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Inductive Reasoning

Inductive Reasoning
”In inductive inference, we go from the specific to the general. We make
observations, discern a pattern, make a generalization, and infer an
explanation or a theory”

– Wassertheil-Smoller
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Inductive Reasoning II

Inductive Reasoning
Unlike deductive arguments, inductive reasoning allows for the
possibility that the conclusion is false, even if all of the premises are
true.
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The Scientific Principle

Hypothesis

Experiment

Evidence
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”The Machine Learning Principle”1

”There is a notion of success … which I think is novel in the
history of science. It interprets success as approximating unan-
alyzed data.”

– Prof. Noam Chomsky

1Chomsky et al., 1980
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What is machine learning?

What is Machine Learning Machine Learning is the task of
combining/integrating knowledge with observations to
perform predictions using the subset of possible
explanations that are consistent with both my knowledge
and the observations

Isn’t this Statistics? statistics cares about parameters of the knowledge
while ML cares about the predictions we get from using the
parameters we infer by combining knowledge and
observations. (It is just a slight but important change of
narrative)
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Formalism [Shalev-Shwartz et al., 2014]

Domain Set X the set of measurements/objects that we want to label
(input)

Label Set Y the set of outputs
Training Data S a finite sequence of pairs in X × Y
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Formalism [Shalev-Shwartz et al., 2014]

Data Distribution D probability distribution governing the
measurements

Data Generation f : X → Y the underlying generating process that we
wish to recover

Prediction Rule h : X → Y what we wish to recover, the object that
encodes the recovered knowledge
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Classification
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Measure of Success

LD,f (h) := D({x : h(x) 6= f (x)})

• measure of success as probability of misclassified points (true risk)

• we do not have access to D
• we do not have access to f
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Classification
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Empirical Risk Minimisation

LS(h) :=
|{i ∈ [m] : h(xi) 6= yi}|

m

• We assume that S ∼ D
• Empirical measure of risk
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Algorithm

LS(A(S)) := |{i ∈ [m] : h(xi) 6= yi}|
m

• We use an algorithm A : S → h to find a hypothesis
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Finite Hypothesis Classes

hS ∈ argmin
h∈H

LS(h)

• We cannot parametrise all possible hypothesis
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Error Decomposition

h∗

ĥopt

ĥ

hopt

h∗ the optimal predictor
hopt the optimal hypothesis
ĥopt the optimal hypothesis

on training data
ĥ the hypothesis found by
learning algorithm
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Error Decomposition

h∗

ĥopt

ĥ

hopt

ε(ĥ)− ε(h∗)

= ε(hopt)− ε(h∗)︸ ︷︷ ︸
Approximation

+ ε(ĥopt)− ε(hopt)︸ ︷︷ ︸
Estimation

+ ε(ĥ)− ε(ĥopt)︸ ︷︷ ︸
Optimisation
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Assumptions: Algorithms

Statistical Learning
AH(S)
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Assumptions: Biased Sample

Statistical Learning
AH(S)
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Assumptions: Hypothesis space

Statistical Learning
AH(S)
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Quantifying Knowledge
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Bayes’ Rule

p(θ | D) =
p(D | θ)p(θ)

p(D)
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Marginalisation

p(D) =

∫
p(D | θ)p(θ)dθ
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Marginalisation

p(D) =

∫
p(D | θ) p(θ)dθ︸ ︷︷ ︸

dt(θ)
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Marginalisation
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Marginalisation
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Marginalisation
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Model Linear Linear
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Model Linear
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Bayesian

• The Bayesian argument implies that you try to re-parametrise the
hypothesis space to reflect your beliefs

• A good analogy is to think about ”space”, the believable parameters
gets a bigger space compared to the unlikely ones

• Massive composite models can be thought of as directly altering the
parameter space for the optimiser Roy et al., 2024
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”Good” parametrisation

Flexible such that we do not have to make trade-offs when including
beliefs

Narrow such that we can reduce data-requirements
Interpretable so that we can translate our knowledge to the

parametrisation
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Non-parametrics



Curve Fitting
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Parametrisations

f (x) = β1 + β2 · x + β3 · x2 + . . .+ βk sin(x) + . . .
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f (x) = β · x
38



f (x) = β1 + β2 · x
39



xβ0 + sin(β1 · x2)
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Non-parametrics
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Non-parametrics
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Non-parametrics
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Example
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Example
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Non-parametric Models



Lets talk about functions
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Gaussian function values

f1 = N (µ1, k1)

f2 = N (µ2, k2)
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Non-parametric functions
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Non-parametric functions
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Jointly Gaussian function values

[
f1
f2

]
= N

([
µ1

µ2

]
,

[
k11 ?

? k22

])
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Conditional Gaussians

N
([

0
0

]
,

[
1 0.5

0.5 1

])
N
([

0
0

]
,

[
1 0.9

0.9 1

])
N
([

0
0

]
,

[
1 0
0 1

])
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Gaussian Samples
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Gaussian Samples

63



Gaussian Samples
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Gaussian Samples
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Gaussian Samples
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Lets talk about functions
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Non-parametric functions
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Non-parametric functions
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Non-parametric functions
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Jointly Gaussian functions II

p(f) = N




f1
f2
...

fN


∣∣∣∣∣∣∣∣∣


µ1

µ2
...

µN

 ,


k11 k12 . . . k1N

k21 k22 . . . k2N
... ... . . . ...

kN1 kN2 . . . kNN



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Gaussian Distribution - Marginal

p(x1, x2) = N

(
x1

x2

∣∣∣∣∣ µ1

µ2
,

k11 k12

k21 k22

)
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x1

x2

∣∣∣∣∣ µ1

µ2
,

k11 k12

k21 k22

)
⇒ p(x1) =

∫
x2

p(x1, x2) = N (x1 | µ1, k11)
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Gaussian Distribution - Marginal

p(x1, x2) = N

(
x1

x2

∣∣∣∣∣ µ1

µ2
,

k11 k12

k21 k22

)
⇒ p(x1) =

∫
x2

p(x1, x2) = N (x1 | µ1, k11)

p(x1, x2, . . . , xN ) = N


x1

x2
...

xN

∣∣∣∣∣∣∣∣∣
µ1

µ2
...

µN

,

k11 k12 · · · k1N

k21 k22 · · · k2N
... ... . . . ...

kN1 kN2 · · · kNN


⇒ p(x1) =

∫
x2,...,xN

p(x1, x2, . . . , xN ) = N (x1 | µ1, k11)
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Gaussian Distribution - Marginal
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Marginal Property (Consistency)

For all measurable sets Fi ⊆ Rn and probability measure N

Nt1·tk (F1 × · × Fk) = Nt1···tk ,tk+1·tk+m (F1 × · × Fk × Rn × · × Rn)
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Gaussian Samples
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Gaussian Samples
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Gaussian Samples
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Gaussian Samples
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Gaussian Samples
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Gaussian Samples
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Gaussian Samples
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Gaussian Samples

82



Gaussian Samples
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Gaussian Samples
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Gaussian Samples
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Gaussian Processes
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Gaussian Processes: Formalism

p(f) = N




f1
f2
...

fN
...



∣∣∣∣∣∣∣∣∣∣∣∣


µ1

µ2
...

µN
...

 ,


k11 k12 . . . k1N . . .

k21 k22 . . . k2N . . .
... ... . . . ... ...

kN1 kN2 . . . kNN . . .
... ... . . .

... . . .




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Gaussian processes

GP(·, ·)

∞

M ∈ R∞×N

→

N (·, ·)

N

The Gaussian distribution is the projection of the infinite Gaussian
process
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Gaussian Process

Definition (Gaussian Process)

A Gaussian process is a collection of random variables who are jointly
Gaussian distributed index by a infinite index set
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Gaussian Processes: Formalism II

p(f) = N




f1
f2
...

fN
...



∣∣∣∣∣∣∣∣∣∣∣∣


µ(x1)

µ(x2)
...

µ(xN )
...

 ,


k(x1, x1) k(x1, x2) . . . k(x1, xN ) . . .

k(x2, x1) k(x2, x2) . . . k(x2, xN ) . . .
... ... . . . ... ...

k(xN , x1) k(xN , x2) . . . k(xN , xN ) . . .
... ... . . .

... . . .





90



”Parametrisation”

kij = k(xi , xj)

• We parameterise the covariance as a function of the input

• the index set of the measure is the uncountable infinity
• Your ”handle” to input your knowledge into a GP is the covariance
function

• you specify the degree of covariance between data-points

• If this ”parametrisation” aligns well with your knowledge a GP is the
way forward!
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Gaussian Processes
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Gaussian Processes Samples

k(xi , xj) = 3 · e−
(xi−xj)

2

15 93



Gaussian Processes Samples

k(xi , xj) = 3 · e−
(xi−xj)

2
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Gaussian Processes Samples

k(xi , xj) = 3 · e−
(xi−xj)

2

150 95



Code

x = np.linspace(-5,5,200)
x = x.reshape((-1,1))

Sigma = 3.0*np.exp(-np.power(cdist(x,x),2)/lengthScale)
mu = np.zeros(x.shape)

y = np.random.multivariate_normal(mu.flatten(),Sigma,10)
ax.plot(x,y.T)
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Gaussian Processes
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Choosing Covariances2

k(x, x ′) = ck1(x, x ′)

k(x, x ′) = f (x)k1(x, x ′)f (x ′)

k(x, x ′) = q(k1(x, x ′)

k(x, x ′) = exp(k1(x, x ′))

k(x, x ′) = k1(x, x ′) + k2(x, x ′)

k(x, x ′) = k1(x, x ′)k2(x, x ′)

k(x, x ′) = k3(φ(x), φ(x ′))

k(x, x ′) = xTAx ′

k(x, x ′) = ka(xa, x ′
a) + kb(xb, x ′

b)

k(x, x ′) = ka(xa, x ′
a)kb(xb, x ′

b)

2Bishop, 2006.
98



99



100



Inference



Bayes’ Rule

p(f∗ | f) = p(f, f∗)
p(f) =

p(f, f∗)∫
p(f, f∗)df∗
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Marginal Likelihood

∫
p(f, f∗)df∗ =

∫
p(f | f∗)p(f∗)df∗

• Take every possible function value/marginal f∗ at location x∗

according to their probability

• Check if these marginals are consistent with the marginals we
observe f at location x
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Marginal Likelihood
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Gaussian Processes: Posterior Samples
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Gaussian Process: ”Predictive Posterior”

p(f, f∗) = p(f∗ | f)p(f)

• We have defined p(f, f∗) as the infinite process

• We know through the marginal property of the Gaussian that p(f) is
consistent as a distribution

• We know that p(f∗ | f) is Gaussian process
• ⇒ We can just solve for p(f∗ | f)
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Gaussian Process: ”Predictive Posterior”

• All instantiations are jointly Gaussian[
f
f∗

]
∼ N

([
0
0

]
,

[
k(x, x) k(x, x∗)

k(x∗, x) k(x∗, x∗)

])

• Conditional Gaussian

p(f∗|f) = N (k(x∗, x)Tk(x, x)−1f,
k(x∗, x∗)− k(x∗, x)Tk(x, x)−1k(x, x∗)
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Intuition
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Does it make sense: Mean

k(x∗,X)Tk(X,X)−1f
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Does it make sense: Covariance

k(x∗, x∗)− k(x∗, x)Tk(x, x)−1k(x, x∗)

108



Gaussian Processes: ”Predictive Posterior Samples”
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Gaussian Processes: ”Predictive Posterior Process”
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Posterior Processes
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Posterior Processes
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Posterior Processes
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Posterior Processes
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Posterior Processes
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Posterior Processes
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Posterior Processes
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Taking Stock

p(f) ∼ N (f | µ(·), k(·, ·)), p(f∗|f) = N (f∗(x∗, x)Tk(x, x)−1f,
k(x∗, x∗)− k(x∗, x)Tk(x, x)−1k(x, x∗)

• we have defined a measure over functions

• we can parametrise this measure to reflect our knowledge
• we can get an updated measure that combines our knowledge with
data
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Models



Learning

yi

fi θ

x

D

p(y|x) =
∫

p(y | f )p(f | x)df

yi

fi θ

x

D

p(y) =
∫

p(y | f )p(f | x)p(x)df dx
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Posterior Processes
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Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Unsupervised Learning
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Being Bayesian

p(y) =
∫

p(y | f2)p(f2 | f1)df2df1

• The process of Marginalisation allows me to convert one measure to
another measure
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Gaussian Process Latent Variable Model

Regression there are infinite number of possible functions that
connects the data equally well. A GP provides a measure
over these solutions that makes the problem ”well-posed”.

Unsupervised Learning there are infinite number of possible
combinations of input locations and functions that generate
the data equally well. A GP and a latent space prior jointly
provides a measure over these solutions to make the
problem ”well-posed”
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Fonts “Learning a manifold of fonts”

URL

134

https://ndfcampbell.org/research/fonts/


Multi-Fidelity Models
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Summary



Summary

• There is no such thing as a free lunch, anything that learns
something does so by being biased

• Any explanation of a result can only ever be interpreted relative to
the bias that has been included

• Arguing religously about being Bayesian or not boils down to do if
you agree with the process of marginalisation

• I believe you can be pragmatically non-bayesian, but it is very hard to motivate
philosophically
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Non-parametrics

• infinite capacity by parametrising the model through relationship
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• model of non-parametric parametrisation leads to stochastic
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• Gaussian processes

practical use simple manipulation with multi-variate normals
theoretically beautiful semantic in terms of stochastic processes
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Kolmogrovs Extension Theorem

For all permutations π, measurable sets Fi ⊆ Rn and probability
measure ν

1. Exchangeable

νtπ(1)···tπ(k)

(
Fπ(1) × · × Fπ(k)

)
= νt1···tk (F1 × · · · × Fk)

2. Marginal

νt1·tk (F1 × · × Fk) = νt1···tk ,tk+1·tk+m (F1 × · × Fk × Rn × · × Rn)

In this case the finite dimensional probability measure is a
realisation of an underlying stochastic process
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Are Gaussian Processes good parametrisations?
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Are Gaussian Processes good parametrisations?

Yes being non-parametric it is only our lack of knowledge of
appropriate measures of correlation that forces us to
compromise

Yes their parametrisation is very well aligned to the knowledge
we have of many problems, most complex knowledge (like
beer) is relative

Yes they are incredibly ”narrow” but have infinite coverage
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