \end{bmatrix}$

Let
$$\mathbf{z} = (l_1, l_2, l_3, l_4, l_5, l_6)$$
 and $\mathbf{Q} = \mathbf{z}^T \mathbf{z} = \begin{bmatrix} l_1 l_1 & l_1 l_2 & l_1 l_3 & l_1 l_4 & l_1 l_5 & l_1 l_6 \\ l_2 l_1 & l_2 l_2 & l_2 l_3 & l_2 l_4 & l_2 l_5 & l_2 l_6 \\ l_3 l_1 & l_3 l_2 & l_3 l_3 & l_3 l_4 & l_3 l_5 & l_3 l_6 \\ l_4 l_1 & l_4 l_2 & l_4 l_3 & l_4 l_4 & l_4 l_5 & l_4 l_6 \\ l_5 l_1 & l_5 l_2 & l_5 l_3 & l_5 l_4 & l_5 l_5 & l_5 l_6 \\ l_6 l_1 & l_6 l_2 & l_6 l_3 & l_6 l_4 & l_6 l_5 & l_6 l_6 \end{bmatrix}$

 $\mathbf{m} \perp \mathbf{d} \Rightarrow l_1 l_4 + l_2 l_5 + l_3 l_6 = 0$, quadratic in l_i , but linear in $l_i l_i$

Let
$$\mathbf{z} = (l_1, l_2, l_3, l_4, l_5, l_6)$$
 and $\mathbf{Q} = \mathbf{z}^T \mathbf{z} = \begin{bmatrix} l_1 l_1 & l_1 l_2 & l_1 l_3 & l_1 l_4 & l_1 l_5 & l_1 l_6 \\ l_2 l_1 & l_2 l_2 & l_2 l_3 & l_2 l_4 & l_2 l_5 & l_2 l_6 \\ l_3 l_1 & l_3 l_2 & l_3 l_3 & l_3 l_4 & l_3 l_5 & l_3 l_6 \\ l_4 l_1 & l_4 l_2 & l_4 l_3 & l_4 l_4 & l_4 l_5 & l_4 l_6 \\ l_5 l_1 & l_5 l_2 & l_5 l_3 & l_5 l_4 & l_5 l_5 & l_5 l_6 \\ l_6 l_1 & l_6 l_2 & l_6 l_3 & l_6 l_4 & l_6 l_5 & l_6 l_6 \end{bmatrix}$

Veronese mapping, $V_{52}: \mathbb{P}^5 \to \mathbb{P}^{20}$, $V_{52}(\mathbb{P}^5) \subset \mathbb{P}^{20}$

 \mathbf{Q} is rank 1, $\det(\mathbf{Q}) = 0$, all 2×2 minors = 0, 210 (independent) quadratic equations

 $\mathbf{m} \perp \mathbf{d} \Rightarrow l_1 l_4 + l_2 l_5 + l_3 l_6 = 0$, quadratic in l_i , but linear in $l_i l_i$

Let
$$\mathbf{z} = (l_1, l_2, l_3, l_4, l_5, l_6)$$
 and $\mathbf{Q} = \mathbf{z}^T \mathbf{z} = \begin{bmatrix} l_1 l_1 & l_1 l_2 & l_1 l_3 & l_1 l_4 & l_1 l_5 & l_1 l_6 \\ l_2 l_1 & l_2 l_2 & l_2 l_3 & l_2 l_4 & l_2 l_5 & l_2 l_6 \\ l_3 l_1 & l_3 l_2 & l_3 l_3 & l_3 l_4 & l_3 l_5 & l_3 l_6 \\ l_4 l_1 & l_4 l_2 & l_4 l_3 & l_4 l_4 & l_4 l_5 & l_4 l_6 \\ l_5 l_1 & l_5 l_2 & l_5 l_3 & l_5 l_4 & l_5 l_5 & l_5 l_6 \\ l_6 l_1 & l_6 l_2 & l_6 l_3 & l_6 l_4 & l_6 l_5 & l_6 l_6 \end{bmatrix}$

Veronese mapping, $V_{52}: \mathbb{P}^5 \to \mathbb{P}^{20}$, $V_{52}(\mathbb{P}^5) \subset \mathbb{P}^{20}$

 ${f Q}$ is rank 1, $\det({f Q})=0$, all 2×2 minors =0, 210 (independent) quadratic equations

Formulate $\mathbf{y} \in \mathbb{R}^{21}$ as the concatenation of **upper triangular elements**

$$\mathbf{y} = [\mathbf{Q}_{11}, ..., \mathbf{Q}_{ij}, ..., \mathbf{Q}_{66}]^T$$
, with $i \le j$

 $\mathbf{m} \perp \mathbf{d} \Rightarrow l_1 l_4 + l_2 l_5 + l_3 l_6 = 0$, quadratic in l_i , but linear in $l_i l_j$

Let
$$\mathbf{z} = (l_1, l_2, l_3, l_4, l_5, l_6)$$
 and $\mathbf{Q} = \mathbf{z}^T \mathbf{z} = \begin{bmatrix} l_1 l_1 & l_1 l_2 & l_1 l_3 & l_1 l_4 & l_1 l_5 & l_1 l_6 \\ l_2 l_1 & l_2 l_2 & l_2 l_3 & l_2 l_4 & l_2 l_5 & l_2 l_6 \\ l_3 l_1 & l_3 l_2 & l_3 l_3 & l_3 l_4 & l_3 l_5 & l_3 l_6 \\ l_4 l_1 & l_4 l_2 & l_4 l_3 & l_4 l_4 & l_4 l_5 & l_4 l_6 \\ l_5 l_1 & l_5 l_2 & l_5 l_3 & l_5 l_4 & l_5 l_5 & l_5 l_6 \\ l_6 l_1 & l_6 l_2 & l_6 l_3 & l_6 l_4 & l_6 l_5 & l_6 l_6 \end{bmatrix}$

Veronese mapping, $V_{52}: \mathbb{P}^5 \to \mathbb{P}^{20}$, $V_{52}(\mathbb{P}^5) \subset \mathbb{P}^{20}$

 ${f Q}$ is rank 1, $\det({f Q})=0$, all 2×2 minors =0, 210 (independent) quadratic equations

Formulate $\mathbf{y} \in \mathbb{R}^{21}$ as the concatenation of **upper triangular elements**

$$\mathbf{y} = [\mathbf{Q}_{11},...,\mathbf{Q}_{ij},...,\mathbf{Q}_{66}]^T, \text{with } i \leq j$$

 $\mathbf{x} = (\alpha, \beta, \dim)$, with $\dim \in \{1, 2, ..., 21\}$

 $\mathbf{A}\mathbf{y}_i = \mathbf{b}$, two constraints: $l_1 l_1 + l_2 l_2 + l_3 l_3 = 1$, $l_1 l_4 + l_2 l_5 + l_3 l_6 = 0$

 $\mathbf{A}\mathbf{y}_i = \mathbf{b}$, two constraints: $l_1 l_1 + l_2 l_2 + l_3 l_3 = 1$, $l_1 l_4 + l_2 l_5 + l_3 l_6 = 0$

Quadratic Constraint

Ay_i = **b**, two constraints:
$$l_1l_1 + l_2l_2 + l_3l_3 = 1$$
, $l_1l_4 + l_2l_5 + l_3l_6 = 0$

$$\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & \cdots & 0 & 0 & 0
\end{bmatrix}_{2\times21}\begin{bmatrix}
l_1l_1 \\
l_1l_2 \\
l_1l_3 \\
l_1l_4 \\
l_1l_5 \\
l_2l_2 \\
l_2l_1 \\
\vdots \\
l_5l_6 \\
l_6l_6\end{bmatrix}_{21\times1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$

For $\mu(\mathbf{x}_*)$ satisfies $\mathbf{A}\mu(\mathbf{x}_*) = \mathbf{b}$

We don't want the 21D $\mu(\mathbf{x}_*) = \mathbf{y}_*$, but the 6D \mathbf{z}_* .

We don't want the 21D $\mu(\mathbf{x}_*) = \mathbf{y}_*$, but the 6D \mathbf{z}_* .

Problem: $\mathbf{A}\mathbf{y}_* = \mathbf{b} \iff \mathbf{y}_* \in H1 \cap H2$ in \mathbb{R}^{21} (one hyperplane for every row in \mathbf{A})

We don't want the 21D $\mu(\mathbf{x}_*) = \mathbf{y}_*$, but the 6D \mathbf{z}_* .

Problem: $\mathbf{A}\mathbf{y}_* = \mathbf{b} \iff \mathbf{y}_* \in H1 \cap H2$ in \mathbb{R}^{21} (one hyperplane for every row in \mathbf{A}) $\dim(H1 \cap H2) = 21 - 1 - 1 = 19$, $\dim(V_{52}(\mathbb{P}^5)) = 5$

We don't want the 21D $\mu(\mathbf{x}_*) = \mathbf{y}_*$, but the 6D \mathbf{z}_* .

Problem: $\mathbf{A}\mathbf{y}_* = \mathbf{b} \iff \mathbf{y}_* \in H1 \cap H2$ in \mathbb{R}^{21} (one hyperplane for every row in \mathbf{A}) $\dim(H1 \cap H2) = 21 - 1 - 1 = 19$, $\dim(V_{52}(\mathbb{P}^5)) = 5$ $\exists \mathbf{y}_* \notin V_{52}(\mathbb{P}^5)$, let alone corresponding to point a on M_2^4 in \mathbb{P}^5 !

We don't want the 21D $\mu(\mathbf{x}_*) = \mathbf{y}_*$, but the 6D \mathbf{z}_* .

We don't want the 21D $\mu(\mathbf{x}_*) = \mathbf{y}_*$, but the 6D \mathbf{z}_* .

We don't want the 21D $\mu(\mathbf{x}_*) = \mathbf{y}_*$, but the 6D \mathbf{z}_* .

$$\mathbf{Q}_{*} = \begin{bmatrix} y_{*1} & y_{*2} & \cdots & y_{*6} \\ y_{*2} & y_{*7} & \cdots & y_{*11} \\ \vdots & \vdots & \vdots & \vdots \\ y_{*6} & y_{*11} & \cdots & y_{*21} \end{bmatrix} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}$$

We don't want the 21D $\mu(\mathbf{x}_*) = \mathbf{y}_*$, but the 6D \mathbf{z}_* .

$$\mathbf{Q}_{*} = egin{bmatrix} y_{*1} & y_{*2} & \cdots & y_{*6} \ y_{*2} & y_{*7} & \cdots & y_{*11} \ dots & dots & dots \ y_{*6} & y_{*11} & \cdots & y_{*21} \end{bmatrix} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}$$
 $\mathbf{z}_{*} = \sqrt{\Sigma_{(1,1)}} \mathbf{V}_{(:,1)}$

We don't want the 21D $\mu(\mathbf{x}_*) = \mathbf{y}_*$, but the 6D \mathbf{z}_* .

$$\mathbf{Q}_{*} = egin{bmatrix} y_{*1} & y_{*2} & \cdots & y_{*6} \ y_{*2} & y_{*7} & \cdots & y_{*11} \ dots & dots & dots \ y_{*6} & y_{*11} & \cdots & y_{*21} \end{bmatrix} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{T}$$
 $\mathbf{z}_{*} = \sqrt{\Sigma_{(1,1)}} \mathbf{V}_{(:,1)}$

Sign ambiguity can be solved from context.

No free lunch

$$\mathcal{O}(n^3)$$

No free lunch

$$\mathcal{O}(n^3)$$

 $n = 81 \Rightarrow n \times 21 = 1701$

No free lunch

$$\mathcal{O}(n^3)$$

$$n = 81 \Rightarrow n \times 21 = 1701$$

 $6 \times 2D$ GPs, 6 predictions per line

 $1\,\times\,3D$ GP, 21 predictions per line plus SVD

The problem with vanilla GPs

The posterior is a GP!!!

Problem locally: A prediction at \mathbf{x}_* is a Gaussian distribution, ranging from $-\infty$ to $+\infty$. What about velocities, weights, heights, concentrations in %, ... ?

Problem globally: Kernel determines shape of the functions. Samples from posterior don't automatically obey monotonicity, convexity, boundary conditions, differential equations (heat, forces, ...), ...

Problem multi-output: Relationships between outputs are not built-in. What about zero curl or divergence in a vector field? What about unit norm vectors?

What about your data? **Does it matter**?

Further reading

Swiler, L. P., Gulian, M., Frankel, A. L., Safta, C., & Jakeman, J. D. (2020). A survey of constrained Gaussian process regression: Approaches and implementation challenges. Journal of Machine Learning for Modeling and Computing, 1(2).

Salzmann, M., & Urtasun, R. (2010). **Implicitly constrained Gaussian process regression for monocular non-rigid pose estimation.** Advances in neural information processing systems, 23.

De Boi, I., Sels, S., De Moor, O., Vanlanduit, S., & Penne, R. (2022). **Input and output manifold constrained Gaussian process regression for galvanometric setup calibration.** IEEE Transactions on Instrumentation and Measurement, 71, 1-8.

ivan.deboi@uantwerpen.be

