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Where is Carl Henrik?
At 3:30 AM?
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Sequential data collection

Let's make use of uncertainty estimates to make better models
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Active learning

Sequentially collecting more data to improve your model for the task at hand

e | care about regression —> collect data to improve global model accuracy



L 2ER 2R 2NN 2R 2N JNE JEE SR 2R NN 2NN JEE 2L JNE JEE JNE JEE JNE JNE JEE JEE JEE JEE JEE JEE JEE 2R JEE 2R 2ER JNR R R 2R 2R 2 R 4
L K 2R JEE JEE JEE JER JEE JEE 2K JEE JEE 2R JEE JEE 2R JEE JEE JEE JEE JEE 2K JEE JER JEE JEE JEE JEE JEE JEE JEE JEE JEE 2NN JEE JEE R 2NN 2
L K JEE R K R JEE SR JEE JEE JEE SR R K N SR JEE K SRR JEE JEE JEE JEE L R JEE JEE R K JEE JEE JEE K K SN JEE R N 2
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Sequentially collecting more data to improve your model for the task at hand

e | care about regression —> collect data to improve global model accuracy

e | care about the maximum value of my process —> collect data in promising regions (Bayesian Optimisation)
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Active learning

Sequentially collecting more data to improve your model for the task at hand

e | care about regression —> collect data to improve global model accuracy
e | care about the maximum value of my process —> collect data in promising regions (Bayesian Optimisation)

e I’m interested in multiple objectives -> populate the Pareto front (Multi-objective Bayesian Optimisation)
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Active learning

Sequentially collecting more data to improve your model for the task at hand

e | care about regression —> collect data to improve global model accuracy
e | care about the maximum value of my process —> collect data in promising regions (Bayesian Optimisation)
e I’m interested in multiple objectives -> populate the Pareto front (Multi-objective Bayesian Optimisation)

e | care about predicting a threshold -> choose data close to threshold (level-set design)
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Active learning

Sequentially collecting more data to improve your model for the task at hand

e | care about regression —> collect data to improve global model accuracy
e | care about the maximum value of my process —> collect data in promising regions (Bayesian Optimisation)
e I’m interested in multiple objectives -> populate the Pareto front (Multi-objective Bayesian Optimisation)

e | care about predicting a threshold -> choose data close to threshold (level-set design)
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Active learning

Sequentially collecting more data to improve your model for the task at hand

e | care about regression —> collect data to improve global model accuracy
e | care about the maximum value of my process —> collect data in promising regions (Bayesian Optimisation)
e I’m interested in multiple objectives -> populate the Pareto front (Multi-objective Bayesian Optimisation)

e | care about predicting a threshold -> choose data close to threshold (level-set design)
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Active learning

Sequentially collecting more data to improve your model for the task at hand

e | care about regression —> collect data to improve global model accuracy
e | care about the maximum value of my process —> collect data in promising regions (Bayesian Optimisation)
e I’m interested in multiple objectives -> populate the Pareto front (Multi-objective Bayesian Optimisation)

e | care about predicting a threshold -> choose data close to threshold (level-set design)
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So, Bayesian
Optimisation?

i.e. Active learning for optimisation
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A molecular design pipeline

Efficiently explore molecule space
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A molecular design pieline

Efficiently explore molecule space OH H,N
OH

HO
e Large library of candidates CH
3

HO
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A molecular design peline

Efficiently explore molecule space OH gl
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e Large library of candidates CH3 A
e Expensive experiments (<10)
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A molecular design peline

Efficiently explore molecule space OH g
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e Large library of candidates CH3 3
e Expensive experiments (<10) (IN A LAB !!!)
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A molecular design pipeline
Efficiently explore molecule space OH i
OH
_ _ HO
e Large library of candidates CH3 b
e Expensive experiments (<10)
e High degree of parallelism HO

e
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A molecular design pipeline
Efficiently explore molecule space OH i

OH
| _ HO
e Large library of candidates CH3 b
e Expensive experiments (<10)
e High degree of parallelism HO
OH
e Want molecules with high affinity 0 z
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A molecular design pipeline
Efficiently explore molecule space OH i

OH
| _ HO
e Large library of candidates CH3 b
e Expensive experiments (<10)
e High degree of parallelism HO
OH

e Want molecules with high affinity 0 z

o Also easy to make HO

H,N OH
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A molecular design peline

Efficiently explore molecule space OH H,N
OH

HO
e Large library of candidates CH

3
e Expensive experiments (<10)

e High degree of parallelism HO
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e \Want molecules with high affinity 0O

NN s
o Also easy to make HO

o Don’t stick to themselves / \

H,N OH
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A molecular design pipeline

Efficiently explore molecule space OH H,N

OH
_ _ HO
e Large library of candidates CH
3
e Expensive experiments (<10)

e High degree of parallelism HO

NI @)
.

e \Want molecules with high affinity 0O

o Also easy to make

o Don’t stick to themselves / \

H,N OH
o Stable
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A molecular design pipeline

Efficiently explore molecule space OH H,N

OH
_ _ HO
e Large library of candidates CH
3
e Expensive experiments (<10)

e High degree of parallelism HO

NS
e

e \Want molecules with high affinity 0O

NN s
o Also easy to make HO

o Don’t stick to themselves / \

H,N OH
o Stable

o In anew area of “patent space”



L 2K 2R JER JEE JEE 2R 2R JEK 2B R 2ER JEE JEE JER 2R JEE N JEE JEE 2N JEE JEE JER JEE JEE IR JEE JEE JEE JEE JER JEE JEE R JEE R 2NN 2
L K 2R JEE JEE JEE JER JEE JEE 2K JEE JEE 2R JEE JEE 2R JEE JEE JEE JEE JEE 2K JEE JER JEE JEE JEE JEE JEE JEE JEE JEE JEE 2NN JEE JEE R 2NN 2
L K JEE R K R JEE SR JEE JEE JEE SR R K N SR JEE K SRR JEE JEE JEE JEE L R JEE JEE R K JEE JEE JEE K K SN JEE R N 2

A molecular design pipeline

Efficiently explore molecule space OH H,N

OH

HO
e Large library of candidates CH
3

e Expensive experiments (<10)

e High degree of parallelism HO

-lllllfo
e

e \Want molecules with high affinity O

/\/\/CH 3
o Also easy to make HO

o Don’t stick to themselves / \

H,N OH

o Stable

o In anew area of “patent space”
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A Simpler Example

Can evaluate at most 4

CH, OH
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HO
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A Simpler Example (grouped)

Can evaluate at most 4
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A Simpler Example (grouped)

Can evaluate at most 4

OH

Explore v.s. exploit?
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An Aside: GPs for Molcules

Structured Input Spaces

L 2ER 2R 2NN 2R 2N JNE JEE SR 2R NN 2NN JEE 2L JNE JEE JNE JEE JNE JNE JEE JEE JEE JEE JEE JEE JEE 2R JEE 2R 2ER JNR R R 2R 2R 2 R 4
L K 2R JEE JEE JEE JER JEE JEE 2K JEE JEE 2R JEE JEE 2R JEE JEE JEE JEE JEE 2K JEE JER JEE JEE JEE JEE JEE JEE JEE JEE JEE 2NN JEE JEE R 2NN 2
L K JEE R K R JEE SR JEE JEE JEE SR R K N SR JEE K SRR JEE JEE JEE JEE L R JEE JEE R K JEE JEE JEE K K SN JEE R N 2

Dy = {(%i,v:)};



An Aside: GPs for Molcules

Structured Input Spaces

What do we require to
define a GP?

@
&)
-
©
E
O
g~
@
o

L 2K 2R JER JEE JEE 2R 2R JEK 2B R 2ER JEE JEE JER 2R JEE N JEE JEE 2N JEE JEE JER JEE JEE IR JEE JEE JEE JEE JER JEE JEE R JEE R 2NN 2
L K 2R JEE JEE JEE JER JEE JEE 2K JEE JEE 2R JEE JEE 2R JEE JEE JEE JEE JEE 2K JEE JER JEE JEE JEE JEE JEE JEE JEE JEE JEE 2NN JEE JEE R 2NN 2
L K JEE R K R JEE SR JEE JEE JEE SR R K N SR JEE K SRR JEE JEE JEE JEE L R JEE JEE R K JEE JEE JEE K K SN JEE R N 2



L 2K 2R JER JEE JEE 2R 2R JEK 2B R 2ER JEE JEE JER 2R JEE N JEE JEE 2N JEE JEE JER JEE JEE IR JEE JEE JEE JEE JER JEE JEE R JEE R 2NN 2
L K 2R JEE JEE JEE JER JEE JEE 2K JEE JEE 2R JEE JEE 2R JEE JEE JEE JEE JEE 2K JEE JER JEE JEE JEE JEE JEE JEE JEE JEE JEE 2NN JEE JEE R 2NN 2
L K JEE R K R JEE SR JEE JEE JEE SR R K N SR JEE K SRR JEE JEE JEE JEE L R JEE JEE R K JEE JEE JEE K K SN JEE R N 2

An Aside: GPs for Molecules

Structured Input Spaces

v = f(%) +&  Dy={,y)}"

What do we require to
define a GP?

Performance
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An Aside: GPs for Molecules

Fingerprint Kernels

k(“g’ﬁi,f}?:j — klinear(q) X 7(1)(%]' )

_ O O =
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An Aside: GPs for Molcules

String kernels between SMILES strings
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Using GP posteriors and utility functions

e U f (%) : what is the utility of evaluating {x (if it will return f )
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Using GP posteriors and utility functions

e U f (@3,:) : what is the utility of evaluating % (if it will return f )

° f* Is best so far
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Using GP posteriors and utility functions

e U f ({x) : what is the utility of evaluating gq; (if it will return f )

° f* Is best so far

e Has there been an improvement? Uf (ﬁ: ) — ]].(]c> f*)
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Using GP posteriors and utility functions

e U f (@3.;) : what is the utility of evaluating g,: (if it will return f )

° f* Is best so far

e Has there been an improvement? Uf( D ) f>f*)

e How big was the improvement? Uf (“3.; ) (f f O)
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Using GP posteriors and utility functions

o a(%) — ﬂf [U_f(%) ]: what utility is predicted by my model of f
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Using GP posteriors and utility functions

o a(ﬁ:) — ﬂf [Uf(%) ]: what utility is predicted by my model of f

~

e What the probability of improvement?  (Q(Pp] (%) — ‘Lf []]'(f> f*)]
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Using GP posteriors and utility functions

° a(gl;) — ﬂf [Uf(g.;) ]: what utility is predicted by my model of f

e What the probability of improvement?  (Q(Pp] (g,: )

2 (L p)]
o flmax(f — f,0)]

e How much improvement do we expect? QE] (“3.;)
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° a(g.;) — ”f [Uf(f‘;l‘)] what utility is predicted by my model of f

e What the probability of improvement?  (Q(Pp] ((‘3!;)

e How much improvement do we expect? QE] (“3.5)

f NN(M? 02)
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Calc acquisition function and pick best
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Calc acquisition function and pick best
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Automatically choosing next molecules

Full Bayesian optimisation loop

1. Evaluate 2 random molecules
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Full Bayesian optimisation loop
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BO Demo

Let's find the maximum of a 1D function:
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BO Demo

Let's find the maximum of a 1D function:
Using as few function evaluations as possible!
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Where should we next evaluate? Explore/Exploit?
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step 1

How to automate BO

Use a statistical model like a Gaussian process
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How to automate BO: step 2

Automated decision making via an acquisition function like expected improvement

x  Training points
Mean of predictive posterior
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How to automate BO: step 2

Automated decision making via an acquisition function like expected improvement

x  Training points
Mean of predictive posterior
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f(x)
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How to automate BO: step 2

Automated decision making via an acquisition function like expected improvement
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Automated decision making via an acquisition function like expected improvement
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Expected Improvement
Demo BO loop
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BO Demo 2

Let minimize the 6 Hump Camel function
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Looks like we can use a local optimizer!
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Zoom in: Perhaps not quite as easy?
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BO Demo 2

Bayesian optimization is a global optimizer

Bayesian optimization (global) Gradient descent (local)
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Efficient coverage of the search space
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So why do we care about Bayesian Optimization?
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So why do we care about Bayesian Optimization?

e BO performs global optimization (good for multi-modal functions)
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So why do we care about Bayesian Optimization?

e BO performs global optimization (good for multi-modal functions)

e BO can optimize under a limited evaluation budget (great for problems with high evaluation costs)



L 2K 2R JER JEE JEE 2R 2R JEK 2B R 2ER JEE JEE JER 2R JEE N JEE JEE 2N JEE JEE JER JEE JEE IR JEE JEE JEE JEE JER JEE JEE R JEE R 2NN 2
L K 2R JEE JEE JEE JER JEE JEE 2K JEE JEE 2R JEE JEE 2R JEE JEE JEE JEE JEE 2K JEE JER JEE JEE JEE JEE JEE JEE JEE JEE JEE 2NN JEE JEE R 2NN 2
L K JEE R K R JEE SR JEE JEE JEE SR R K N SR JEE K SRR JEE JEE JEE JEE L R JEE JEE R K JEE JEE JEE K K SN JEE R N 2

So why do we care about Bayesian Optimization?

e BO performs global optimization (good for multi-modal functions)
e BO can optimize under a limited evaluation budget (great for problems with high evaluation costs)

o Simulating performance of a car engine (mins)
o Training a large ML model (hours) .
Increasing cost

o Synthesising a new molecule (weeks)

o Testing performance of a wind turbine in real world (months



L 2K 2R JER JEE JEE 2R 2R JEK 2B R 2ER JEE JEE JER 2R JEE N JEE JEE 2N JEE JEE JER JEE JEE IR JEE JEE JEE JEE JER JEE JEE R JEE R 2NN 2
L K 2R JEE JEE JEE JER JEE JEE 2K JEE JEE 2R JEE JEE 2R JEE JEE JEE JEE JEE 2K JEE JER JEE JEE JEE JEE JEE JEE JEE JEE JEE 2NN JEE JEE R 2NN 2
L K JEE R K R JEE SR JEE JEE JEE SR R K N SR JEE K SRR JEE JEE JEE JEE L R JEE JEE R K JEE JEE JEE K K SN JEE R N 2

So why do we care about Bayesian Optimization?

e BO performs global optimization (good for multi-modal functions)
e BO can optimize under a limited evaluation budget (great for problems with high evaluation costs)

o Simulating performance of a car engine (mins)
o Training a large ML model (hours) .
Increasing cost

o Synthesising a new molecule (weeks)

o Testing performance of a wind turbine in real world (months

e We do not need gradients or noiseless observations (i.e. black-box optimization)
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So why do we care about Bayesian Optimization?

e BO performs global optimization (good for multi-modal functions)
e BO can optimize under a limited evaluation budget (great for problems with high evaluation costs)

o Simulating performance of a car engine (mins)
o Training a large ML model (hours) .
Increasing cost

o Synthesising a new molecule (weeks)

o Testing performance of a wind turbine in real world (months

e We do not need gradients or noiseless observations (i.e. black-box optimization)

BO: clever modelling rather than brute force!
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Cool things that you can do with BO

e Fine-tune the performance of AlphaGO (https://arxiv.org/abs/1812.06855)

e Allow Amazon Alexa learn how to speak with new voices (https://arxiv.org/abs/2002.01953)
e Efficiently find new molecules / genes (https://arxiv.org/abs/2010.00979)

e Fine-tune electric car engines

e Optimize large climate models

A great new reference for BO: https://bayesoptbook.com/
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So, Climate model
calibration?
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Climate model calibraion

Identifying reasonable values for model parameters

Climate model tuning « by hand » "

Parameters —p

0 Metrics, ex:
A *  Meridional Heat
Transport
Climate model = AMOC
o d Temperature
simuliation coae profiles
* Bk I
Compare with
Update ¢ \

Observations &

Try and error process
Computationally expensive

Lguensat et al. 2022.
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Climate model calibration

Identifying reasonable values for model parameters

e Need to find parameters that give high plausibility to historical data —--

" Climate model tuning « by hand »Q

Parameters —p

0
4

£y, — f(x)
2./, ¥ Metrics, ex:

*  Meridional Heat
Transport

Climate model = AMOC

. . Temperature
simulation code profiles

Bic... I

Compare with

Update @ v
Observations &

Try and error process
Computationally expensive

Lguensat et al. 2022.

———————— > a function maximisation problem
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Climate model calibration

Identifying reasonable values for model parameters Parameters — e AN )
() SR < Metrics, ex:
A N *  Meridional Heat
i » Transport
Climate model = AMOC

. . Temperature
simulation code profiles

Bic... I

Compare with
Update @ v
Observations &

Try and error process
Computationally expensive

Lguensat et al. 2022.
e Need to find parameters that give high plausibility to historical data —---------- > a function maximisation problem

e Climate models are expensive —----------------- > can only afford a limited number of evaluations (no grid!)
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Climate model calibration

Identifying reasonable values for model parameters Parameters —> fg 2 SMESN\ —»> f(x)
(7] SRS < | Metrics, ex:
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: Transport

Climate model = AMOC

Temperature
profiles
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simulation code

Compare with

Update @ v
Observations &

Try and error process
Computationally expensive

Lguensat et al. 2022.
e Need to find parameters that give high plausibility to historical data —---------- > a function maximisation problem

e Climate models are expensive —----------------- > can only afford a limited number of evaluations (no grid!)

e We do not have gradients (easily) and limited prior knowledge —----------------- > a black-box objective function



Climate model calibration

Identifying reasonable values for model parameters . 2 BESN, —> f(:c)
SR T <) Metrics, ex:
So we have a resource-constrained black-box function optimisation! g’ " Meridional Heat

Transport
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ot d " Temperature
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Compare with
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Computationally expensive

Lguensat et al. 2022.
e Need to find parameters that give high plausibility to historical data —---------- > a function maximisation problem

e Climate models are expensive —----------------- > can only afford a limited number of evaluations (no grid!)

e We do not have gradients (easily) and limited prior knowledge —----------------- > a black-box objective function
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Climate model calibration by iteratively refocusing

sequentially whittle down the Rlausible reﬁion .

Based on Lguensat et al. 2022.
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Climate model calibration by iteratively refocusing

sequentially whittle down the Rlausible reﬁion .

Initial Design

Based on Lguensat et al. 2022.
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Climate model callbratlon by iteratively refocusing

sequentially whittle down the Rlaumble re%mn .

Initial Design Predicted
implausibility

Based on Lguensat et al. 2022.
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Climate model calibration by iteratively refocusing

sequentially whittle down the Rlausible region .

Initial Design Predicted 1st set of
implausibility evaluations

Based on Lguensat et al. 2022.
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Climate model callbratlon by iteratively refocusing

sequentially whittle down the Rlaumble re%mn .

/
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Initial Design Predicted 1st set of Predicted
implausibility evaluations implausibility

Based on Lguensat et al. 2022.
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Climate model callbratlon by iteratively refocusing

sequentially whittle down the Rlausmle reﬁmn .

o4

Initial Design Predicted 1st set of Predicted 2nd set of
implausibility evaluations implausibility evaluations

Based on Lguensat et al. 2022.
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Automatically choosing batches of points

Using GP posteriors and utility functions

L 4

x  Training points
——— Mean of predictive posterior

— E
Current best 0.30
solution \. P - g 0 s
y N y L0.25
A o ___ B ottt
& K ) R £0.20
f(x) . 4 10.15
j 10.10
e L0.05
£0.00
0.0 1.0

How to pick 3 points ?
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Automatically choosing batches of molecules

Using GP posteriors and utility functions

© am(¥) = Eglmax(f — f*,0)]  f~ N (4, o?)
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Automatically choosing batches of molecules

Using GP posteriors and utility functions

. aEI(%) = Eyflmax(f — f,0)]
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Automatically choosmg batches of molecules

Using GP posteriors and utility functions

.+ ag(F) = C¢emax(f — f7,0)]
. apr({¥%i¥;}) = Ey, 5 lmax(f; — f5, f; — f*,0)]

Current best 0.30

N

. 10.20

X) 0.15

-0.10
-0.05

0.00
1.0
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Automatically choosing batches of molecules

Using GP posteriors and utility functions

. OéEI(“gﬁ) = Eylmax(f — f*,0)]

. apr({¥%i¥;}) = Ey, 5 lmax(f; — f5, f; — f*,0)]
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Automatically choosig batches of molecules

Using GP posteriors and utility functions

. aEI(%) = Eylmax(f — f*,0)]

. apr({¥%i¥;}) = Ey, 5 lmax(f; — f5, f; — f*,0)]

o (XEI({t?ﬁ g oo ,‘3‘33}) — ?7?
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Multiple objectives
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Multi-objective Optiisation

>1 competing objectives

A o . .

QO
u

OH

CHj OH

: "\ . OH
A Ho(
HO \

>
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Multi-objective Optimisation

>1 competing objectives

OH
0 e
H,N OH oH
; Ho” NN a0
‘ . T<:/ —\
‘ H,N OH

CHj OH

? Ha . OH
A Ho(
HO \

Pareto Front

2
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Multi-objective Optimisation

U fl , f2 (% ) : what is the utility of evaluating %; if it will return (f]_ g f2 )

OH
1 A i @ o
0 e
H,N OH oH
. Ho” NN T
‘ . T<:/ —\
A H,N OH

OH

OH

Ho/\/E\/CHB HO{C
Pareto Front

>
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Multi-objective Optimisation

’%ﬂ : what is the utility of evaluatin % if it will return (f f )
Uf 1,f 2( Y : 1y J2

it B

OH

lo/\/?\/c“i‘ ( T
O Old Pareto Front

New Pareto Front

1o
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Multi-objective Optimisation

’%ﬂ : what is the utility of evaluatin % if it will return (f f )
Uf 1,f 2( Y : 1y J2

it B o

OH

o/\/§\/c”3 Tb i
O Old Pareto Front

New Pareto Front

1o




L 2ER 2R 2NN 2R 2N JNE JEE SR 2R NN 2NN JEE 2L JNE JEE JNE JEE JNE JNE JEE JEE JEE JEE JEE JEE JEE 2R JEE 2R 2ER JNR R R 2R 2R 2 R 4
L K 2R JEE JEE JEE JER JEE JEE 2K JEE JEE 2R JEE JEE 2R JEE JEE JEE JEE JEE 2K JEE JER JEE JEE JEE JEE JEE JEE JEE JEE JEE 2NN JEE JEE R 2NN 2
L K JEE R K R JEE SR JEE JEE JEE SR R K N SR JEE K SRR JEE JEE JEE JEE L R JEE JEE R K JEE JEE JEE K K SN JEE R N 2

Multi-objective Optimisation

’%ﬂ : what is the utility of evaluatin % if it will return (f f )
Uf 1,f 2( Y : 15 J2

it B o

OH

OH

OH
H OH

- Old Pareto Front
New Pareto Front
%; L

1o




L 2K 2R JER JEE JEE 2R 2R JEK 2B R 2ER JEE JEE JER 2R JEE N JEE JEE 2N JEE JEE JER JEE JEE IR JEE JEE JEE JEE JER JEE JEE R JEE R 2NN 2
L K 2R JEE JEE JEE JER JEE JEE 2K JEE JEE 2R JEE JEE 2R JEE JEE JEE JEE JEE 2K JEE JER JEE JEE JEE JEE JEE JEE JEE JEE JEE 2NN JEE JEE R 2NN 2
L K JEE R K R JEE SR JEE JEE JEE SR R K N SR JEE K SRR JEE JEE JEE JEE L R JEE JEE R K JEE JEE JEE K K SN JEE R N 2

Multi-objective Optimisation

U fl , f2 (03.; ) : what is the utility of evaluating “&: if it will return (fl g f2 )

e Use expected hyper-volume improvement aEHVI( u) = f17 fz (U ]cl, f2 (@30)

f1 NN(M, 0%)
fo NN(H’% 0%)
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Multi-objective Optimisation

%p what is the utility of evaluatin “glﬂ if it will return (f f )
Uf 1,f 2( ) Y & 1y J2

e Use expected hyper-volume improvement aEHVI( u) = fl, fz (U ]cl, f2 (@39)

f1 NN(M, 0%)
fo NN(H’Z) 0%)
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Brewed by a monk?

Barrel-aged?
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k(x,y) = ko + Z ki(xq,y;) + Z ki, yi)kj(25.95)

1<)J

Additive
(Gaussian

Processes
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k(x,y) = ko + Z ki(x;,y;) + Z ki(xi, y:)kj(x;.95)
Additive |

Gaussian B

P r O C e S S e S 1st order interactions 2nd order interactions 3rd order interactions All interactions
ki+ ko + ks kiks + koks + k1ks kykoks

(Squared-exp kernel) (Additive kernel)

(Duvenaud et al 2011)
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k(x,y) = ko + Z ki(xq,y;) + Z ki, yi)kj(25.95)

A d ditive @ Ginshourger et al. (2016)
(raussian

f(x) = fo+ Z fi(x;) + Z fij(xi, z;)

1<J

Processes




Additive
(Gaussian

Processes
e Standard RBF >  O(d(N* + NM))

o dadditveRBF >  O(2%(N? 4+ NM))
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Additive

(Gaussian
Processes

e Standard RBF >  O(d(N* + NM))
o dadditveRBF >  O(2%(N? 4+ NM))
e d additive BBF (NG) -> O(d2 (N2 + NM))




k(x,y) = ko + Z ki(xq,y;) + Z ki, yi)kj(25.95)

Addltlve o @ Ginsbourger et al. (2016)
Caussian THSREEPNICORDIFICES

1<J

PPOCGSSGS f(x1,22) = o7 — 229 + cos(3z1)sin(5xs)

9 N — Truth
— Additive 2 -
1 - 0-
0 \/ _9 | —Truth
— Additive

-1.5-1-050 05 1 1.5 —1.5-1-0.50 0.5 1 1.5 15—1—050 0.5 1 1.5

(@) f1 (b) f2 (© Interactlon

E[f’l,(ajz)‘D p— k"l,(x’l,yX)K(X X) Lu et al. 2022




k(x,y) = ko + Z ki(xq,y;) + Z ki, yi)kj(25.95)

Additive ()
(Gaussian F&) = fo+ > filad) + 3 fij(@i, )

1<J

PPOCGSSGS f(x1,22) = o7 — 229 + cos(3z1)sin(5xs)
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@ f1 (8 f2 (h) Interaction

Lu et al. 2022



k(x,y) = ko + Z ki(xq,y;) + Z ki, yi)kj(25.95)

Additive ()
(Gaussian F&) = fo+ > filad) + 3 fij(@i, )

1<J

PPOCGSSGS f(x1,22) = o7 — 229 + cos(3z1)sin(5xs)
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Lu et al. 2022



k(x, -Yj)

Additive
(Gaussian

Fx)=fo+ > filz)+ > fijlzi,z;)

1<J

PPOCGSSGS f(x1,22) = 27 — 229 + cos(3z1)sin(5xs)
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Lu et al. 2022
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