University of Antwerp
G I Faculty of Applied
Engineering

Constraints on GP Predictions

Not so normal after all

dr. lvan De Boi

8 September 2025



¢ *InviLab

Camera system
development

0
[ )
«‘ ‘!‘
|

Automation Prototype
development

Camera integration

Advanced camera
technologies

UV = LWIR

Multi- and hyperspectral
3D imaging

Variable focus, zoom
Image intensifiers
Polarization camera’s

Camera calibration
and fusion

Image processing and
camera simulation

Machine Camera
learning simulation

2/45



1. The problem with vanilla GPs




The problem with vanilla GPs

The posterior is a GP!!!

4/45



The problem with vanilla GPs

The posterior is a GP!!!

Problem locally: A prediction at x, is a Gaussian distribution, ranging from —oo to
+o00. What about velocities, weights, heights, concentrations in %, ... ?

4/45



The problem with vanilla GPs

The posterior is a GP!!!

Problem locally: A prediction at x, is a Gaussian distribution, ranging from —oo to
+o00. What about velocities, weights, heights, concentrations in %, ... ?

Problem globally: Kernel determines shape of the functions. Samples from posterior
don’t automatically obey monotonicity, convexity, boundary conditions, differential
equations (heat, forces, ...), ...

4/45



The problem with vanilla GPs

The posterior is a GP!!!

Problem locally: A prediction at x, is a Gaussian distribution, ranging from —oo to
+o00. What about velocities, weights, heights, concentrations in %, ... ?

Problem globally: Kernel determines shape of the functions. Samples from posterior
don’t automatically obey monotonicity, convexity, boundary conditions, differential
equations (heat, forces, ...), ...

Problem multi-output: Relationships between outputs are not built-in. What about
zero curl or divergence in a vector field? What about unit norm vectors?

4/45



The problem with vanilla GPs

The posterior is a GP!!!

Problem locally: A prediction at x, is a Gaussian distribution, ranging from —oo to
+o00. What about velocities, weights, heights, concentrations in %, ... ?

Problem globally: Kernel determines shape of the functions. Samples from posterior
don’t automatically obey monotonicity, convexity, boundary conditions, differential
equations (heat, forces, ...), ...

Problem multi-output: Relationships between outputs are not built-in. What about
zero curl or divergence in a vector field? What about unit norm vectors?

What about your data? Does it matter?

4/45



2. Problem Locally - Bound Constraints
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7/45



Bound Constraints
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Bound Constraints - Warping

0 < f(x) <100, uj = o 1(y), [0,1] = [~o0, +09]

Inverse Cumulative Normal Distribution
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Bound Constraints - Warping

train GP on {x;, u;}, warp prediction back via ¢

Cumulative Normal Distribution
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Bound Constraints - Warping
0 < f(x) < 100

Combined plot

120

X Original Data
Samples from GP (Original Space)
Samples from GP (Probit, Original Space) _|
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Bound Constraints - Likelihood Tinkering

p(F|X,y,0) = p(y|X.£.0)p(f|X,0)

p(y|X,0)



3. Problem Globally - Differential Equation Constraints




Differential Equation Constraints with Data

Lu = f, with data on v and f, and L linear partial differential operator
u~ GP(m(x), k(x,x))
Lu ~ GP(Lxm(x), LxLy k(x,X"))
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Differential Equation Constraints with Data

Kick a ball: height u(t) = at — £t for some unknown a.
We observe u;.

Standard GP (u(t) only)
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Differential Equation Constraints with Data

Kick a ball: height u(t) = at — £t for some unknown a.

We observe u; and know f(t) = % =—g=*f.

Comparison: MOGP (with derivative data) vs Standard GP (u(t) only)
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Differential Equation Constraints with Data

Kick a ball: height u(t) = at — £t for some unknown a.

d’u
We observe u; and know f(t) = g2 =& ="
Multi-Output GP: Prediction of u(t) Multi-Output GP: Prediction of d2u/dt?(t)
X Pseudo-measurements for d2u/dt?
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Monotonicity Constraint

df
dt

> 0
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Convexity Constraint
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Concavity Constraint

d>f
gz <0
Comparison: MOGP (with derivative data) vs Standard GP (u(t) only)
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4. Problem Multi-Output - e.g. Predict Lines in 3D




Galvanometric Laser Scanner
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Hyperboloi
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Hyperboloids
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Hyperboloid Bridge

Corporation Street Bridge

Coordinates e 93°29°'01"N 2°14'36"W
Crosses Corporation Street
Locale Manchester, England
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Plucker Coordinates

NI
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Plucker Coordinates

Y

Z

L given by moment

m and direction d: (h i h:l:ly:/l5:lg) € PS
m L d= hly+ hls + Kl = 0 (Grassmann-Pliicker relationship)
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Plucker Coordinates
Y

L given by moment m and directiond : (h: h:h:ly:k: /)€ P>
m L d= hls+ hls + hls = 0 (Grassmann-Pliicker relationship)
L € M3 (Klein Quadric) C P°
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Parallel GPs screw this up
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Parallel GPs screw this up

(v, B) By
(@, 8) 5 1y
(@, 8) 5 1y
(v, B) Bl
(@, 8) % s
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hils+ bls + Blg =7
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Parallel GPs screw this up

(a7/8) G_F;l /1
(a, B) 5 1y
(a, B) 5 13
(a, ) E 1y
(a, 3) & I
( ) GP

hiy+ bls + Blg =7
hiy+ bls + Kl #0 = (/1 b:l:ly:l5:l ) is a screw, & Mg
NOT a line in 3D!!
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Constraints on predictions for L

hh + bbb+ K =1
hilg + bls + Rlg =0



5. Unit Norm: 1h+ bh + Kk =1




Input («, 3)

Periodic kernel in general:

2 . Ix — X/|
_ 2 2
k(X’ X/) = O0f €Xp <—£2 sSin <7Tp>>

Periodic kernel for x = (a, 8), ARD and period 27:

2 —ao 2 _ A
o=t (o (2520 o (5 (257
“ 3
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Unit Norm for Direction Vector d

(a,8) = d e R3
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Unit Norm for Direction Vector d

(a, ) — d € R3, constraint: ||d|| =1,d € §?
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Unit Norm for Direction Vector d
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Unit Norm for Direction Vector d
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fi : x = cos(a)sin(p),
f - y = sin(a)sin(p),
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Unit Norm for Direction Vector d

fi— 88196 =0
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Unit Norm for Direction Vector d

fi— 9% 4 96 0, Ff(x) =0
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Unit Norm for Direction Vector d

fi— G2 + g2 =0, Klf(x)] = 0, Gxlg(x)] = f(x)
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Unit Norm for Direction Vector d
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Unit Norm for Direction Vector d
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Unit Norm for Direction Vector d

fi— 92 4 96 — 0 F[F(x)] = 0, Gelg(x)] = F(x), FxlGxlg(x)]] =0,

g(x) ~ gP(,ug, kg)7 f(x) = gxg(x) ~ g'P(gng, gxkgng/)
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Unit Norm for Direction Vector d

x = («, 8,dim), with dim € 1,2,3

kPER([awBL [0/76,])7 for dim = dim’

k x,x') =
PER3D (X, X') {0 for dim # dim'’
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Unit Norm for Direction Vector d

x = («, 8,dim), with dim € 1,2,3

kPER([Oé,,B], [0/76,])7 for dim = dim’

k x,x') =
PER3D (X, X') {0 for dim # dim'’

2 A
kcom(x,X') = o2 exp <_l2 sin? <a 5 a ))

( (ﬂ—ﬁ'))
lg 2

exp <_ (dim — dim’)2>

€2
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Unit Norm for Direction Vector d

] kcowm,

o O O
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koir = GxkcomGy = |C 1
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2

in which, with v =

A— _ sin2('y)l

B= —% sin(7y) cos(7),
C= %sin(v) cos(7)

cost(s) | co(y) _ sin’()

3 2o

(for brevity in notation),
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Unit Norm for Direction Vector d

] kcowm,

(for brevity in notation),

o O O
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koir = GxkcomGy = |C 1
0 0
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in which, with v = O‘E

A— _ sin2('y)l

B= —% sin(7y) cos(7),
C= %sin(v) cos(7)

cost(s) | co(y) _ sin’()

3 2o

(a,B) - deS§?
f(X) = gxg(x) ~ gP(gng, gxkgg)z;)
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6. Grassmann-Pliicker Relationship: 1/, + hls + klg =0




Linear Constraint in general

A set of training examples {yi, ..., yn} that satisfy the linear constraints Ay; = b will
result in a GP for which the mean prediction p(x.) also satisfies Au(x,) = b.
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Linear Constraint in general

A set of training examples {yi, ..., yn} that satisfy the linear constraints Ay; = b will
result in a GP for which the mean prediction p(x.) also satisfies Au(x,) = b.

p(x) = mo(x.) + K(xe, X) [K(X,X) +021] " (y — m(x))
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Quadratic Constraint

m L d = hly+ hls + Blg = 0, quadratic in /;, but linear in [;/;
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Quadratic Constraint
Ay,- = b, two constraints: hli + bhh + L5 =1, Lly+ hls+ Kl =0
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Quadratic Constraint
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Quadratic Constraint

Ay; = b, two constraints: 1h + bbb+ k5 =1, hls+ hls + Kl =0
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Quadratic Constraint
We don't want the 21D p(x.) = y.«, but the 6D z,.
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Quadratic Constraint
We don't want the 21D p(x.) = y.«, but the 6D z,.

Problem: Ay, =b <= y. € H1 N H2 in R?! (one hyperplane for every row in A)
dim(HINH2) =21 -1 —1=19, dim(Vs(P%)) =5

Iy« € Vs2(IP®), let alone corresponding to point a on M3 in P°!

Eg:(1 1 1 0 0 01 1 0O0O01O0O0O0O0TO0TO0O0 666 0)
Q = z'z needs to be rank 1.

Vel Y2 - VYx6
Q. — )/T2 )/f7 ':‘ )Aﬁll _ UV’
Yx6  Yxll - Yx21

z, =/ Vi

Sign ambiguity can be solved from context.

g
(G

of Ancwerp

41/45



No free lunch
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No free lunch

O(n3)

n=81l=nx21=1701
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No free lunch

C?(n3)
n=8l=nx21=1701

6 x 2D GPs, 6 predictions per line
=
1 x 3D GP, 21 predictions per line plus SVD
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The problem with vanilla GPs

The posterior is a GP!!!

Problem locally: A prediction at x, is a Gaussian distribution, ranging from —oo to
+o00. What about velocities, weights, heights, concentrations in %, ... ?

Problem globally: Kernel determines shape of the functions. Samples from posterior
don’t automatically obey monotonicity, convexity, boundary conditions, differential
equations (heat, forces, ...), ...

Problem multi-output: Relationships between outputs are not built-in. What about
zero curl or divergence in a vector field? What about unit norm vectors?

What about your data? Does it matter?
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Further reading
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of constrained Gaussian process regression: Approaches and implementation
challenges. Journal of Machine Learning for Modeling and Computing, 1(2).

Salzmann, M., & Urtasun, R. (2010). Implicitly constrained Gaussian process
regression for monocular non-rigid pose estimation. Advances in neural information
processing systems, 23.

De Boi, I., Sels, S., De Moor, O., Vanlanduit, S., & Penne, R. (2022). Input and
output manifold constrained Gaussian process regression for galvanometric setup
calibration. |EEE Transactions on Instrumentation and Measurement, 71, 1-8.
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