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What is Machine Learning

data + model — prediction



Quantification of Knowledge




Knowledge (Uncertainty) Propagation
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Parametric Knowledge (Uncertainty) Propagation

Model
Data T Prediction
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Parameters
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When do | want Composite Functions

y:fkofk—lo"'ofl(ﬂv)

1. My generative process is composite
* my prior knowledge is composite

2. I want to "re-parametrise” my kernel in a learning setting
* i have knowledge of the re-parametrisation



Because we lack "models”?
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Diff Levels of Abstraction

* Hierarchical Learning Feature representation

» Natural progression from low 3rd layer
level to high level structure "Objects”
as seen in natural complexity

« Easier to monitor what is 2nd layer
being learnt and to guide the “Object parts”
machine to better subspaces

1st layer

+ A good lower level “Edges”
representation can be used
for many distinct tasks Pixels
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YOU WILL BE ASSIMILATED. YOUR TECHNOLOGICAL DISTINCTIVENESS
WILL BE CONSIDERED A SPECIAL CASE OF OUR OWN. RESISTANCE IS FUTILE.
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Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions
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Composite Functions
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The Final Composition

(d) Hidden spaces for 4 layer model
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Remember why we did this in the first place




These damn plots
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It gets even worse
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- Sufficient statistics

q(F)q(U)q¢(X) = p(F|Y, U, X, Z)q(U)¢(X)
- p(F|U, X? Z)Q(U)Q(X>

- Mean-Field

4?4—%
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The effect
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What have we lost

- Our priors are not reflected correctly
* — we cannot interpret the results
- No intermediate uncertainties
* — we cannot do sequential decision making
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What have we lost

- Our priors are not reflected correctly
* — we cannot interpret the results
- No intermediate uncertainties
* — we cannot do sequential decision making

- We are performing a massive computational overhead for very little
use

- ".throwing out the baby with the bathwater..”

40
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What we really want

Al



What we really want?

fi(z)
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2Ustyuzhaninov et al., 2020
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State of the World

- The community have tried Bayesian principles for composite
functions for a long time MacKay, 1991
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State of the World

- The community have tried Bayesian principles for composite
functions for a long time MacKay, 1991

- Empirically performance of Bayesian inference of composite
functions is not impressive

- It is not just parametric models, non-parametric composite models
doesn’t work either

- Why?
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- Roy, H., Miani, M, Ek, C. H., Hennig, P, Pfortner, M., Tatzel, L., &
Hauberg, S., (2024). Reparameterization invariance in approximate
bayesian inference. In Advances in Neural Information Processing
Systems (NeurIPS)
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Statistical Models of Composite Functions




Parametric Composite Models

y=f(x)= fv ofv_10---0 f1 o fo (x)
S

Wy WN-—1 w1 wo
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Inference

_ (D w)p(w)

p(w) = N(Ov of)
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Laplace Approximation MacKay,

p(w | D) = Zp(D | w)p(w) = - exp(~L(D; w))

w = argming £(D; w)
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Laplace Approximation

L(D;w) ~ L(D;w) + VL(D;w)|,_g (W—W)
1

+ 5 (W= W) TV L(D; )|y (W — W)
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Laplace Approximation

L(D;w) =~ L(D; W) + VL(D; w)|,_g (W — W)

~ (W — )TV L(D; )|y (7 — W)

1

T3
= L(D; W) + 5(w =)'V L(D; )|, (W — W)
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Laplace Approximation

p(w | D) = Zp(D | w)p(w) = — exp(—L(D; w))
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Laplace Approximation

p(w | D) = 2p(D | w)p(w) = - exp(—L(D;w)
1

== exp(—L(D;w)) exp (%(w —w)IV2 L(D;w)|,_g (W— v?r))
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Laplace Approximation

p(w | D) = Zp(D | wip(w) =  exp(~L(D; w)

_ % exp(—L(D: ) exp (%(w — )TV £(D; w)|, _,, (W — W))

= N (|, (V2 LD w)]ys) )
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Full distribution
L )

uonewrIxoidde
doe[de]

51



3.0

2.5

20

0.5=

0.0
0.0

52



53



08+

54



55



56






The effective parameter quotient group

Definition (x-reparametrisations)

Given a datapoint x € R!, for any w € R” we define the
x-reparameterizations as the set

RL(w) = {w such that f(w',x) = f(w,x)}. Consistently, given a
collection of points X C R!, we call the intersection

R (W) = Nyex RE(W) X-reparameterizations.
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The effective parameter quotient group

- We define the relation ~ over R? as w~w' if w € R/, (w).
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The effective parameter quotient group

- We define the relation ~ over R? as w~w' if w € R/, (w).
- Quotient space of effective parameters P = R?/ ~
- [wy], [weo] € P are the same point if and only if w; ~ wa.
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dist(wy, wa) = 0 <> Wy ~ Wy
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dist(wy,wa) = 0 <> Wy ~ Wy

dist?(w, w + €) = Z||fwxn —

f(w+€,x,)

I
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diSt(Wl,Wz) =04 Wy ~ Wy

dist?(w, w + €) Z||fWXn fw+e,x,)])?

_ Z 1 (W, %0) — f(W,%0) — VF(W,x,)e]|?



diSt(Wl,Wz) =04 Wy ~ Wy

dist?(w, w + €) Z||fWXn fw+e,x,)])?

N
=" I1f(w,%a) — F(W, %) — VF(w,x,)e] |
n=1

—e'JTJe
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Geometric Aware Laplace Approximation

=il

gw) =N |w|w, | IV L(D;w)|,_sJ

GGN,,

- This is also known as the Generalised Gauss Newton Approximation
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Geometric Aware Laplace Approximation

=il
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GGN,,

- This is also known as the Generalised Gauss Newton Approximation
- Linearised Laplace Approximation Immer et al., 2021
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Geometric Aware Laplace Approximation

=il

gw) =N |w|w, | IV L(D;w)|,_sJ

w
>z

GGN,,
- This is also known as the Generalised Gauss Newton Approximation

- Linearised Laplace Approximation Immer et al., 2021
- Interpreted as a Riemannian metric it is called the Fisher-Rao metric
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Geometric Aware Laplace Approximation

=il

gw) =N |w|w, | IV L(D;w)|,_sJ

w
>z

GGN,,

- This is also known as the Generalised Gauss Newton Approximation
- Linearised Laplace Approximation Immer et al., 2021

- Interpreted as a Riemannian metric it is called the Fisher-Rao metric
- Itis a pseudo-metric
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Theorem (Topological Equivivalence)

The pseudo-Riemannian manifold obtained with the pullback
pseudo-metric (RP, GGNy) is homeomorphic to the quotient group
<P7 dP)

For any wg, w; € R” it holds

df*H<W0,W1) =0 <= [Wo] = [Wl] eP
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Function space
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Linear model; Laplace's approx. Nonlinear model; Laplace's approx.  Nonlinear model; Laplace diffusion
| Reparametrization family <~ Metric < Approximate posterior
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Reparametrisations of Linear Functions

- Linear Function

f(w)=Aw+b
g:R” - RP
st A(g(w)—w)=0

- Nullspace of A

(9(w) — w) € ker(A)
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Linearised Neural Network

() = for + Ju(z) (W — )

- re-parametrisations are characterised by the kern(Jy)

- By construction
kern(Jy) = kern(J1Jy)

- Neural Tangent Kernel Jacot et al., 2018

NTK = J,JT
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Orthogonal Subspaces

er(GGNy)
im(GCGNy) @ kern(GGNy,) = R?
- IM(GGNy,) - spans the effective parameters of the model

- kern(GGNy,) - parameters leading to the same function
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Laplace Covariance

T B =1l
Ao [Ul

+al| =UfA+al) U +a ULV

- Decomposition of parameter space

W:vAV‘i‘Wker"i‘Wim
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Laplace
approximation

Linearized
Laplace

Full distribution
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]RD
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Diffusion process

- Riemannian Diffusion

= \/ZG(W)_% W—I-TFt
where T'y( Z 5’wj

- Update rule
Wir1 = Wi+ / th G(Wt)_%E
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Function space

Weight space

LU\ —— = -
Linear model; Laplace's approx. Nonlinear model; Laplace's approx.  Nonlinear model; Laplace diffusion

‘ Rep ization family ~ Metric <} Approxi posterior
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Diffusion Process

- Diffusion in Linearised Laplace

(R”, GGNg, + aI)
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Diffusion Process

- Diffusion in Linearised Laplace
(R”, GGNg, + aI)

- Kernel Manifold
(77‘#,041)
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Diffusion Process

- Diffusion in Linearised Laplace
(R”, GGNg, + aI)

- Kernel Manifold
(77‘#,041)

- Non-kernel Manifold
(Pw, GGN)
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Full distribution Kernel contribution Non-kernel contribution

Sampled
Laplace

Laplace

Laplace's Linearized

diffusion
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Taking Stock

- we have characterised the geometry of reparametrisations
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Taking Stock

- we have characterised the geometry of reparametrisations
- the geometry explains why linearised laplace approximation works
- we have derived a simple random walk to sample from manifold
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p(y)

/ p(y | 0)p(6)d0
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p(y) = / p(y | 0)p(6)d9

1

= “P(yL) + p(yy)
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Variational Inference




Machine Learning

p(y) = / p(y | z)p(r)dx
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Variational Inference

bol e

p) = [ psle)pte) - % A=)

80



Variational Bayes

log p(y) = / q(z)log %dzx
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Variational Bayes

log p(y) = / q(z)log %dx

) 0 s (e Ao q(z) .
~ [ atoton T + [ a@og p(a,y)do + [ (o)1 8 p(aly)
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Variational Bayes

log p(y) = / q(z)log %dx

:/Q(x)lOg Ldx"’/‘1(95)10&’; p(z, y)dx-i-/Q(x) log () dz

q() p(z]y)
>~ [ a(@)og a(w)ds + [ gls)log pla. p)ds

- The Evidence Lower BOnd
- Tight if ¢(z) = p(z]y)

81



Variational Inference

bol e

p) = [ psle)pte) - % A=)
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How to choose Q?

L(q(z)) = Eyz) [log p(=, y)] — H(q(x))

- We have to be able to compute an expectation over the joint
distribution

- The second term should be trivial
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im(GGNy)

ker(GGNyy)

JTV? £(D;w)|

J

W=W

- Can we propose an approximate distribution that reflects the
geometry of the parametrisation?
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Gemetrically Aware Variational Distribution

q(0) = N'(0],%)
Y =02 UUT 4 o*(1 - UUT)
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L = Eg-q [log p(y|0,x)] — KL(q(0)]|p(0))
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Computing the Lower Bound using Stochastic Projections

e ~ N(0,T)

(projection onto kernel space) el(fe)r

(image space is orthogonal) efjl) =

1)

Eg~q [log p(]0, x)]

UUTe
1-)e® = e — 2,

- é i O-kel"el(qi)r < O'imé(s)

Z log (|6, x)
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Summary




- Symmetries are great learning in "deterministic models”
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- Symmetries are very problematic for statistical models
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- Symmetries are great learning in "deterministic models”
- Symmetries are very problematic for statistical models

- "Under parametrised” approximate posteriors leads to pathological
measures

89



- The Laplace approximation severely underfits because it does not
reflect the re-parametrisations of functions
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- The Laplace approximation severely underfits because it does not
reflect the re-parametrisations of functions

- The Linearised Laplace approximation is infinitesimally invariant to
re-parametrisations

- The covariance of the Linearised Laplace Approximation defines a
Riemannian metric on the Manifold of effective parameters

90



- The factorisation tells what degrees of freedom are connected to
data and to the prior
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- The factorisation tells what degrees of freedom are connected to
data and to the prior

- What parametrisations are useful for algorithms?

- We can formulate approximate distributions that reflect the
geometry of the parametrisation

- Factorisation of measures

- Matrix free algebra allows us to approximate parameter spaces with
millions of parameters
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Summary

p(w) = N (0, al)

92
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