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Gaussian process on 
Riemannian manifolds



Gaussian Processes

f : X → Y

Earth Temperature

Molecule Energy

EEG Brain activity

Inputs Robot mouvement

Time Motion capture

Shape boneAge



f : ℝd → ℳf : ℳ → ℝq

Manifold-valued inputs Manifold-valued outputs

Objective: finding a well defined kernel! Objective: wrapping everything 
correctly on the manifold!

Naive generalisation

Extrinsic kernels 

Intrinsic kernels
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Geometric interlude



ℝn

Second Countable 
It has a countable collections of open sets that 
cover the space.

Hausdorff 
Any two distinct points can be separated by 
neighborhoods that do not overlap. 

Locally Euclidean 
For every point, there exists a neighborhood 
that is homeomorphic to an open subset of Rn

A smooth manifold, also called di!erentiable 
manifold, is a topological manifold on which
we can perform calculus.

Smooth manifold: M

What is a topological manifold?



ℝnℝn

Φα Φβ

{Uα, Φα} {Uβ, Φβ}

ℝn

Φβ ∘ Φ−1
α

Second Countable 
It has a countable collections of open sets that 
cover the space.

What is a topological manifold?

Hausdorff 
Any two distinct points can be separated by 
neighborhoods that do not overlap. 

Locally Euclidean 
For every point, there exists a neighborhood 
that is homeomorphic to an open subset of Rn

Performing calculus?

The manifold M can be seen an atlas of charts 
{(Ua, Φa)} where Ua ⊂ M is homeomorphic to an 
open subset of Rn .

For any overlapping charts {(Ua, Φa)}  and {(Ub, 
Φb)}, the transition map Φb ∘ Φa-1 between  Rn-
open sets is infinitely differentiable. 

A smooth manifold, also called di!erentiable 
manifold, is a topological manifold on which
we can perform calculus.

Smooth manifold: M



Euclidean space

A smooth manifold, also called di!erentiable 
manifold, is a topological manifold on which
we can perform calculus.

Riemannian norm

Positive: ∥x∥G ≥ 0
∥x∥G = 0 ⟹ x = 0Definite:  

∥x∥G = ∥−x∥GSymmetric: 

∥x + y∥G ≤ ∥x∥G + ∥y∥GTriangle inequality: 

ℰ(γ) = 1
2 ∫∥ ·γ(t)∥2

G dt

Length and Energy functional

ℒ(γ) = ∫∥ ·γ(t)∥G dt

𝒯x ℳ

Riemannian manifold

∥u∥G = 1

f : ℝq → ℝd

∥u∥ = 1 ∥u∥ = 1

 A map assigning at each point p, an inner 
product: gp(u,v)=uT Gp v, with Gp a symmetric 
positive definite bilinear map (matrix, called 
metric tensor). 

Riemannian metric: g

Smooth manifold: M



 A map assigning at each point p, an inner 
product: gp(u,v)=uT Gp v, with Gp a symmetric 
positive definite bilinear map (matrix, called 
metric tensor). 

A smooth manifold, also called di!erentiable 
manifold, is a topological manifold on which
we can perform calculus.

∇vu = vj(∂jui)ei+uivjΓk
ijek

[x, y] = ∇x y − ∇yx

∇xg(y, z) = g(∇x y, z) + g(y, ∇xz) (∇kgij = 0)

V(ϕ, θ) = (sin(θ), sin(ϕ))

∇vu = vj∂j(uiei) = vj(∂juiei+ui∂jei)
= vj(∂jui)ei+uivjΓk

ijek

V(x, y) = (sin(y), sin(x))

u = uiei v = vjej ∇vu = vj∂j(ui)ei

ex

ey

Generalisation of Laplacian on Riemannian 
manifolds.

Δf = 1
|G |

∂i ( Ggij∂j f)Δf = ∇ ⋅ ∇f

Laplace Beltrami Operator: ∆

Riemannian metric: g

It is the unique covariant derivative (directional 
derivative) of a tensor field defined on a 
manifold, that is compatible with the 
Riemannian metric.

Levi-Civita connection: ∇

Smooth manifold: M



𝒯p ℳ

Laplace Beltrami Operator: ∆
Generalisation of Laplacian on Riemannian 
manifolds.

Riemannian metric: g

 A map assigning at each point p, an inner 
product: gp(u,v)=uT Gp v, with Gp a symmetric 
positive definite bilinear map (matrix, called 
metric tensor). 

Smooth manifold: M
A smooth manifold, also called di!erentiable 
manifold, is a topological manifold on which
we can perform calculus.

Levi-Civita connection: ∇
It is the unique covariant derivative (directional 
derivative) of a tensor field defined on a 
manifold, that is compatible with the 
Riemannian metric.

Exponential and Logarithm maps: Exp, Log

Expp : TpM → M Logp : M → TpM

Logp : x → v

Expp : v → γv(1)

x = γv(1)

vp



Manifold-valued inputs



i : (θ) → (θ cos θ, θ sin θ)

0 4π

[0,∞) ⊂ ℝ 𝒮 ⊂ ℝ2

Example 2: a spiral

i : (θ) → (cos θ, sin θ)

𝕊1 ⊂ ℝ2

0 2π

[0,2π) ⊂ ℝExample 1: a circlef : ℳ → ℝq Extrinsic kernels

M is a smooth manifold. 

i: Rd→M is a smooth map from R to M. 

Definition: Extrinsic kernels

kext(x, x′ ) = kℝd(i(z), i(z′ ))

kℝd(i(θ), i(θ′ )) = exp (− ∥i(θ) − i(θ′ )∥2

2ℓ2 ) = exp ( 2
ℓ2 sin2( θ − θ′ 

2 ))= ⋯

∥i(θ) − i(θ′ )∥2 = θ2 + θ′ 2 − 2θθ′ cos(θ − θ′ )

But it does not respect the geometry of the data.

θ = 2π + θ′ ⇒ ∥i(θ) − i(θ′ )∥2 = (θ − θ′ )2

The construction is always PSD because it restricts a 
Euclidean Gram matrix to the embedded points.

The kernel is properly restricted to the manifold M.

Lin, Lizhen, Niu Mu, Pokman Cheung, and David Dunson., et al. "Extrinsic 
Gaussian Processes for Regression and Classification on Manifolds." 
Bayesian Analysis 14.3 (2019): 887-906.



f : ℳ → ℝq Naive generalisation

Definition: Geodesic kernels

kgeo(x, x′ ) = exp(−
distg(x, x′ )2

2ℓ2 )

The idea is to extend the RBF definition to a manifold, 
using the geodesic distance as a way to measure two 
points.

positive definite not positive definite

But, depending on the lenghtscale chosen, the kernel is 
not positive definite! 

Aasa Feragen, Francois Lauze, and Soren Hauberg. "Geodesic exponential 
kernels: When curvature and linearity conflict." CVPR 2015.

I have zero clue why this is happening !



f : ℳ → ℝq Naive generalisation

The geodesic Gaussian kernel k(x,y)=exp(−κd2(x,y)) is 
positive definite for all κ>0 if and only if the Riemannian 
manifold is (isometric to) Euclidean space.

Theorem: Positive Definiteness of Geodesic kernels

Definition: Geodesic kernels

kgeo(x, x′ ) = exp(−
distg(x, x′ )2

2ℓ2 )

The idea is to extend the RBF definition to a manifold, 
using the geodesic distance as a way to measure two 
points.

And it gets worse! … "

There is some κ that could make your kernel PD. It is still 
an open problem 

For an infinite number of data points, none of the 
geodesic gaussian kernels are PD on Riemannian manifold 
with isometric embeddings to the circle.

N. Da Costa et al, “The gaussian kernel on the circle and spaces that admit isometric 
embeddings of the circle.” Geometric Science of Information. GSI 2023.

For an infinite number of data points, non simply 
connected Riemannian manifold are never PD.

Li, Siran. "Gaussian kernels on nonsimply connected closed Riemannian manifolds are never 
positive definite." Bulletin of the London Mathematical Society 56.1 (2024): 263-273.

simply connected Non simply connected

Aasa Feragen, Francois Lauze, and Soren Hauberg. "Geodesic exponential 
kernels: When curvature and linearity conflict." CVPR 2015.



f : ℳ → ℝq Intrinsic kernels Defining stationary kernels

k(x, y) = 1
(2π)d ∫ℝd

S(ω)eiω(x−y) dω

∀ω, S(ω) ≥ 0

k(x, y) =
∞

∑
n=0

g(λ)un(x)un(y)

∀λ, g(λ) ≥ 0

Sturm Liouville Theorem

Consider a compact Riemannian manifold (M,d) 
with ∆ the Laplace Beltrami operator.


There exists an orthonormal basis {u1, u2, …, un} of 
the space of square integrable functions,  and a 
sequence of positive numbers (λ0 < λ1 < λ2 < … ) 
such that:

−Δun = λnun −Δu = ∑
n≥0

λn⟨u, un⟩un .and

K = UΛU⊤

Λ ≻ 0

Bochner Theorem

A complex-valued function k on Rd is the 
covariance function of a weakly stationary mean 
square continuous complex-valued random 
process on Rd if and only if it can be represented 
as:

k(τ) = ∫ℝd
e2πis⋅τ dμ(s)

with µ a positive finite measure

Viacheslav Borovitskiy, Alexander Terenin, Peter Mostowsky, 
Marc Deisenroth. "Matérn Gaussian processes on Riemannian 
manifolds." NeurIPS 2020.

…on compact manifolds

−Δgu = ∑
n≥0

λn⟨u, un⟩un .

−Δgu = λnun−Δeiω = ∥ω∥2eiω

−Δu = 1
(2π)d ∫ℝd

∥ω∥2⟨u, eiωx⟩eiωxdω
ℱ[−Δu] = ∥ω∥2 ℱ[u]

(M, Δg)(ℝd, Δ)

u10 u50 u70 u∞

uω(x) = (2π)− d
2 eiωx un(x) depends on M



f : ℳ → ℝq Intrinsic kernels Defining stationary kernels

Bochner Theorem

Sturm Liouville Theorem

k(x, y) = 1
(2π)d ∫ℝd

S(ω)eiω(x−y) dω k(x, y) =
∞

∑
n=0

g(λ)un(x)un(y)

∀ω, S(ω) ≥ 0 ∀λ, g(λ) ≥ 0

Consider a compact Riemannian manifold (M,d) 
with ∆ the Laplace Beltrami operator.


There exists an orthonormal basis {u1, u2, …, un} of 
the space of square integrable functions,  and a 
sequence of positive numbers (λ0 < λ1 < λ2 < … ) 
such that:

−Δun = λnun −Δu = ∑
n≥0

λn⟨u, un⟩un .and

K = UΛU⊤

Λ ≻ 0A complex-valued function k on Rd is the 
covariance function of a weakly stationary mean 
square continuous complex-valued random 
process on Rd if and only if it can be represented 
as:

k(τ) = ∫ℝd
e2πis⋅τ dμ(s)

with µ a positive finite measure

Viacheslav Borovitskiy, Alexander Terenin, Peter Mostowsky, 
Marc Deisenroth. "Matérn Gaussian processes on Riemannian 
manifolds." NeurIPS 2020.

…on compact manifolds

S(ω) = e−t∥ω∥2

S(ω) = (κ2 + ∥ω∥2)−p

RBF

Matern

−Δgu = ∑
n≥0

λn⟨u, un⟩un .

−Δgu = λnun−Δeiω = ∥ω∥2eiω

−Δu = 1
(2π)d ∫ℝd

∥ω∥2⟨u, eiωx⟩eiωxdω

uω(x) = (2π)− d
2 eiωx un(x) = ?

(M, Δg)(ℝd, Δ)

ℱ[−Δu] = ∥ω∥2 ℱ[u]

( 2ν
κ2 − Δg)

p

u = Wg

e−tΔg u = Wg

g(λ) = ( 2ν
κ2 + λn)

−p

g(λ) = e−tλn

RBF

Matern

k(r) = (4πt)− d
2 e− r2

4t

k(r) = κ−α(κr)αK α(κr)
(2π)d/2 2p−1Γ(p) , α = p− d

2 k(x, y) =
∞

∑
n=0

( 2ν
κ2 + λn)

−p

un(x) un(y)

k(x, y) =
∞

∑
n=0

e−tλn un(x) un(y)



f : ℳ → ℝq Intrinsic kernels

from geometric_kernels.spaces import Hypersphere 
from geometric_kernels.kernels import MaternGeometricKernel 

sphere = Hypersphere(dim=2) 
kernel = MaternGeometricKernel(sphere) 
params = kernel.init_params() 
params['nu'], params['lengthscale'] = 2.5, 0.01 

X_obs = [[0.0, 1.0, 0.0], [0.0, -1.0, 0.0]] 
X_pred = sphere_grid(num_lats, num_longs) 
kernel_values = kernel.K(params, X_obs, X_pred) 

plot_sphere_surface(kernel_values)

pip install geometric_kernels

Final result on compact manifolds

Consider a compact Riemannian manifold (M,d) with ∆ the Laplace 
Beltrami operator.

Then the Matern kernel and RBF kernel are defined as:

kν(x, x′ ) = σ2

Cν

∞

∑
n=0

( 2ν
κ2 +λn)−ν− d

2 fn(x)fn(x′ )

k∞(x, x′ ) = σ2

C∞

∞

∑
n=0

e− κ2
2 λn fn(x)fn(x′ )

Torus, hypersphere and meshes
Close-form expression exist, and in the case of the hypersphere, they use 
the addition theorem. For meshes, the laplacian can be computed 
numerically and then the series is truncated 

Viacheslav Borovitskiy, Alexander Terenin, Peter Mostowsky, Marc Deisenroth. "Matérn 
Gaussian processes on Riemannian manifolds." NeurIPS 2020.

And graphs!
The Laplace Beltrami operator is replaced with the Hodge Laplacian for 
graphs, and the kernels are defined in a similar fashion.

Viacheslav Borovitskiy, Iskander Azangulov, Alexander Terenin, Peter Mostowsky, Marc 
Deisenroth, and Nicolas Durrande. “Matérn Gaussian Processes on Graphs.” AISTATS 21

And non compact spaces?
The theory is different, but the kernels can be approximated!

Iskander Azangulov, Andrei Smolensky, Alexander Terenin, and Viacheslav Borovitskiy. 
“Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous 
Spaces II: non-compact symmetric spaces.” JMLR 2024



Manifold-valued outputs



f : ℝd → ℳ Wrapped Gaussian 
distributions

Anton Mallasto and Aasa Feragen. "Wrapped Gaussian process regression 
on Riemannian manifolds." CVPR 2018.

Definition: wrapped Gaussian distribution
Let (M,g) be a Riemannian manifold. A random point X on M 
follows a wrapped Gaussian distribution, if for some µ∈M 
and well defined kernel K:

X ∼ (Expμ)#
(𝒩(0,K )) and we note: X ∼ 𝒩M(μ, K )

Theorem: Conditionally wrapped Gaussian distribution

(X1, X2) ∼ 𝒩M1×M2((μ1
μ2), (

K1 K12
K⊤

12 K2 ))
Then the conditional X1|X2=p2 is a mixture of wrapped 
Gaussians on M.

X1 (X2 = p2) ∼ (Expμ1
)# 𝒩(μ1|2, K1|2)

Let X1 and X2 be jointly wrapped Gaussian distributed 
random variables on the manifold M.

μ1|2 = K12K−1
2 Logμ2

(p2)

K1|2 = K1 − K⊤
12K−1

2 K⊤
12

X ∼ (Expμ)#
(𝒩(0,K ))

V ∼ 𝒩(0,K )



f : ℝd → ℳ

Anton Mallasto and Aasa Feragen. "Wrapped Gaussian process regression 
on Riemannian manifolds." CVPR 2018.

Wrapped Gaussian processes

1. Pick a prior basepoint function m

2. Log-map the training inputs

3. Train your standard GPs

4. Predict your new inputs

5. Project back to the manifold

Algorithm: 

Definition: From wrapped distribution to wrapped GPs

f ∼ (Expm)#(GP(0,k))

A Wrapped Gaussian Process is a collection of manifold-
valued random points whose finite marginals are jointly WGD; 
informally

The pair (m,k) are the basepoint function and tangent-space 
covariance function.

Two routes: 

(i) Naïve tangent-space GP: pick a single base point m, log-map 
data, do Euclidean GP, then Exp back.

(ii) WGP regression: place a WGP prior with (m,k), condition 
analytically, then wrap back with Exp.



f : ℝd → ℳ

1. Pick a prior basepoint function m

2. Log-map the training inputs

3. Train your standard GPs

4. Predict your new inputs

5. Project back to the manifold

Anton Mallasto and Aasa Feragen. "Wrapped Gaussian process regression 
on Riemannian manifolds." CVPR 2018.

Wrapped Gaussian processes

Definition: From wrapped distribution to wrapped GPs

f ∼ (Expm)#(GP(0,k))

Algorithm: 

A Wrapped Gaussian Process is a collection of manifold-
valued random points whose finite marginals are jointly WGD; 
informally

The pair (m,k) are the basepoint function and tangent-space 
covariance function.

Two routes: 

(i) Naïve tangent-space GP: pick a single base point m, log-map 
data, do Euclidean GP, then Exp back.

(ii) WGP regression: place a WGP prior with (m,k), condition 
analytically, then wrap back with Exp.

Training points Basepoint Samples True geodesic

Euclidean GPs Wrapped GPs



f : ℝd → ℝq GPLVM
GPs interlude: Gaussian Latent Variable Model

Neil Lawrence. "Gaussian process latent variable models for visualisation of 
high dimensional data." NeurIPS 2003.

Algorithm: Gaussian Process

X ∈ ℝnd, Y ∈ ℝnq, Kθ = kθ(X, X) + σ2IInputs:

θ ⟵ θ + η∇θ LUpdate:

Objective: log p(y |θ) = − 1
2 Tr (Y⊤K−1

θ Y) − q
2 log |Kθ | − nq

2 log(2π)

Algorithm: Gaussian Process Latent Variable Model

X ∈ ℝnd, Y ∈ ℝnq, Kθ,X = kθ(X, X) + σ2IInputs:

log p(y |θ, X ) = − 1
2 Tr (Y⊤K−1

θ,XY) − q
2 log |Kθ,X | − nq

2 log(2π)Objective:

θ ⟵ θ + η∇θ LUpdate: X ⟵ X+η∇X L

Latent space
𝒳 ⊂ ℝd

Data space
𝒴 ⊂ ℝq

f ∼ GP(μ, K)



GPs interlude: Gaussian Latent Variable Model

f ∼ GP(μ, K)

Latent space
𝒳 ⊂ ℝd

Data space
𝒴 ⊂ ℝq

yi |xi ∼ Gaussian

Neil Lawrence. "Gaussian process latent variable models for visualisation of 
high dimensional data." NeurIPS 2003.

GPLVMf : ℝd → ℝq

Algorithm: Gaussian Process

X ∈ ℝnd, Y ∈ ℝnq, Kθ = kθ(X, X) + σ2IInputs:

θ ⟵ θ + η∇θ LUpdate:

Objective: log p(y |θ) = − 1
2 Tr (Y⊤K−1

θ Y) − q
2 log |Kθ | − nq

2 log(2π)

Algorithm: Gaussian Process Latent Variable Model

X ∈ ℝnd, Y ∈ ℝnq, Kθ,X = kθ(X, X) + σ2IInputs:

log p(y |θ, X ) = − 1
2 Tr (Y⊤K−1

θ,XY) − q
2 log |Kθ,X | − nq

2 log(2π)Objective:

θ ⟵ θ + η∇θ LUpdate: X ⟵ X+η∇X L



TpM

f : ℝd → ℳ Wrapped GPLVMs

ℳ

0 π

GPLVM

L

Anton Mallasto, Soren Hauberg and Aasa Feragen. "Probabilistic 
Riemannian submanifold learning with wrapped Gaussian process latent 
variable models." AISTATS 2019.

1. Pick a prior basepoint function m

2. Log-map the training inputs

3. Train your standard GPLVMs

4. Predict your new inputs

5. Project back to the manifold

Algorithm: 

Result: Generalising the log likelihood

log p(y ∣ x, θ) ≈ − d
2 log|Kx,θ| − 1

2 Logm(y)⊤ K−1
x,θ Logm(y) + const.

And so, we can get the objective function that we we use to 
train the wrapped GPLVM:

ℙ(y ∣ x, θ) ≈ 𝒩(Logm(y) |0,KX,θ)

We can approximate the likelihood of a point y on the 
manifold by the likelihood of its projection to the tangent 
space TmM



f : ℝd → ℳ Pullback WGPLVM

0 π

GPLVM

TpM

ℳ

(L, g)

Leonel Rozo, Miguel González-Duque, Noemie Jaquier, Soren Hauberg, 
“Riemann-2: Learning Riemannian Submanifolds from Riemannian 
Data." AISTATS 2025



f : ℝd → ℳ Pullback WGPLVM

0 π

GPLV M

TpM

(L , g)

Leonel Rozo, Miguel González-Duque, Noemie Jaquier, Soren Hauberg, 
“Riemann-2: Learning Riemannian Submanifolds from Riemannian 
Data." AISTATS 2025

Alessandra Tosi, Soren Hauberg, Alfredo Vellido, Neil Lawrence, “Metrics for probabilistic Geometries." UAI 2014

f ∼ GP(m, K ) ⟹ Jf ∼ 𝒩(μ, Σ) ⟹ G = J⊤
f Jf ∼ 𝒲d(q, Σ, Σ−1μ⊤μ)

f ∼ GP(μ, K)

Latent space
𝒳 ⊂ ℝd

Data space
𝒴 ⊂ ℝq

yi |xi ∼ Gaussian

G = J⊤
f Jf ⟹ 𝔼[G] = 𝔼[J]⊤𝔼[J] + qΣ

One step back: Pulling back the metric through a GPLVM

𝔼[G] = 𝔼[J ]⊤𝔼[J ] + qΣ

For all points, f is a normal distribution, and its derivatives too. 
G is a Wishart distribution, and we know its mean.

We want to navigate the latent space. We need a Riemannian 
metric G, obtained by pulling back the data to the latent 
space through immersion f:

G = J⊤
f Jf

But the GP still outputs to the Euclidean space!

…. and the key is to find the right Riemannian metric! Which 
involves a lot of chain rules. 

Rozo et al (2025) are extending Tosi et al (2014) framework, by 
wrapping the posterior y|x to the manifold with the WGPLVM.

f : ℝ2 → ℝ3



f : ℝd → ℳ Pullback WGPLVM
Pullback Wrapped GPLVMs (Riemann2) explained

0 π

GPLV M

TpM

(L , g)

Leonel Rozo, Miguel González-Duque, Noemie Jaquier, Soren Hauberg, 
“Riemann-2: Learning Riemannian Submanifolds from Riemannian 
Data." AISTATS 2025

G

Theorem: Expected pullback metric of a wrapped GPLVM

The pullback metric of (M,g) through the composition of an 
multi-task Euclidean GPs wrapped to the manifold via the 
exponential map, is obtained via the chain rule:

G̃ = J⊤
fEǦJfE = J⊤

fEJ⊤
ExpGJExpJfE

𝔼[G̃] = 𝔼[JfE]⊤Ǧ𝔼[JfE] + Tr[Ǧ⊤Kf ]Σr(J⊤
fE)

J⊤
ExpGJExpJ⊤

fEJ⊤
ExpGJExpJfE

When G=I, 𝔼[G̃] = 𝔼[JfE]⊤𝔼[JfE] + qΣr(JfE)





f : ℝd → ℳf : ℳ → ℝq

Manifold-valued inputs Manifold-valued outputs

Defining proper kernels Wrapping everything

Naive generalisation

Extrinsic kernels 

Intrinsic kernels
Viacheslav Borovitskiy, Alexander Terenin, Peter Mostowsky, Marc 
Deisenroth. "Matérn Gaussian processes on Riemannian 
manifolds." NeurIPS 2020.

Lin, Lizhen, Niu Mu, Pokman Cheung, and David Dunson., et al. "Extrinsic 
Gaussian Processes for Regression and Classification on Manifolds." 
Bayesian Analysis 14.3 (2019): 887-906.

Aasa Feragen, Francois Lauze, and Soren Hauberg. "Geodesic exponential 
kernels: When curvature and linearity conflict." CVPR 2015.

Wrapped GPs

Wrapped GPLVMs

WGPLVM with the pullback metric

Leonel Rozo, Miguel González-Duque, Noemie Jaquier, Soren Hauberg, 
“Riemann-2: Learning Riemannian Submanifolds from Riemannian 
Data." AISTATS 2025

Anton Mallasto and Aasa Feragen. "Wrapped Gaussian process regression 
on Riemannian manifolds." CVPR 2018.

Anton Mallasto, Soren Hauberg and Aasa Feragen. "Probabilistic 
Riemannian submanifold learning with wrapped Gaussian process latent 
variable models." AISTATS 2019.



Thank you!

Special thanks to the GPSS organisers # 


Mauricio Alvarez, Carl Henrik Ek, Richard Wilkinson, Henry Moss, Neil Lawrence

And to those inspiring researchers that led to this talk $


Aasa Feragen, Alexander Terenin, Andrei Smolensky, Anton Mallasto, David Hilbert, François Lauze, Carl Friedrich 
Gauss, Iskander Azangulov, Joseph-Louis Lagrange, Pierre-Simon Laplace, Leonel Rozo, Marc Peter Deisenroth, 
Michael John Hutchinson, Miguel Gonzalez-Duque, Nathael Da Costa, Noemie Jaquier, Peter Mostowsky, 
Bernhard Riemann, Salomon Bochner, Jacques Charles François Sturm, Joseph Liouville, Siran Li, Søren Hauberg, 
Viacheslav Borovitskiy, Vincent Dutordoir and many more…



